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An electromagnetic particle simulation model has been formulated and verified for nonlinear processes

of lower hybrid (LH) waves in fusion plasmas. Electron dynamics are described by the drift kinetic

equation using either kinetic momentum or canonical momentum. Ion dynamics are treated as the fluid

system or by the Vlasov equation. Compressible magnetic perturbation is retained to simulate both the

fast and slow LH waves. Numerical properties are greatly improved by using the electron continuity

equation to enforce the consistency between electrostatic potential and vector potential, and by using

the importance sampling scheme. The simulation model has been implemented in the gyrokinetic

toroidal code (GTC), and verified for the dispersion relation and nonlinear particle trapping of the

electromagnetic LH waves. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952773]

I. INTRODUCTION

The lower hybrid current drive (LHCD) has been suc-

cessfully predicted1 and subsequently demonstrated in

many fusion experiments.2 In fact, the lower hybrid (LH)

wave is one of the most efficient tools for steady-state oper-

ation of a tokamak,3 as well as to control the current profile

and to suppress magneto-hydrodynamic instabilities.4 Thus,

reliable prediction of current profile driven by the LH wave

is important for fusion experiments. Many linear and quasi-

linear simulation models have been developed to study the

LH wave propagation and absorption in tokamaks, such

as Wentzel–Kramers–Brillouin (WKB) and full-wave

approaches.5–8 The WKB approach solves Maxwell’s equa-

tion in the short wavelength limit and gives the asymptotic

solution for wave propagation, while the full wave

approach solves Maxwell’s equation exactly by using a

given particle distribution. These two approaches need to

couple with a Fokker–Planck quasi-linear solver to address

the wave absorption. Many important features of the LH

wave propagation and absorption in tokamak have been

successfully explained based on the linear and quasi-linear

models. For example, the “spectral gap”9 phenomena (re-

ferring to the difference of LH parallel refractive index

between the launching location and absorption region) have

been explained as the parallel spectrum up-shift and broad-

ening effects due to the toroidicity and the wave diffraction.

However, the nonlinear effects of the LH waves become

increasingly important in tokamak plasmas with high heat-

ing power.1 For example, the unsolved “density limit”10

problem (referring to the decrease of current drive effi-

ciency at higher plasma density) is believed to be related to

the nonlinear parametric decay instability,11 since the side-

band waves have been observed in many experiments.12–14

Particle-in-cell (PIC) simulation approach is a powerful

tool for studying nonlinear physics. Several PIC codes for

radio frequency (RF) waves in the simple geometry (slab or

cylinder) have been developed, e.g., GeFi,15–17 Vorpal,18,19

and G-gauge20,21 codes. However, PIC simulations of RF

waves had not been performed in the toroidal geometry before

our earlier study of the LH wave propagation in tokamaks

using a electrostatic PIC model.22,23 In this work, we further

develop a fully nonlinear electromagnetic PIC model, which

has been successfully implemented into the gyrokinetic toroi-

dal code (GTC).24 This PIC model can address all the nonlin-

ear physics associated with the LH waves, which includes the

nonlinear particle trapping by the nonlinear wave–particle

interaction and the parametric decay instability by the nonlin-

ear wave–wave interaction. The electromagnetic dispersion

relation and the nonlinear particle trapping of the LH waves

have been verified in this paper. The nonlinear parametric

decay instability of the LH waves will be reported in the future

work.

In this paper, ion dynamics are described by the fluid

equation for the study of the LH wave propagation and

absorption. However, ion kinetic effects are important to the

parametric decay instability of the LH waves. For example,

nonlinear Landau damping by ions is important to some low

frequency waves which are generated during the parametric

decay instability.12–14,25–28 In such cases, ion kinetic effects

can be incorporated using 6D Vlasov equation, which has

been implemented and verified in GTC.22,29,30 Due to the fact

that the LH wave frequency is much smaller than the electron

cyclotron frequency x� Xce, and that the LH wavelength is

much longer than the electron gyro-radius kqe � 1, the elec-

tron dynamics are described by the drift kinetic (DK) equation

using either kinetic momentum (symplectic formulation) or

canonical momentum (Hamiltonian formulation). At the same

time, the electron continuity equation is used for improving

the numerical properties, which enforces the consistency

between the perturbed density and the perturbed velocity. To

study the LH wave dynamics in the core of tokamak plasmas,

the light wave and parallel electron plasma wave are removed

in order to relax the constraints on the spatial grid size and
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time step size. The computational cost is expensive for the

global simulation of LH waves in tokamak, since the LH

wavelength is much shorter than the device size. For typical

experimental parameters, the LH wave frequency is on the

order of GHz, the parallel refractive index is around 1–2, the

perpendicular wavelength is on the order of electron skin

depth, and the parallel wavelength is on the order of ion skin

depth. Thus, thousands of grids along radial, poloidal, and to-

roidal directions are required to resolve the short wavelength.

In order to minimize the computational costs, we simulate the

LH wave with one single toroidal wavelength and utilize the

toroidal symmetry by only simulating 2p=n length of the to-

roidal angle, where n is the toroidal mode number of the LH

wave. This reduces the toroidal grid number from resolving

hundreds of toroidal wavelengths to one toroidal wavelength.

However, in the future study of parametric processes, where

the toroidal mode numbers of the decay waves are usually

smaller than the pump LH waves, the toroidal length of the

simulation domain needs to be longer to resolve the waves

with the lowest toroidal mode number. Furthermore, due to

the fact that the mode structure of the LH wave is usually

localized in tokamaks, we do not need many markers in the

region where the LH wave amplitude is small. Thus, an im-

portance sampling scheme is used in order to utilize the

markers with high efficiency in PIC simulation.31,32 The im-

portance sampling scheme is a statistical technique which

uses samples generated from a different distribution rather

than the distribution of interest. In the importance sampling

scheme, we load more markers in the region through which

the LH wave will propagate and use the marker weight to rep-

resent the physical distribution. With these numerical techni-

ques and simplifications on the physics model, computational

costs are greatly reduced, while the important features rele-

vant for current drive, such as LH wave propagation, mode

conversion, and electron Landau damping, are still captured.

The nonlinear formulation for the LH wave is presented

in Sec. II. The comparison of the analytic dispersion relation

between the particle model and the full Maxwell model in

the cold and uniform plasma limit is shown in Sec. III. The

importance sampling PIC scheme for the LH wave simula-

tion is shown in Sec. IV. The verifications of GTC simula-

tions of the LH wave dispersion relation and nonlinear

particle trapping are presented in Sec. V. We describe our

conclusions in Sec. VI.

II. NONLINEAR FORMULATION

When simulating LH wave propagation and absorption

with negligible damping from ion species, ion dynamics are

described by the fluid equation as described in Sec. II A. We

use the drift kinetic equation to describe electron dynamics

with two different guiding center formulations: the

Hamiltonian formulation using canonical momentum and the

symplectic formulation using kinetic momentum. These are

described in Secs. II B and II C, respectively. Either of these

formulations can be used to study the LH waves accurately.

Poisson’s equation and the electron perpendicular force bal-

ance equation are given in Sec. II D. In this paper, the nota-

tions kjj and k? denote the parallel and perpendicular (with

respect to the background magnetic field) wave vectors,

respectively. njj ¼ ckjj=x and n? ¼ ck?=x denote the parallel

and perpendicular refractive index, respectively. xpe is the

electron plasma frequency, xpi is the ion plasma frequency,

Xce is the electron cyclotron frequency, and Xci is the ion cy-

clotron frequency.

A. Fluid ions

The continuity and the momentum equations are used

for describing the fluid ion dynamics:

@dni

@t
þr � ni0 þ dnið Þdui½ � ¼ 0; (1)

mini0
ddui

dt
¼ Zini0 dEþ 1

c
dui � B

� �
�rdPi; (2)

where dni and dui are the ion density and velocity perturba-

tions, dPi � dniTi0 is the ion pressure perturbation, ni0 and

Ti0 are the ion equilibrium density and temperature, and Zi

and mi are the ion charge and mass, respectively. dE ¼
�r/� 1

c
@dA
@t is the perturbed electric field and B ¼ B0 þ dB

is the total magnetic field, where B0 ¼ r� A0 is the equi-

librium magnetic field, dB ¼ r� dA is the perturbed mag-

netic field, / is the scalar potential, A0 is the equilibrium

vector potential, and dA is the perturbed vector potential. In

Eq. (2), d=dt ¼ @=@tþ dui � $ is the total time derivative

which includes the convection term. For the LH wave simu-

lation with x� k?vthi, we can drop the pressure term in Eq.

(2), where vthi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti0=mi

p
is the ion thermal speed.

For computational convenience, we rewrite Eq. (2) into

its canonical form by avoiding the calculation of @dA=@t:

mini0
ddUi

dt
¼ �Zini0r /� 1

c
dui � A0 þ dAð Þ

� �
; (3)

where dUi ¼ dui þ Zi

cmi
A0 þ dAð Þ is the canonical velocity of

the fluid ions. The total time derivative is defined as

d=dt ¼ @=@tþ dUi � $. Eq. (3) is used in the simulation

instead of Eq. (2).

Furthermore, the 6D Vlasov equation has been adopted

for describing fully kinetic ion dynamics in GTC and can be

utilized when the ion kinetic effects are important.22,29,30

B. Drift kinetic electron using canonical momentum

The Hamiltonian formulation using canonical momen-

tum33,34 is proposed to remove the @dAjj=@t term in particle

dynamic equations, which is difficult to implement as a

time-centered finite difference in the simulation. In this sec-

tion, we will introduce the formulation of the drift kinetic

electron using canonical momentum in our model.

The nonlinear drift kinetic equation using canonical mo-

mentum for electrons is33,34

LcfeðX; pjj; l; tÞ ¼ 0; (4)

where fe is the electron distribution function and Lc is the

propagator in canonical form, and X, pjj, l and t denote the

particle position, canonical momentum mevjj þ qedAjj=c,

magnetic moment and time, respectively.
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The propagator Lc consists of the equilibrium part Lc0,

the first order perturbed part dLc1, and the second order per-

turbed part dLc2 as

Lc0 ¼
@

@t
þ

pjj
meB0

B	c0 þ
cl

qeB0

b0 �rB0

� �
� r

� l
B0

B	c0 � rB0

@

@pjj
;

dLc1 ¼ �
qedAjj
cme

B	c0

B0

þ cb0

qeB0

� qerWl

� �
� r

� B	c0

B0

� qerWl
@

@pjj
;

dLc2 ¼
cb0

qeB0

� qerWnl � r �
B	c0

B0

� qerWnl
@

@pjj
;

where B0 ¼ B0b0 is the equilibrium magnetic field, and

B	c0 ¼ B0 þ c
qe

pjjr � b0. The generalized potential consists

of the linear and nonlinear parts W ¼ Wl þWnl, where Wl ¼
/� pjjdAjj

mec þ
l
qe

dBjj and Wnl ¼
qedA2

jj
2mec2. dBjj and dAjj are the com-

pressional magnetic field perturbation and the parallel vector

potential perturbation, respectively. The corresponding parti-

cle motion equations of Eq. (4) in magnetic coordinates are

given in Appendix A.

The electron distribution function fe is also decomposed

into the equilibrium and perturbed parts as fe ¼ fe0 þ dfe, and

the equilibrium distribution function fe0 satisfies the follow-

ing equation:

Lc0fe0 ¼ 0; (5)

where we approximate fe0 as a Maxwellian fe0 ¼ ne0ð me

2pTe0
Þ3=2

� expð� p2
jj=meþ2lB

2Te0
Þ without the neoclassical correction, and the

independent variable pjj reduces to pjj ¼ mevjj in fe0.

Considering Eq. (5), we can rewrite Eq. (4) as

Lc0dfe þ dLc1fe0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
fIg

þ dLc1dfe þ dLc2fe0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fIIg

þ dLc2dfe|fflfflffl{zfflfflffl}
fIIIg

¼ 0; (6)

where {I} represents the first order linear terms, {II} and

{III} represent the second order and the third order nonlinear

terms, respectively.

A perturbative dfe simulation method is applied to mini-

mize the particle noise by defining the particle weight as

we ¼ dfe=fe, and the weight evolution equation can be written

as

dwe

dt
¼ Lcwe ¼

1

fe
Lcdfe ¼ �

1

fe
dLc1 þ dLc2ð Þfe0

¼ � 1� weð Þ 1

fe0

dLc1 þ dLc2ð Þfe0; (7)

where Eq. (4) is used in deriving Eq. (7).

In principle, we can calculate both the density and paral-

lel canonical velocity perturbations from the kinetic particles

for calculating the perturbed fields. However, when we apply

the df method and advance the weight equation by assuming

fe0 ¼ fMaxwellian, the error Df ¼ fMarker � fMaxwellian from the

marker noise will accumulate in Eq. (7). Thus, after integrat-

ing the density and parallel canonical velocity perturbations

from the marker distribution, the continuity equation will not

be satisfied due to this error. The corresponding electrostatic

potential and parallel vector potential will conflict with each

other and cause numerical instabilities. This error can be

reduced by increasing the marker number and will be elimi-

nated when the marker number is infinite to build a perfect

Maxwellian in the df simulation. In order to avoid this numer-

ical issue, we use an additional electron continuity equation to

time advance the electron density perturbation by the parallel

canonical velocity perturbation calculated from the markers.

The drift kinetic Eqs. (4) and (7) are only used for calculating

the perturbed electron parallel canonical velocity and the per-

turbed pressure. This method provides much better consis-

tency between the scalar potential and vector potential in the

df simulation, since the continuity equation is satisfied all the

time. The comparison of a single LH mode excitation between

the cases with and without continuity equation is shown in

Appendix B, which verifies the improved numerical properties

using the continuity equation for the perturbed density.

Next, we integrate Eq. (6) to derive the electron continuity

equation, and keep the leading linear and nonlinear terms

based on the orderings: ujje0 � 0, kjj � k?, ck?=xpe 
 1,

dne=ne0 
 dPjje=Pjje0 
 dP?e=P?e0 
 dBjj=B0 
 jdB?j=B0,

rne0=ne0 
 1=a, rTe0=Te0 
 1=a, rB0=B0 
 1=R,

a=R < 1. Then, we have

@dne

@t
þB0 � r

ne0

B0

dujjec �
qedAjj
mec

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

If g

þB0vE � r
ne0

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

IIf g

�ne0 v	 þ vEð Þ � rB0

B0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IIIf g

� cb0 �rP?e0

qeB0

�
rdBjj

B0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IVf g

þB0vE � r
dne

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vf g

� cb0 �rdP?e

qeB0

�
rdBjj

B0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VIf g

�B0 � r
dne

B0

qedAjj
mec

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VIIf g

þr � dAjjb0

� 	
� r ne0

B0

dujjec �
qedAjj
mec

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VIIIf g

¼ 0; (8)

where vE ¼ cb0�r/
B0

is the E� B drift, v	 ¼ b0�r dPe?þdPejjð Þ
ne0meXce

is

the diamagnetic drift, dujjec ¼ 1
ne0me

Ð
dvpjjdfe is the canonical

velocity, dPjje ¼ 1
me

Ð
dvp2

jjdfe and dP?e ¼
Ð

dvlB0dfe are

the parallel and perpendicular perturbed pressure, and

Ð
dv ¼ 2pB0

m2
e

Ð
dpjjdl. The perpendicular equilibrium pressure

in term {IV} is defined as P?e0 ¼
Ð

dvlB0fe0 ¼ ne0Te0. The

terms {I}–{IV} are linear, and the terms {V}–{VIII} are non-

linear. The term {I} is the linear parallel compressional term,
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terms {II}–{IV} represent the linear work by the leading

drifts, term {V} represents the E� B nonlinearity, term {VI}

represents the diamagnetic drift nonlinearity, {VII} is the par-

allel nonlinear term, and {VIII} is the nonlinear magnetic

compressional term.

Here, we use the parallel Ampere’s law for solving dAjj as

r2
? �

x2
pe

c2

� �
dAjj ¼ �

4p
c

Jjji þ Jjje
� 	

; (9)

where Jjji ¼ Zini0dujji and Jjje ¼ qe

me

Ð
dfepjjdv, dujji is the par-

allel mechanical velocity of the fluid ions. The second term

on the LHS of Eq. (9) arises due to the difference between pjj
and mevjj.

Inverting the Ampere’s law (Eq. (9)), we have the rela-

tion: dujjec �
qedAjj
mec ¼ � c

4pne0qe
r2
?dAjj þ dujji, which is used in

terms {I} and {VIII} of Eq. (8) for better numerical stability.

C. Drift kinetic electron using kinetic momentum

Although the drift kinetic equation using canonical mo-

mentum has some computational advantages, the drift kinetic

equation using kinetic momentum (also called the symplectic

formulation) is more transparent regarding the physical

meaning of each term in the equations.34 In this section, we

introduce the drift kinetic equation using kinetic momentum

as an alternative electron model.

Using guiding center position X, parallel velocity vjj,
and magnetic moment l as independent variables in five

dimensional phase space, the drift kinetic Vlasov equation

for electrons is34,35

LkfeðX; vjj; l; tÞ ¼ 0; (10)

where feðX; vjj; l; tÞ is the electron distribution function and

Lk is the propagator in sympletic form. Lk can be decom-

posed into the equilibrium part Lk0, the first order linear part

dLk1, and the second order nonlinear part dLk2 as

Lk ¼ Lk0 þ dLk1 þ dLk2, with

Lk0¼
@

@t
þ

vjj
B0

B	k0 þ
cb0

qeB0

�lrB0

� �
�r� l

meB0

B	k0 �rB0

@

@vjj
;

dLk1 ¼ vjj
dB?
B0

þ cb0

qeB0

� qer/þ lrdBjj
� 	� �

� r þ � l
meB0

dB? � rB0 �
B	k0

meB0

� qer/þ lrdBjj
� 	

� qe

cme

@dAjj
@t

" #
@

@vjj
;

dLk2 ¼ �
dB?
meB0

� qer/þ lrdBjj
� 	 @

@vjj
;

where B	k ¼ B	k0 þ dB?, B	k0 ¼ B0 þ B0vjj
Xce
r� b0, and

dB? ¼ r? � ðdAjjb0Þ. The particle motion equations corre-

sponding to Eq. (10) are given in Appendix A in magnetic

coordinates.

Next, we will perform the same procedure as in Sec. II B

to deduce the weight evolution equation and electron conti-

nuity equation. The distribution function is decomposed into

the equilibrium and perturbed part as fe ¼ fe0 þ dfe. The

equilibrium distribution fe0 obeys the following equation:

Lk0fe0 ¼ 0; (11)

where fe0 is also approximated as a Maxwellian:

fe0 ¼ ne0ð me

2pTe0
Þ3=2

expð� mev2
jjþ2lB

2Te0
Þ.

From Eqs. (10) and (11), we have

Lk0dfe þ dLk1fe0|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
fIg

þ dLk1dfe þ dLk2fe0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
fIIg

þ dLk2dfe|fflfflffl{zfflfflffl}
fIIIg

¼ 0; (12)

where {I} represents the first order linear terms, {II} and

{III} represent the second order and the third order nonlinear

terms, respectively.

Defining the particle weight as we ¼ dfe=fe, the weight

evolution equation is

dwe

dt
¼ Lkwe ¼

1

fe
Lkdfe ¼ �

1

fe
dLk1 þ dLk2ð Þfe0

¼ � 1� weð Þ 1

fe0

dLk1 þ dLk2ð Þfe0: (13)

In the electron model with kinetic momentum, we also

use the electron continuity equation for numerical stability

as discussed in Sec. II B. Integrating Eq. (12) in velocity

space and keeping the leading linear and nonlinear terms

based on the same orderings in Sec. II B, we find that the

electron continuity equation is given by

@dne

@t
þB0 � r

ne0dujje
B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þB0vE � r
ne0

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

�ne0 v	 þ vEð Þ � rB0

B0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

þ
cb0 �rdBjj

B2
0

� rP?e0

qe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

þdB? � r
ne0dujje

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V

þB0vE � r
dne

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

VI

þ
cb0 �rdBjj

B2
0

� rdP?e

qe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VII

¼ 0; (14)
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where dujje ¼ 1
ne0

Ð
vjjdfedv is the perturbed parallel velocity,

dPjje ¼ me

Ð
dvv2

jjdfe and dP?e ¼
Ð

dvlB0dfe are the parallel

and perpendicular perturbed pressures, P?e0 ¼
Ð

dvlB0fe0 ¼
ne0Te0 is the perpendicular equilibrium pressure, vE ¼ cb0�r/

B0

is the E� B drift velocity, v	 ¼ b0�r dP?eþdPjjeð Þ
ne0meXce

is the per-

turbed diamagnetic drift velocity, and
Ð

dv ¼ 2pB0

me

Ð
dvjjdl.

The terms related to dBjj in Eq. (14) are the diamagnetic drift

due to the parallel perturbed magnetic field, and the other

terms are the same as in Eq. (28) in Ref. 36. In Eq. (14), the

terms {I}–{IV} are linear while the terms {V}–{VII} are

nonlinear.

In order to calculate @dAjj=@t value for pushing the par-

ticles, we first take the time derivative of the parallel

Ampere’s law as

r2
?
@dAjj
@t
¼ � 4p

c
Zini0

@dujji
@t
þ qene0

@dujje
@t

� �
: (15)

Second, we integrate Eq. (12) to get the momentum equation

based on the same ordering with Eq. (14) as

ne0

@dujje
@t
þ qene0

me
b0 � r/|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
I

þ qene0

mec

@dAjj
@t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

II

þ B0

me
b0 � r

dPjje
B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

þ
B0 � rdBjj

meB2
0

P?e0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

þ qedne

me
b0 � r/|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

V

þ qedne

mec

@dAjj
@t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

VI

þ qene0

meB0

dB? � r/|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
VII

þ dB?
me
� r

dPjje
B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

VIII

þB0vE � r
ne0dujje

B0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IX

¼ 0; (16)

where terms {I}–{IV} are linear and {V}–{IX} are nonlinear

in Eq. (16).

Third, we calculate @dujji=@t from Eq. (2) as

@dujji
@t
¼ Zi

mi
�b0 � r/� 1

c

@dAjj
@t

� �
: (17)

Substituting Eqs. (16) and (17) into Eq. (15), we can derive

the following equation for @dAjj=@t:

r2
? �

x2
pe

c2
�

x2
pi

c2

� �
@dAjj
@t
¼

x2
pe

c2
njj; (18)

where

njj ¼ c 1þ me

mi

� �
b0 � r/þ c

ne0qe
B0 � r

dPjje
B0

� �

þ c

ne0qe

B0 � rdBjj

B2
0

P?e0 þ c
dne

ne0

b0 � r/

þ c

B0

dB? � r/þ c

ne0qe
dB? � r

dPjje
B0

� �

þ cmeB0

ne0qe
vE � r

ne0dujje
B0

� �
þ dne

ne0

@dAjj
@t

:

Eq. (18) with nonlinear terms is solved by an iterative

method: we solve it without the last term in njj, then substi-

tute the result of @dAjj=@t into njj, and solve Eq. (18) again to

get the new @dAjj=@t. One iteration is enough for conver-

gence since the last term ðdne=ne0Þð@dAjj=@tÞ is much

smaller than the other terms in njj.
Alternatively, we could move ðdne=ne0Þð@dAjj=@tÞ in njj

to the LHS of Eq. (18), and solve @dAjj=@t directly without

iteration. However, this requires initializing the matrix r2
? �x2

pe

c2 �
x2

pi

c2 �
dx2

pe

c2 (where dx2
pe ¼ 4pdnee2

me
) using the PETSc soft-

ware at each time step in the simulation, which will slow

down the computational speed.

In Secs. II B and II C, electron models using canonical

momentum (Hamiltonian formulation) and kinetic momen-

tum (symplectic formulation) have been discussed. Both of

them apply the continuity equation to avoid numerical insta-

bility. The leading terms of the continuity equations from

these two models are the same except for an additional term

{VII} in Eq. (8), which is due to the difference between pjj
and vjj as independent variables of these two models.

However, the different term is very small compared to the

sum of the other terms, and either of these two models can

be applied to the simulations.

D. Field equations

The Poisson’s equation for fluid (or fully kinetic) ions

and drift kinetic electrons is34,37

r2
?/þr? �

x2
pe

X2
ce

r?/
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

¼ �4p Zidni þ qedneð Þ þ 4pr?�

� qene0

B2
0

B0 � dA?|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
II

þ
cmene0ujje0

B2
0

r?dAjj|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

0
B@

1
CA: (19)

In Eq. (19), the parallel electron plasma wave is suppressed

by assuming r2 � r2
? in the first term on the LHS. Term

{I} is the electron density perturbation caused by the polar-

ization drift, term {II} is the density perturbation caused by

the electron E� B drift due to the inductive electric field

@dA?=@t, term {III} is the electron density perturbation

caused by the magnetic-flutter motion along perturbed

magnetic-field lines, and ujje0 ¼ ð1=ne0Þ
Ð

vjjfe0dv is the elec-

tron equilibrium flow.
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In the LH wave frequency range x� Xce, we can use

the electron perpendicular force balance equation to solve

dBjj and / together with Eq. (19), which is given as follows:

neqedE? ¼ r? � dPe �
1

c
Je? � B0; (20)

where the perpendicular electric field dE? is defined as

dE? ¼ �r?/�
1

c

@dA?
@t

; (21)

the divergence of the electron pressure is

r? � dPe � r? dP?e þ
ne0Te0dBjj

B0

� �
; (22)

and the electron perpendicular current is

Je? �
c

4p
r?dBjj � b0 þrjj � r?dAjj � b0

� 	
 �
� Ji?:

(23)

In Eq. (22), we neglect the electron polarization drift

vpol ¼ ðqe=meX
2
ceÞð@dE?=@tÞ contribution to the pressure

term based on the drift kinetic electron assumption (the elec-

tron Larmor radius is much smaller than the perpendicular

wavelength k?qe � 1), since the pressure caused by the

polarization drift is dPpol � dnpolTe0 ¼ qene0q2
er2
?/ � 0.

The first term on the RHS of Eq. (22) is calculated from the

guiding center dynamics, and the second term on the RHS is

the pressure perturbation caused by the electron E� B drift

due to the inductive electric field @dA?=@t, which does not

appear in the guiding center dynamic equation explicitly.

Taking the perpendicular divergence operation on both

sides of Eq. (20), we have

�r2
?/þ

1

c
b0 � r

@dAjj
@t

¼ r? �
1

ne0qe
r? dP?e þ

ne0Te0dBjj
B0

� �� �

þr? �
B0

4pne0qe
r?dBjj

� �
þ 1

ne0qec
r? � Ji? � B0ð Þ:

(24)

Although in the LH frequency range, we have jJi?j=jJe?j
�ðme=miÞðXce=xLHÞ�1, where xLH�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XceXci

p
, we keep

Ji? related terms in Eq. (24) to extend the simulation to the

lower frequency range x�xLH. The second term on the LHS

of Eq. (24) is from the time derivative of the Coulomb gauge:

r?�ð@dA?=@tÞ¼�b0 �rð@dAjj=@tÞ, which is much smaller

than the first term on the LHS in the LH wave simulation and,

thus, can be dropped.

In the multi-pass cases, when the LH wave propagates to

the edge region, the reflections will happen at the cutoffs,

where x ¼ xpe, and the perpendicular refractive index n?
will decrease to zero very quickly. Thus, due to the fact that

the equilibrium density scale length is comparable to the

wave length (i.e., k?Ln 
 1) near the cutoffs in the edge

region, the terms related to the non-uniformity of the equilib-

rium need to be kept in Eqs. (19) and (24). However, the

cutoff region with x ¼ xpe is removed in this model using

the approximation r2 � r2
? to the first term on the LHS of

Eq. (19). Thus, this model cannot address the reflection of the

LH waves at the cutoffs. In this paper, we focus on the single-

pass study of the LH wave in the core plasmas, where most of

the LH wave energy can be absorbed before reaching the cut-

offs near the plasma edge. In the core plasmas, the wavelength

of the LH wave is much smaller than the equilibrium plasma

scale length L0 
 ðLn ¼ 2pne0=rne0; LT ¼ 2pTe0=rTe0; LB

¼ 2pB0=rB0Þ, namely, k?L0 � 1 can be guaranteed during

the simulation. Furthermore, we can assume the electron equi-

librium flow ujje0 ¼ 0 for a Maxwellian distribution of the

electrons. Thus, we can simplify Eqs. (19) and (24) as

1þ
x2

pe

X2
ce

 !
r2
?/þ

4pne0qe

B0

dBjj ¼ �4p Zidni þ qedneð Þ;

(25)

and

dBjj ¼
4p

B0 1þ 0:5beð Þ ne0qev� ne0qe/� dP?eð Þ; (26)

where be ¼ 8pne0Te0=B2
0, and v can be derived from the fol-

lowing equation:

r2
?v ¼ �

1

ne0qec
r? � Ji? � B0ð Þ: (27)

Here, we notice that in the fluid ion (or fully kinetic ion15)

and DK electron model, the force balance Eq. (26) for dBjj is

different from the one in the gyrokinetic (GK) ion and DK

electron model (i.e., 4pðdPi? þ dPe?Þ þ ð1þ be þ
biÞdBjjB0 ¼ 0 in the lowest order).34,35 This is due to the fact

that the electron E� B drift motion cannot cancel with ion

species in the LH frequency range in our model. Substituting

Eq. (26) into Eq. (25), we can solve the following equation

to derive /:

1þ
x2

pe

X2
ce

 !
r2
?/�

x2
pe

X2
ce

x2
pe

c2

/
1þ 0:5be

¼ �4p Zidni þ qedne � qe
be

2þ beð Þ
dP?e

Te0

� �

�
x2

pe

X2
ce

x2
pe

c2

v
1þ 0:5be

: (28)

dA? can be solved from

r2
?dA? ¼ �r?dBjj � b0: (29)

Now, Eqs. (1), (3)–(4), (7)–(9), and (26)–(29) form a

closed system for the electron model using canonical mo-

mentum, while Eqs. (1), (3), (10), (13)–(14), (18), and

(26)–(29) form a closed system for the electron model using

kinetic momentum. In linear and nonlinear regimes, electron

models using either kinetic or canonical momentum can be

applied to the LH wave studies with the similar complexity

and numerical performance.
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III. ANALYTIC DISPERSION RELATION FROM
ELECTROMAGNETIC PARTICLE MODEL

In order to verify the validity of the electromagnetic

models given in Sec. II, we derive the corresponding linear

dispersion relation and compare it with the result from the

Maxwell equations in the limit of uniform and cold plasmas.

We start from the electron model using kinetic momen-

tum, using Eqs. (1), (3), (10), (13)–(14), (18), and (26)–(29).

In the cold and uniform plasmas, Eq. (18) reduces to

r2
? �

x2
pe

c2
�

x2
pi

c2

� �
@dAjj
@t
¼

x2
pe

c
1þ me

mi

� �
b0 � r/: (30)

Eq. (26) reduces to

dBjj ¼ �
x2

pe

Xcec
/� vð Þ; (31)

and Eq. (28) reduces to

1þ
x2

pe

X2
ce

 !
r2
?/�

x2
pe

X2
ce

x2
pe

c2
/ ¼ �4p Zidni þ qedneð Þ

�
x2

pe

X2
ce

x2
pe

c2
v: (32)

The ion dynamics are described by Eq. (3) in canonical

form, which has the numerical advantage by avoiding the

calculation of @dA=@t. For the convenience of theoretical

analysis, we use the equivalent Eq. (2) in the cold plasma

limit, and decompose the ion perturbed velocity into parallel

and perpendicular components

duijj ¼
iZi

mix
dEjj; (33)

and

dui? ¼
iZix

mi x2 � X2
ci

� 	 dE? þ
iXci

x
dE? � b0

� �
: (34)

After linearization, the ion continuity Eq. (1) in uniform

plasmas can be written as

@dni

@t
þ ni0r � dui ¼ 0: (35)

The electron dynamics are described by the continuity

equation and drift kinetic equation. In the uniform and cold

plasmas, the electron continuity Eq. (14) reduces to

@dne

@t
þ ne0b0 � rduejj ¼ 0: (36)

Integrating Eq. (12) (equivalent to Eqs. (10) and (13)) for the

momentum moment and keeping the linear terms in the cold

and uniform plasma, we have

@duejj
@t
þ qe

me
b0 � r/þ qe

mec

@dAjj
@t
¼ 0: (37)

Applying the Fourier transform to Eqs. (30)–(37):

@t ! �ix, b0 � r ! ikjj, and r? ! ik?, we can derive the

linear dispersion relation in the cold and uniform plasmas as

Sþ D2 1

n2
? � S0

¼ � P� 1ð Þ
n2
jj

n2
? � P� 1ð Þ ; (38)

where S, P, and D are the elements of the cold plasma dielec-

tric tensor in Stix notation with frequency x� Xce as

follows:

S ¼ 1þ
x2

pe

X2
ce

�
x2

pi

x2 � X2
ci

;

P ¼ 1�
x2

pe

x2
�

x2
pi

x2
;

D ¼ �
x2

pe

xXce
þ

x2
piXci

x x2 � X2
ci

� 	 :
S0 in Eq. (38) is given as

S0 ¼ S� 1�
x2

pe

X2
ce

¼ �
x2

pi

x2 � X2
ci

:

Although the dispersion relation in Eq. (38) was derived

using the electron model with kinetic momentum, it can also

be derived from the canonical momentum model, using Eqs.

(1), (3)–(4), (7)–(9), and (26)–(29).

We rewrite Eq. (38) into the determinant form and com-

pare it with the well-known result from the Maxwell model38

in Table I.

Compared to the Maxwell model solution, the differ-

ence in S0 of our reduced model is due to the fact that we

drop the displacement and polarization currents in the per-

pendicular electron force balance equation. The vacuum

term is lost in the parallel diagonal term P� 1� n2
? of the

reduced model, since we remove the electron plasma wave

by dropping the r2
jj/ term in Poisson’s equation, and

remove the light wave by dropping the displacement current

in the parallel Ampere’s law. The missing �n2
jj in the second

diagonal term of the reduced model is due to the fact that

we assume jr?j � jrjjj in the parallel Ampere’s law and

the perpendicular force balance equation, and drop some

coupling terms between the parallel and perpendicular wave

vectors.

Thus, our simulation model is accurate for the waves in

the core region of a typical tokamak where the plasma den-

sity is high, such that x� xpe or jPj � 1 and the LH

wave’s perpendicular refractive index is much larger than

the parallel refractive index ðn2
? � n2

jjÞ. Namely, our

TABLE I. Analytic dispersion relations derived from the reduced model and

the Maxwell model, respectively.

Reduced model solution Maxwell model solution

S� n2
jj �iD njjn?

iD S0 � n2
? 0

njjn? 0 P� 1� n2
?

������
������ ¼ 0

S� n2
jj �iD njjn?

iD S� n2
? � n2

jj 0

njjn? 0 P� n2
?

�������
������� ¼ 0
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simulation results can recover the results of the Maxwell

model when jS0 � n2
?j � j1þ x2

pe=X
2
ce � n2

jjj and jPj � 1

are satisfied simultaneously. The high frequency light wave

and electron plasma wave are artificially removed, enabling

us to use a larger spatial grid size and time step size in the

simulation by not resolving the high frequency and short

wavelength waves. This is efficient and sufficient for the

case of single-pass absorption of LH waves without cutoff.

However, our simulation fails when the LH waves propagate

to the cutoff layer in the plasma edge where n2
? 
 0, and the

electron plasma wave and light wave cannot be ignored.

Thus, in order to address the multi-pass physics accurately,

this field model for the core plasma needs to couple with the

Maxwell model at the edge plasma.

IV. IMPORTANCE SAMPLING FOR PARTICLE-IN-CELL
SIMULATION

In order to efficiently reduce the numerical noise and the

computational cost in marker particle simulation, it is helpful

to load many markers at the initial time in the region through

which the LH wave will propagate, while loading a very

small number of markers in the region where LH wave per-

turbations are small. Thus, the importance sampling

scheme31,32 is applied to PIC simulation of LH waves. Here,

we give an example of this scheme based on the electron

model using canonical momentum.

The marker distribution is defined as geðX; pjj; l; tÞ
¼ ge0ðX; pjj; lÞ þ dgeðX; pjj; l; tÞ, where ge0 ¼ geðt ¼ 0Þ is

the initial sampling marker distribution, and dge is the per-

turbed marker distribution.

Similar to Eq. (4), the drift kinetic equation for marker

distribution can be written as

Lcge ¼ ðLc0 þ dLc1 þ dLc2Þðge0 þ dgeÞ ¼ 0: (39)

Instead of a single weight as defined in Sec. II, two weights

are used in the importance sampling scheme. The total

weight is defined as

pe ¼
fe

ge
; (40)

which represents the importance of each marker to fe. The

perturbed weight is defined as

we ¼
dfe

ge
; (41)

which represents the importance of each marker to dfe.

Thus, considering Eqs. (4), (6) and (39), the total weight

evolution equation is

dpe

dt
¼ 0; (42)

and the perturbed weight evolution equation becomes:

dwe

dt
¼ � pe � weð Þ

1

fe0

dLc1 þ dLc2ð Þfe0: (43)

Eqs. (42) and (43) determine the evolution of the total distri-

bution fe and the perturbed distribution dfe, respectively.

Because the marker distribution does not need to be propor-

tional to the physical distribution in the importance sampling

scheme: ge 6¼ C � fe, where C is a constant, we need to evolve

Eqs. (42) and (43) while considering the importance of the

markers. Furthermore, we can also apply this scheme to the

electron model using kinetic momentum by replacing dLc1 þ
dLc2 with dLk1 þ dLk2 in Eq. (43).

In principle, we can sample arbitrary ge0ðX; pjj; lÞ ini-

tially in order to achieve local high resolution in the phase

space, where the df amplitude is high. For the phase space

volume conservation as shown in Eq. (39), the perturbed

marker distribution will evolve through the following

equation:

Lcdge ¼ �ðdLc1 þ dLc2Þge0 � Lc0ge0: (44)

The reason why we keep the last term on the RHS of Eq.

(44) is that Lc0ge0 6¼ 0, in general, when we choose an ap-

proximate ge0 for optimal phase space sampling. Finite dge

makes ge different from the initial arrangement ge0 and

changes the desired numerical resolution. However, the time

scale for the marker evolution is much longer than the LH

wave period jLcdge=dgej � xLH. Thus, the desired numeri-

cal resolution does not vary much for the duration of the LH

wave simulation.

The general magnetic flux coordinates system ðw; h; fÞ is

used for the simulations of LH waves in toroidal geometry,

where w is the poloidal flux function, h is the magnetic poloi-

dal angle, and f is the magnetic toroidal angle. For the simula-

tion of LH waves launched from h ¼ 0, we sample many

markers in the region of LH wave propagation, as shown in

Fig. 1. The coordinates (X, Z) in Figs. 1, 2(a), and 2(d) repre-

sent the horizontal and vertical distances measured from the

geometric center of the tokamak, and the color scale in Fig. 1

represents the number of the markers per cell used in the simu-

lation. In the simulation, the axis values of the electron plasma

temperature and the plasma density are Te0 ¼ 1:0 keV and

FIG. 1. Marker distribution of the importance sampling in the real space,

which is used in the simulation of the LH wave propagation. The color scale

represents the number of the markers per cell.
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ni0 ¼ ne0 ¼ 5:0� 1013 cm�3, respectively. We choose the

other parameters based on the orders of magnitude of the

Alcator C-mod tokamak, which includes a ¼ 0:16 m,

R0 ¼ 0:64 m, and the axis value of the magnetic field

Ba ¼ 5:0 T. The launched LH wave frequency is f0 ¼ 4:6 GHz

and the toroidal refractive index is nt ¼ ckt=x ¼ 1:86. The

comparison of the numerical performance between the uniform

sampling and importance sampling is shown in Fig. 2. We find

that the mode structures in the poloidal plane and flux-surface

with importance sampling are much smoother than with uni-

form sampling. The horizontal coordinate a ¼ h� f=q in

Figs. 2(c) and 2(f) is the magnetic field line label. The horizon-

tal coordinate m is the poloidal mode number in Figs. 2(b) and

2(e). The high m poloidal components of the wave-packet are

nearly zero in the importance sampling case as shown in Fig.

2(b), while the high m poloidal components of the wave-

packet have larger amplitudes in the uniform sampling case as

shown in Fig. 2(e), which proves that the importance sampling

PIC method helps to decrease the numerical noise and suppress

the numerical high kh modes.

V. VERIFICATION OF GTC SIMULATION OF
DISPERSION RELATION AND NONLINEAR PARTICLE
TRAPPING OF LH WAVES

In this section, we will show the benchmark of the LH

wave dispersion relation between the simulation and the

theory. The model described in Sec. II has been implemented

in the gyrokinetic toroidal code (GTC). GTC24,39 has been

successfully applied to simulate microturbulence,40 energetic

particle transport,41 Alfven eigenmodes,42,43 and magneto-

hydrodynamic instabilities including kink mode44 and tear-

ing mode45 in fusion plasmas. In order to benchmark against

the theoretical solution, the simulations are performed in the

cylinder geometry of GTC with uniform magnetic field in

this section. For these benchmark cases, plasma density

ne0 ¼ ni0 ¼ 2� 1013 cm�3, electron temperature Te0 ¼
50:0 eV (for cold plasma), and magnetic field B ¼ 2:0 T are

uniform, and the magnetic field is only along the axial direc-

tion in the cylinder. The parallel LH wave vector in the sim-

ulation is fixed as kjj ¼ n=R ¼ 100:0 m�1, where n ¼ 100 is

the parallel mode number and R ¼ 1:0 m (the length of the

cylinder is l ¼ 2pR), and the radius is a ¼ 0:3 m. GTC simu-

lations of LH waves in different k?=kjj regimes are carried

out by varying the perpendicular wave vector k?. In the sim-

ulation, we perturb the electron density at the initial time,

then allow the perturbation to evolve self-consistently, and

measure the oscillation frequency of the perturbed fields.

This method is known as the initial perturbation method.46,47

The simulations are carried out using both electron models,

and the comparison between the simulations and the theory

is shown in Fig. 3. It is seen that there are two branches of

waves in Fig. 3: the slow wave and the fast wave. The per-

pendicular phase velocity vp? ¼ x=k? and group velocity

vg? ¼ @x=@k? have the same sign for the fast wave, which

corresponds to the left part of the dispersion relation curve in

Fig. 3; while they have opposite signs for the slow wave,

which corresponds to the right part of the dispersion relation

curve in Fig. 3. Simulation results agree with the analytic
FIG. 3. Comparison of the electromagnetic dispersion relation of the LH

waves between GTC simulation and the theory.

FIG. 2. Panels (a)–(c) are from the importance sampling PIC simulation, which show the LH wave structure in the poloidal plane, the poloidal spectrum of the

wave-packet, and the LH wave structure on the flux-surface, respectively. Panels (d)–(f) are from the simulation with uniform sampling. The color scales in

panels (a), (c), (d), and (f) represent the electrostatic potential / in arbitrary units. m is the poloidal harmonic number in panels (b) and (e). The mode structures

in the importance sampling case as shown by (a) and (c) are much smoother than in the uniform sampling as shown by (d) and (f). The amplitudes of the nu-

merical high m harmonics in the importance sampling (b) are much smaller than in the uniform sampling (e).
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solutions of the reduced model and the Maxwell model very

well when k?=kjj � 1. For typical experimental parameters,

k?=kjj � 1 can be satisfied for the LH waves in the core

plasmas.48,49

Next, we use the initial perturbation method46,47 to carry

out the electromagnetic simulations of the linear and nonlin-

ear Landau damping for the LH waves in hot plasmas, using

an initial electron density perturbation with kjj ¼ 150:0 m�1.

The plasma density ne0 ¼ ni0 ¼ 7:6� 1013 cm�3, electron

temperature Te0 ¼ 6:0 keV, and magnetic field B ¼ 2:0 T are

uniform. In this parameter regime, both electrostatic and

electromagnetic components are important to the LH wave

dispersion relation, since it is the turning point of the mode

conversion. The time histories of the generalized potential w
(as defined in Sec. II) of the LH waves with x=ðkjjvtheÞ �
3:2 from the linear and nonlinear electromagnetic simula-

tions are shown in Fig. 4(a). The red solid line shows that the

amplitude oscillates in the nonlinear simulation, while the

blue dashed line shows that the wave decays exponentially

in the linear simulation. The oscillation of the LH wave am-

plitude in the nonlinear simulation is due to the wave trap-

ping of the resonant electrons, and the oscillation (bounce)

frequency agrees well with the theoretical prediction xb ¼
kjjvthe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ew=Te0

p
as shown in Fig. 4(b). The particle trapping

by waves is a basic phenomenon of the nonlinear wave–par-

ticle interaction.52,53 The agreement between the simulation

and the theory for the bounce frequency shows that our

model captures the important nonlinear effects faithfully.

VI. CONCLUSIONS

The nonlinear electromagnetic fluid (or fully kinetic) ion/

DK electron model has been implemented into GTC for the

LH wave study in the toroidal geometry. The DK electron

model can be described by either the Hamiltonian formulation

using canonical momentum or the symplectic formulation

using kinetic momentum. The use of the electron continuity

equation provides a better numerical performance, which

avoids the numerical instability caused by the discrepancy

between marker distribution with noise and the Maxwellian

distribution in the df method simulation. Both the theoretical

and numerical benchmarks of the dispersion relation of LH

waves have been carried out, which show good agreements

with the results from the Maxwell model when k?=kjj � 1. In

the nonlinear simulation of the LH wave damping in hot plas-

mas, we find that the amplitude of the wave field perturbation

oscillates with a bounce frequency, which is due to the wave

trapping of the resonant electrons. This frequency agrees well

with the existing theoretical predictions. An importance sam-

pling PIC scheme has been applied to simulate the LH wave

propagation with high numerical resolution and efficiency.

Compared to WKB and full-wave approaches based on the

linear and quasi-linear theories, our PIC simulation model

based on the first-principles can capture the nonlinear effects,

which provides a powerful tool to study the nonlinear physics

of LH waves in tokamak. Applications of this simulation

model to the linear mode conversion, nonlinear current drive,

and parametric decay instabilities of LH waves are reported in

separate papers.50,54
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APPENDIX A: MOTION EQUATIONS OF THE DRIFT
KINETIC ELECTRON IN MAGNETIC COORDINATES
WITH FULLY ELECTROMAGNETIC PERTURBATIONS

The general magnetic flux coordinates system ðw; h; fÞ
has already been defined in Sec. IV. Then, the equilibrium

magnetic field can be written either in contravariant form as

Eq. (A1) or in covariant form as Eq. (A2)

B0 ¼ qrw�rh�rw�rf; (A1)

B0 ¼ drwþ Irhþ grf: (A2)

The Jacobian in magnetic flux coordinates is

J�1 ¼ rw � rh�rf ¼ B2
0

gqþ I
: (A3)

FIG. 4. (a)Nonlinear simulation of the

LH wave exhibits oscillation in ampli-

tude of the generalized potential (solid

line), while linear simulation shows

exponential decay (dashed line). (b)

The comparison of the dependence of

the bounce frequency on the wave am-

plitude between GTC nonlinear simu-

lation and the theory.
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Writing the particle motion equations of the drift kinetic

Eqs. (4) and (10) into magnetic flux coordinates, we have

_w ¼ c

qe

@e0

@B0

I

D

@B0

@f
� g

D

@B0

@h

� �
þ c

�
I

D

@/
@f
� g

D

@/
@h

�

þ vjjB0

g

D

@a
@h
� I

D

@a
@f

� �
þ cl

qe

I

D

@dBjj
@f
� g

D

@dBjj
@h

� �
;

(A4)

_h ¼
vjjB0 1� qcg0 � g@wa

� 	
D

þ c
g

D

1

qe

@e0

@B0

@B0

@w
þ @/
@w
þ l

qe

@dBjj
@w

� �
; (A5)

_f ¼
vjjB0 qþ qcI0 þ I@wa

� 	
D

� c
I

D

1

qe

@e0

@B0

@B0

@w
þ @/
@w
þ l

qe

@dBjj
@w

� �
; (A6)

_qjj ¼ �c
1� qcg0 � g@wa
� 	

D

1

qe

@e
@B0

@B0

@h
þ @/
@h
þ l

qe

@dBjj
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� �

� c
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� 	

D
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� �
� @a
@t
;

(A7)

_qc¼�c
1�qcg0ð Þ

D

1

qe

@e
@B0

@B0

@h
þ@/
@h
þ l

qe

@dBjj
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� qe
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qjjB

2
0
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� �

�c
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D

@/
@f
þ l

qe

@dBjj
@f
� qe
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qjjB

2
0

@a
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� �
; (A8)

where D¼JB2
0ð1þqcb0 �r�b0Þ¼gqþIþqcðgI0�Ig0Þ,

I0¼@I=@w, g0¼@g=@w, a¼dAjj=B0, qjj¼vjj=Xce, qc¼qjjþa,

and @e0

@B0
¼lþ q2

e

mec2
q2
jjB0. Eqs. (A4)–(A8) describe the drift ki-

netic electron dynamics with fully electromagnetic perturba-

tions in the magnetic flux coordinates, and they can reduce

to the results from White and Chance51 when dBjj¼0. Eqs.

(A4)–(A6) and (A8) describe the particle motion of the drift

kinetic electron with canonical momentum in Eq. (4), and

Eqs. (A4)–(A7) describe the particle motion of the drift ki-

netic electron with kinetic momentum in Eq. (10).

APPENDIX B: THE IMPORTANCE OF THE ELECTRON
CONTINUITY EQUATION

Here, we carry out simulations of the antenna excitation

of the LH wave with a single mode number to show the im-

portance of the electron continuity equation on the numerical

performance. In the simulation, the plasma equilibrium pa-

rameters are the same with the dispersion relation benchmark

cases in Sec. V. The LH wave with frequency x ¼ 80:0Xci

and parallel wave vector kjj ¼ 100:0 m�1 is chosen. In the

first simulation, we use kinetic markers to calculate the elec-

tron perturbed velocity and use electron continuity equation

to calculate the electron perturbed density. The mode and

amplitude histories are shown in Figs. 5(a) and 5(b). It is

found that the mode history has a good growth which is pro-

portional to the time t. In the second simulation, we use the

kinetic markers to calculate both the electron perturbed den-

sity and perturbed velocity in the simulation. We find that

the real and imaginary parts of the LH wave do not match

with each other, and the mode amplitude history has a large

FIG. 5. Panels (a), (c), and (e) show the single mode histories of electrostatic potential, and panels (b), (d), and (f) show the amplitude histories. Panels (a) and

(b) use 10 markers per cell and electron continuity equation. Panels (c) and (d) use 10 markers per cell but do not use electron continuity equation. Panels (e)

and (f) use 50 markers per cell but do not use electron continuity equation.
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numerical oscillation as shown in Figs. 5(c) and 5(d). Only

after increasing the marker number can the real and imagi-

nary parts match with each other as well as the first case as

shown in Figs. 5(e) and 5(f).

By comparing these three cases, we find that applying

electron continuity equation can help to suppress the numeri-

cal instability and reduce the computational cost as illus-

trated in Sec. II.
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