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A slab model is developed to study the excitation of lower hybrid instability triggered by the
injection of a transverse neutral beam in a tokamak with magnetic shear. The lower hybrid mode is
evanescent in the inner and outer region while propagating waves in the intermediate region. The
neutral beam, on getting fully ionized in the plasma, resonantly couples with the lower hybrid wave
in the intermediate region, driving the mode unstable. The theory of this process reveals that the
growth rate scales as one third power of beam density, and increases significantly with the sheared
magnetic field due to modification in the parallel wave number and the mode structure. © 2008
American Institute of Physics. �DOI: 10.1063/1.2912460�

I. INTRODUCTION

Microinstabilities driven by ion velocity distributions
play an important role in fusion plasma. A number of experi-
mental observations of instabilities driven by neutral beams
and fusion products have been reported for Japan Torus
�JT-60�,1 Joint European Torus �JET�,2–5 Wendelstein 7-AS
�W7-AS�,6 Tokamak Fusion Test Reactor �TFTR�,7 and
smaller devices.8–11 The spatial dependence of the deposition
of the beam power inside the plasma is determined by ion-
ization cross section of the neutral beam and the plasma elec-
tron density profile. The ionization of the injected beam and
the charge-exchange between plasma ions and neutrals pro-
duce ions with the same energy and direction of motion as
atoms in the original neutral beam. Fast ions are seen to be
lost due to vertical �B-drift and interaction with magnetohy-
drodynamics �MHD� and other instabilities. Shalashov et al.
have experimentally observed the effect of fast ion confine-
ment on lower hybrid �LH� wave excitation in the W7-AS
stellarator.6 Baldzuhn et al. have observed that the fast ion
losses are much stronger during the perpendicular neutral
beam injection, while the global energy confinement is much
higher than the tangential neutral beam injection.12 Neutral
beam offers the flexibility of being able to heat the hydrogen
plasma envisaged during the initial phases of the Interna-
tional Thermonuclear Experimental Reactor �ITER� opera-
tion by using beams of hydrogen atoms. During the D and
DT phases in the thermonuclear ignition and burn control
scenarios, the injector would supply up to 50 MW of deute-
rium beams at 1 MeV.13

Recent experiments in W7-AS,6 reported two instabili-
ties triggered by the injection of the quasitransverse hydro-
gen beam. First, a lower hybrid instability when lower hybrid
frequency coincides with a high ion cyclotron harmonic.
Second, a kinetic instability of ion Bernstein wave at ion
cyclotron harmonics, lower than the lower hybrid frequency.
An instability at the second harmonic ion cyclotron fre-
quency was observed in the JT-60 tokamak with the injection

of high power perpendicular neutral beams.1 High power ion
heating was observed experimentally with perpendicular
neutral beam injection, which improved the mode of ion
transport, anomalous transport, and enhanced toroidal flow in
the core region of the Large Helical Device �LHD� by
Nagaoka et al.14 It has often been observed that high power
neutral beam injection �NBI�, both tangentially and perpen-
dicularly to the magnetic field, causes a fishbonelike insta-
bility in which strong sawtoothlike bursts destroy the plasma
stability.15,16 In fact ion cyclotron harmonic waves, as well as
the fishbone instability were observed in the Poloidal-
Divertor Experiment �PDX� tokamak with perpendicular
neutral beam injection.16,17 A number of theoretical models
have been proposed for explaining the beam driven fishbone
instabilities.18–21 Rosenberg et al. investigated lower hybrid
instability in a collisionless dusty magnetized plasma driven
by a negatively charge dust beam streaming across a mag-
netic field.22

In this paper we develop a theory for the lower hybrid
instability triggered by the injection of a transverse neutral
beam in a tokamak. We model the plasma by a slab geometry
and retain the effect of finite magnetic shear. We employ the
fluid theory to obtain tractable dispersion relation and eigen-
functions.

In Sec. II we elaborate on the physical model and carry
out the stability analysis. The results and discussions are
given in Sec. III.

II. PHYSICAL MODEL AND STABILITY ANALYSIS

We model the tokamak by a plasma slab with uniform
electron density n0 placed in a sheared magnetic field
B=B0�ẑ+ �� x /a�ŷ�, where a is the plasma minor radius, and
� is the shear parameter.23–26 The x, y, and z directions in the
slab geometry correspond to radial, poloidal, and toroidal
directions in the tokamak configuration. A neutral beam with
velocity v0bŷ, density n0b propagates through the plasma.
The beam quickly turns into an ion beam of charge e and
mass M. We perturb the equilibrium by lower hybrid wave
perturbation of electrostatic potentiala�Electronic mail: animesh.kuley@mail2.iitd.ac.in.
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� = ��x�e−i��t−kyy−kzz�, �1�

where � lies in the range �ci����ce, and k��e�1, where
�ci and �ce are the ion and electron cyclotron frequencies
and �e is the electron Larmor radius. In this limit the ion
motion can be taken to be unmagnetized and one may em-
ploy the fluid equation for the electron response. The linear-
ized equations of motion and continuity for perturbed elec-
trons velocity v and density n can be written as

m
�v
�t

= e � � − ev � B,

�2�
�n

�t
+ � · �n0v� = 0.

Expressing ��=���+1 /B�B ·��, where �� is the com-
ponent of � perpendicular to the magnetic field, and replac-
ing � /�t by −i� in these equations and solving them, we
obtain

v1� =
e

m

��� � �ce� + i����

�2 − �ce�
2 ,

v1� = −
e

mi�
��� , �3�

n1e =
n0e

m
���

2�

�2 −
��

2 �

�ce�
2 � ,

where �c�=�ce�ẑ+ �� x /a�ŷ�, �ce=eB0 /m, −e, m, and �ce are
the electron charge, mass, and electron cyclotron frequency
and subscript 1 refers to perturbed quantities.

By assuming the response of the plasma ions to be un-
magnetized, the perturbed ion density can be written as

n1i = −
n0ie

mi�
2�2� , �4�

where e, mi, and n0i are the ion charge, mass, and equilib-
rium density, respectively.

By assuming the response of the ion beam to be unmag-
netized, on solving the linearized equations of motion and
continuity turns out to be

v1b =
e � �

Mi�� − kyv0b�
,

�5�

n1b = −
n0be

M

�2�

�� − kyv0b�2 .

Using Eqs. �3�–�5� in the Poisson equation, �2�=4�e
�n1e−n1i−n1b�, we get

��
2 � +

�pi
2

�2 +
�p

2

�2 − 1

1 −
�pi

2

�2 +
�p

2

�ce
2

�ky
2�2 x2

a2 + 2kzky�
x

a
+ kz

2	�

= −
�pb

2 ky
2

�� − kyv0b�2�1 −
�pi

2

�2 +
�p

2

�ce
2 �� . �6�

Inside the parentheses on the left-hand side of Eq. �6� we
may neglect last two terms compared to the first one as kz is
small. Introducing a dimensionless variable �=x /	, where
	4=a2 /�2ky

2�1+�pi
2 /�2+�p

2 /�2−1 /1−�pi
2 /�2+�p

2 /�ce
2 �, one

may rewrite Eq. �6� as

d2�

d�2 + �− 
 + �2�� = −
�pb

2 ky
2	2

�� − kyv0b�2�1 −
�pi

2

�2 +
�p

2

�ce
2 �� ,

�7�

where


 = �ky
2 + kz

2�	2. �8�

In the absence of the beam, Eq. �7� takes the form

d2�

d�2 + V���� = 0, �9�

where V���=−
+�2, is shown in Fig. 1. V���, has a turning
point at �=

. For ��

, V��� is−ve and the wave is eva-
nescent. For ��

, V��� is +ve and � is a propagating
wave. Outside the plasma again the wave is evanescent. Thus
to solve Eq. �9� we model the V��� profile as follows:

V��� = − 
 for 0 � � � a1 �region I�

=
 for a1 � � � a2 �region II� �10�

=− 
 for � � a2 �outside region� ,

where a1=

, and we may choose a2=a1

2.

The solution of Eq. �9� can be written as

� �V �

�

��

�1a 2a

FIG. 1. Variation of V���=−
+�2 with � and a suitable model profile.
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�I = C1�e

� + e−

�� for 0 � � � a1, �11�

�II = C2 sin 

� + C3 cos 

� for a1 � � � a2, �12�

�III = C4e−

� �outside region� , �13�

where C1, C2, C3, and C4 are the constants of integration.
Employing the continuity of � and its first derivative at

�=a1 ,a2 we get the dispersion relation

tanh�

a1� =
A cos 

a1 − sin 

a1

A sin 

a1 + cos 

a1

, �14�

where

A =
sin 

a2 − cos 

a2

sin 

a2 + cos 

a2

, 

a1 = 
 .

We solve the above transcendental equation graphically
by plotting the left-hand side �LHS� and right-hand side
�RHS� as functions of 

a1 as shown in Fig. 2. The point of
intersection where LHS=RHS gives the solution 
=
0 of
Eq. �14�. The wave functions of the eigenmode can be writ-
ten as

� = ��I = RC4�e

0� + e−

0�� for 0 � � � a1

�II = PC4�A sin 

0� + cos 

0�� for a1 � � � a2

�III = C4e−

0� for outside,
�
�15�

where

P =
e−
2
0

A sin 
2
0 + cos 
2
0

, R =
AP sin 
0 + P cos 
0

e
0 + e−
0
.

�16�

In terms of 
0 the eigenfrequency of the lower hybrid mode
turns out to be

�0 =  �ky
2a2 + kz

2a2�2�pi
2 + 
0

2�2ky
2a2�p

2

�ky
2a2 + kz

2a2�2�1 +
�p

2

�ce
2 	 − 
0

2�2ky
2a2 �p

2

�ce
2 �

1/2

. �17�

One may note that in the absence of shear ��=0� the eigen-
frequency reduces to �=�LH=�pi / �1+�p

2 /�ce
2 �1/2, i.e., the

lower hybrid frequency. This is because we have neglected
kz

2 as compared to the shear term.
When the beam term is not zero, we may take � to

remain largely unmodified, however the eigenvalue
changes,27

d2�

d�2 + �− 
 + �2�� = −
�pb

2 ky
2	2

�� − kyv0b�2�1 −
�pi

2

�0
2 +

�p
2

�ce
2 	� ,

�18�

where we have taken �=�0 in the nonresonant term on the
RHS. For a beam launched from the transverse direction
�y direction� its x or � profile may be taken as

�pb
2 = �pbo

2 for a1 � � � a2,

=0 otherwise. �19�

Further, since

d2�

d�2 + �− 
0 + �2�� = 0, �20�

by employing Eq. �20� in Eq. �18� and multiplying the re-
sulting equation by �*d� and integrating over the entire do-
main we obtain


 − 
0 = −
I1�pbo

2

I0�� − kyv0b�2 , �21�

where

I1 = �
a1

a2

�II
* 	2ky

2

�1 −
�pi

2

�0
2 +

�p
2

�ce
2 	�IId� ,

�22�

I0 = �
0



�*�d� .

Using the expression for 
 from Eq. �8� one may rewrite Eq.
�21� as

��2 − �0
2��� − kyv0b�2 = − b2

2�pbo
2 I1

I0
, �23�

where

b2
2 =

2
0�2� �p
2

�ce
2 �0

2 + �p
2	ky

2a2

�ky
2a2 + kz

2a2�2�1 +
�p

2

�ce
2 	 − 
0

2�2ky
2a2 �p

2

�ce
2

. �24�

Here ���0 corresponds to the lower hybrid mode in the
absence of the beam, and ��kyv0b is the beam mode. We
are looking for solutions when �0�kyv0b, i.e., when the
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FIG. 2. �Color online� Graphical solution of transcendental of Eq. �14�. The
point of intersection gives the root 
=
0.
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beam is in Cerenkov resonance with the lower hybrid mode.
We expand � as �=�0+�=kyv0b+�, where � is the modifi-
cation in � due to the finite right-hand side of Eq. �21�.
Then Eq. �23� takes the form �3= ��b2

2�pb0
2 /2�0��I1 / I0��ei2l�,

l=0,1 ,2.
The growth rate of the unstable mode is

� = Im��� =

3

2
�b2

2�pb0
2

2�0

I1

I0
	1/3

. �25�

Growth rate varies as one third power of beam density. Equa-
tion �24� shows that b2 depends on the spatial variation and
shear parameter ���. It also shows that the growth rate van-
ishes when the shear parameter ��� goes to zero. However,
the theory is not valid for the case of zero shear �cf. the
approximation mentioned below Eq. �6��. For finite �, the
growth rate and localization of the mode are strongly depen-
dent on �, the shear parameter.

III. RESULTS AND DISCUSSION

In order to have a numerical appreciation of results we
consider the following set of parameters, corresponding to
W7-AS6: Electron density �of a hydrogen plasma� ��2–6�
�1013 cm−3, electron temperature 1–1.2 keV, ion tempera-
ture 600–900 eV, magnetic field 2.5 T. The total power of
the hydrogen beam is about 600 kW and the density at the
stationary phase ��2–4��10−2n0.

In Fig. 3, we have plotted the lower hybrid wave disper-
sion relation for various values of shear parameter. For a
particular value of kya eigenfrequency of the lower hybrid
wave increases significantly with the increase of the shear
parameter. In the same figure we also plotted the Cerenkov
resonance condition �=kyvob �beam mode�. The intersection
point of the dispersion curve and the beam mode gives the
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FIG. 3. �Color online� Dispersion curve for lower hybrid wave and beam
modes with plasma density ��2−6��1013 cm−3, magnetic field 2.5 T, for
different magnetic shear parameter �=0.1, �=0.2, and �=0.3.
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FIG. 4. �Color online� Probability distribution of the wave functions.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω0a/v0b

γ/
ω
LH

α=0.1

α=0.2
α=0.3

FIG. 5. �Color online� Normalized growth rate with normalized beam ve-
locity for different magnetic shear parameters �=0.1, �=0.2, and �=0.3.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

�=0.1

�=0.2

�=0.3

L H

�
�

0

0

bn
n
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and �=0.3.
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frequency of the unstable lower hybrid eigenmode. This fre-
quency increases with the beam velocity �or beam energy�.

The mode structure of the lower hybrid mode �cf. Fig. 4�
is evanescent in the inner and outer regions while propagat-
ing waves in the intermediate region, which is quite similar
to the experimental observation by Shalashov et al.6

In Fig. 5 we have plotted the normalized growth rate of
the instability as a function of normalized frequency for dif-
ferent values of the sheared parameter, �=0.1, 0.2, and 0.3.
The growth rate initially rises with the frequency, attains a
maximum around ��2v0b /a, and then falls off gradually.
With increasing shear parameter, the growth rate increases.

In Fig. 6 we have plotted the normalized growth rate of
the instability as a function of normalized beam density for
the same parameter as given above. It can be seen that the
growth rate increases with the beam density similar to the
experimental observation made by Shalashov et al.6 and
Chang.8 However, Chang’s case is quite different. He is
studying the growth of the negative energy lower hybrid
mode �modified by the ion beam� due to the Landau damping
introduced by the electrons. As the electrons take away en-
ergy from the negative energy mode, its energy becomes
more negative, i.e., the amplitude of the mode increases. In
our present case we are dealing with a sort of two stream
instability where the ion beam resonantly interacts with a
positive energy lower hybrid mode via the Cerenkov interac-
tion. The growth rate scales as ��n0b

1/3.
In Rosenberg22 and Chang’s8 prediction, there is no

variation of the shear parameter, i.e., �=0, so the parallel
wave number is constant, but with the variation of the shear
parameter ���, the parallel wave number changes the local-
ized modes in the intermediate region.
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