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Abstract

The cyclically varying magnetic field of the Sun is believed to be pro-

duced by the hydromagnetic dynamo process. We first summarize the

relevant observational data pertaining to sunspots and solar cycle. Then

we review the basic principles of MHD needed to develop the dynamo

theory. This is followed by a discussion how bipolar sunspots form due

to magnetic buoyancy of flux tubes formed at the base of the solar con-

vection zone. Following this, we come to the heart of dynamo theory.

After summarizing the basic ideas of a turbulent dynamo and the basic

principles of its mean field formulation, we present the famous dynamo

wave solution, which was supposed to provide a model for the solar cycle.

Finally we point out how a flux transport dynamo can circumvent some

of the difficulties associated with the older dynamo models.

1 Introduction

Several other lecturers in this Winter School must have already convinced you
that magnetic fields play a very important role in the Sun. From sunspots to
coronal heating, from solar flares to coronal mass ejections—all these apparently
diverse phenomena have magnetic fields as their ultimate cause. It is, therefore,
no wonder that one of the most fundamental questions of solar physics is: how
is the magnetic field of the Sun generated? It is this question which I shall
address in my lectures.

We believe that the magnetic fields of not only the Sun, but of all astronomi-
cal bodies, are produced by a process called the hydromagnetic dynamo process.
Let me begin by making a comment about this name, which may seem a little
bit peculiar at the first sight. All physics students have to learn the basic prin-
ciples of an ordinary electromagnetic dynamo. In an ordinary dynamo, we have
a conducting coil which is made to rotate in a magnetic field, cutting magnetic
flux lines and thereby producing an e.m.f. by Faraday’s law of electromagnetic
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induction. We do not have discrete coils inside an astronomical body, but some-
times we can have rotating blobs of plasma which are also good conductors
of electricity. If a magnetic field is present in the region where plasma blobs
are rotating, then Faraday’s law generalized to a continuum situation suggests
that an e.m.f. can be induced within a rotating plasma blob. Under favourable
circumstances, this e.m.f. can reinforce the magnetic field present in the astro-
nomical body. In other words, this hydromagnetic dynamo process can build up
a magnetic field within the astronomical body starting from a seed field, but we
do need a seed field to begin with. Scientists working on galactic magnetic fields
have to bother about the origin of the seed field on which a galactic dynamo
can work. However, when studying solar or stellar dynamos, we usually do not
bother about the seed field question. Since all stars form from interstellar gas
clouds which seem to have magnetic fields, we tacitly assume that there must
have been some initial seed field on which the stellar dynamo could have started
operating. In solar dynamo theory, we study how the dynamo process sustains
the solar magnetic field in the form in which we find it today.

It should be apparent from this brief sketch of the dynamo process that
we need to consider the dynamics of the plasma inside the Sun to understand
how the solar dynamo operates. Much of my presentation will be devoted to
developing the theoretical framework for this purpose. But before we get into
theory, I would first like to present some relevant observational data in § 2.

2 Basic observational data

Although the solar magnetic fields give rise to many different solar phenomena, it
is the sunspots which provide the best detailed information about the behaviour
of the solar magnetic fields. So, while discussing observational data, we shall
first focus our attention on sunspots, which are dark regions of concentrated
magnetic field on the solar surface, and then discuss about the Sun’s weak
magnetic field outside sunspots. The crucial test for a solar dynamo model is
that it has to explain the observational data we are going to summarize in this
section.

Hale (1908) was the first to discover the evidence of Zeeman effect in sunspot
spectra and made the momentous announcement that sunspots are regions of
strong magnetic fields. This is the first time that somebody found conclusive
evidence of large-scale magnetic fields outside the Earth’s environment. The
typical magnetic field of a large sunspot is about 3000 G (i.e. of order 104 times
stronger than the magnetic field on the surface of the Earth).

Even before it was realized that sunspots are seats of solar magnetism, sev-
eral persons have been studying the statistics of sunspots. Schwabe (1844) noted
that the number of sunspots seen on the solar surface increases and decreases
with a period of about 11 years. Now we believe that the Sun has a cycle with
twice that period, i.e. 22 years. Since the Sun’s magnetic field changes its direc-
tion after 11 years, it takes 22 years for the magnetic field to come back to its
initial configuration. Carrington (1858) found that sunspots seemed to appear
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Figure 1: A magnetogram image of the full solar disk. The regions with positive
and negative magnetic polarities are respectively shown in white and black, with
grey indicating regions where the magnetic field is weak.

at lower and lower latitudes with the progress of the solar cycle. In other words,
most of the sunspots in the early phase of a solar cycle are seen between 30◦

and 40◦. As the cycle advances, new sunspots are found at increasingly lower
latitudes. Then a fresh half-cycle begins with sunspots appearing again at high
latitudes. Individual sunspots live from a few days to a few weeks.

After finding magnetic fields in sunspots, Hale and his coworkers made an-
other significant discovery (Hale et al., 1919). They found that often two large
sunspots are seen side by side and they invariably have opposite polarities. The
line joining the centres of such a bipolar sunspot pair is, on an average, nearly
parallel to the solar equator. Hale’s coworker Joy, however, noted that there is a
systematic tilt of this line with respect to the equator and that this tilt increases
with latitude (Hale et al., 1919). This result is usually known as Joy’s law. The
tilts, however, show a considerable amount of scatter around the mean given by
Joy’s law. The sunspot in the forward direction of rotation is called the leading
spot and the other the following spot. The tilt is such that the leading spot
is usually found nearer the equator than the following spot. It was also noted
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that the sunspot pairs have opposite polarities in the two hemispheres. In other
words, if the leading sunspot in the northern hemisphere has positive polarity,
then the leading sunspot in the southern hemisphere has negative polarity. This
is clearly seen in Figure 1, which is a magnetic map of the Sun’s disk obtained
with a magnetogram. The regions of positive and negative polarities are shown
in white and black respectively. The polarities of the bipolar sunspots in both
hemispheres get reversed from one half-cycle of 11 years to the next half-cycle.

After the development of the magnetogram by Babcock and Babcock (1955),
it became possible to study the much weaker magnetic field near the poles of
the Sun. This magnetic field is of the order of 10 G and reverses its direction at
the time of solar maximum (i.e. when the number of sunspots seen on the solar
surface is maximum) (Babcock, 1959). This shows that this weak, diffuse field of
the Sun is somehow coupled to the much stronger magnetic field of the sunspots
and is a part of the same solar cycle. Low-resolution magnetograms show the
evidence of weak magnetic field even in lower latitudes. The true nature of
this field is not very clear. It has been found (Stenflo, 1973) that the magnetic
field on the solar surface outside sunspots often exists in the form of fibril flux
tubes of diameter of the order of 300 km with field strength of about 2000 G
(large sunspots have sizes larger than 10,000 km). One is not completely sure
if the field found in the low-resolution magnetograms is truly a diffuse field or a
smearing out of the contributions made by fibril flux tubes. Keeping this caveat
in mind, we should refer to the field outside sunspots as seen in magnetograms
as the ‘diffuse’ field. It was found that there were large unipolar matches of this
diffuse field on the solar surface which migrated poleward (Bumba and Howard,
1965). Even when averaged over longitude, one finds predominantly one polarity
in a belt of latitude which drifts poleward (Howard and LaBonte, 1981; Wang,
Nash and Sheeley, 1989). The reversal of polar field presumably takes place
when sufficient field of opposite polarity has been brought near the poles.

Figure 2 shows the distribution of both sunspots and the weak, diffuse field
in a plot of latitude vs. time. The various shades of grey indicate values of
longitude-averaged diffuse field, whereas the latitudes where sunspots were seen
at a particular time are marked in black. The sunspot distribution in a time-
latitude plot is often referred to as a butterfly diagram, since the pattern (the
regions marked in black in Figure 2) reminds one of butterflies. Such butterfly
diagrams were first plotted by Maunder (1904). Historically, most of the early
dynamo models concentrated on explaining the distribution of sunspots and
ignored the diffuse field. Only during the last few years, it has been realized
that the diffuse fields give us important clues about the dynamo process and
they should be included in a full self-consistent theory. The aim of such a theory
should be to explain diagrams like Figure 2 (i.e. not just the butterfly diagram).

Here I may mention an important study made from the photographs taken
in the Kodaikanal Observatory. There were no direct measurements of the Sun’s
weak, diffuse magnetic field in the early decades of the 20th century. However,
one can still obtain information about this field by indirect means. Dark fila-
ments are found on the solar surface at the boundaries between the positive and
negative regions of the weak, diffuse field. One can draw some conclusions about
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Figure 2: Shades of grey showing the latitude-time distribution of longitudinally
averaged weak, diffuse magnetic field (B is in Gauss) with a ‘butterfly diagram’
of sunspots superimposed on it.

the evolution of the weak, diffuse field by studying the positions of these dark
filaments. By analyzing the photographs of the Sun taken regularly from the
Kodaikanal Observatory for nearly a century, Makarov and Sivaraman (1989)
could show the poleward migration of the weak, diffuse field even when there
were still no measurements of this magnetic field.

We have provided above a summary of the various regular features in the
Sun’s activity cycle. One finds lots of irregularities and fluctuations superposed
on the underlying regular behaviour, as can be seen in Figure 2. These irregu-
larities are more clearly visible in Figure 3, where the number of sunspots seen
on the solar surface is plotted against time. Galileo was one of the first per-
sons in Europe to study sunspots at the beginning of the 17th century. After
Galileo’s work, sunspots were almost not seen for nearly a century! Such a
grand minimum has not occurred again in the last 300 years.

It may be noted that all the observations discussed above pertain to the Sun’s
surface. We have no direct information about the magnetic field underneath
the Sun’s surface. The new science of helioseismology, however, has provided us
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Figure 3: The monthly number of sunspots plotted against time for the period
1610–2000.

lots of information about the velocity field underneath the solar surface. Other
lecturers in the Winter School have given an introduction to helioseismology.
We shall have occasions to refer to some of the helioseismic findings in our
discussion later. It is to be remembered that heat is transported by convection
in the outer layers of the Sun from about 0.7R� to R� (where R� is the solar
radius). This region is called the convection zone, within which the plasma is in a
turbulent state. The job of a theorist now is to construct a detailed model of the
physical processes in this turbulent plasma such that all the surface observations
of magnetic fields are properly explained—a fairly daunting problem, of which
the full solution is still a distant dream.

3 Basics of Magnetohydrodynamics

After summarizing the relevant observations in the previous section, we now
look at the basics of theory. Although air is a collection of molecules, we can
treat air as a continuum fluid while analyzing many problems of air flow. Ex-
actly similarly, even though a plasma is a collection of positively charged ions
and negatively charged electrons, we can regard the plasma also as a continuum
fluid while discussing many problems in plasma dynamics. The branch of plasma
physics in which the plasma is treated as a continuum fluid is called magneto-
hydrodynamics, abbreviated as MHD. It should be kept in mind that there are
many problems in plasma physics which require a more microscopic treatment
of plasma and one has to go beyond MHD. For example, the propagation of elec-
tromagnetic waves through a plasma is an important problem in plasma physics
which cannot be handled with MHD. However, when we study non-relativistic
(|v| << c) bulk motions of the plasma under the influence of gravitational and
magnetic forces, MHD is usually adequate. For almost all problems related
to the dynamics of plasma underneath the Sun’s surface, MHD provides the
appropriate theoretical framework.

Due to the electrical attraction between positive and negative charges in a
plasma, these opposite charges usually remain very well mixed. In other words,
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if we take a volume element of plasma which has sufficiently large number of
particles, we would find that the positive and negative charges almost exactly
balance each other. Does that mean that a volume element of a plasma is exactly
like a volume element of an ordinary non-ionized gas? The main difference is
that an ordinary non-ionized gas is a bad conductor of electricity. On the other
hand, it is possible for the electrons and ions in a plasma to move systematically
with resect to each other, thereby giving rise to a current, even though volume
elements of the plasma remain charge-neutral. In other words, in MHD we
regard a plasma as a special kind of fluid which is a very good conductor of
electricity. Since volume elements of the plasma remain charge-neutral, we do
not expect large-scale electric fields in the plasma. But currents flowing through
the plasma can give rise to large-scale magnetic fields.

One combines Maxwell’s equations with the equations of fluid mechanics to
derive the basic equations of MHD. It is beyond the scope of my lectures to give
a systematic derivation of the basic equations. I refer to my book (Choudhuri,
1998) for a systematic introduction to MHD. Here I shall just write down some
of the basic equations and discuss their significance. The velocity field v and the
magnetic field B in a plasma interact with each other according to the following
MHD equations:

∂v

∂t
+ (v.∇)v = −1

ρ
∇

(

p +
B2

2µ

)

+
(B.∇)B

µρ
+ g, (1)

∂B

∂t
= ∇× (v ×B) + λ∇2B. (2)

Here ρ is density, p is pressure, g is gravitational field and

λ =
1

µσ
(3)

is called magnetic diffusivity (σ is electrical conductivity). Equation (1) is es-
sentially the Euler equation of fluid mechanics, to which magnetic forces have
been added. It is clear from (1) that the magnetic field has two effects: (i) it
gives rise to an additional pressure B2/2µ; and (ii) the other magnetic term
(B.∇)B/µρ is of the nature of a tension along magnetic field lines.

Equation (2) is the key equation in MHD and is called the induction equation,
since Faraday’s law of electromagnetic induction is incorporated within it. If V ,
B and L are the typical values of velocity, magnetic field and length scale, then
the two terms on the r.h.s. of (2) are of order V B/L and λB/L2. The ratio of
these two terms is a dimensionless number, known as the magnetic Reynolds
number, given by

Rm =
V B/L

λB/L2
=

V L

λ
. (4)

Since Rm goes as L, it is expected to be much larger in astrophysical situations
than it is in the laboratory. In fact, usually one finds that Rm � 1 in astrophys-
ical systems and Rm � 1 in laboratory-size objects. Hence the behaviours of
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Figure 4: The production of a strong toroidal magnetic field underneath the
Sun’s surface. a. An initial poloidal field line. b. A sketch of the field line after
it has been stretched by the faster rotation near the equatorial region.

magnetic fields are very different in laboratory plasmas and astrophysical plas-
mas. For example, it is not possible to have a laboratory analogue of the Sun’s
self-sustaining magnetic field. Only recently it has been possible to demonstrate
the dynamo mechanism in the laboratory (Gailitis et el., 2000). If Rm � 1 in
an astrophysical system, then the diffusion term in (2) is negligible compared
to the term preceding it. In such a situation, it can be shown that the magnetic
field is frozen in the plasma and moves with it. This result was first recognized
by Alfvén (1942) and is often referred to as Alfvén’s theorem of flux-freezing.
A proof of this fundamental theorem can be found in Choudhuri (1998, §4.6).
Several other lecturers in this Winter School also must be using this theorem in
their theoretical discussions.

It is known that the Sun does not rotate like a solid body. The angular
velocity at the equator is about 20% faster than that at the poles. Because
of the flux freezing, this differential rotation would stretch out any magnetic
field line in the toroidal direction (i.e. the φ direction with respect to the Sun’s
rotation axis). This is indicated in Figure 4. We, therefore, expect that the
magnetic field inside the Sun may be predominantly in the toroidal direction.

We already mentioned in §2 that energy is transported by convection in the
layers underneath the Sun’s surface. To understand why the magnetic field
remains concentrated in structures like sunspots instead of spreading out more
evenly, we need to study the interaction of the magnetic field with the convection
in the plasma. This subject is known as magnetoconvection. The linear theory
of convection in the presence of a vertical magnetic field was studied by Chan-
drasekhar (1952). The nonlinear evolution of the system, however, can only be
found from numerical simulations pioneered by Weiss (1981). It was found that
space gets separated into two kinds of regions. In certain regions, magnetic field
is excluded and vigorous convection takes place. In other regions, magnetic field
gets concentrated, and the tension of magnetic field lines suppresses convection
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in those regions. Sunspots are presumably such regions where magnetic field
is piled up by surrounding convection. Since heat transport is inhibited there
due to the suppression of convection, sunspots look darker than the surrounding
regions.

Although we have no direct information about the state of the magnetic field
under the Sun’s surface, it is expected that the interactions with convection
would keep the magnetic field concentrated in bundles of field lines throughout
the solar convection zone. Such a concentrated bundle of magnetic field lines
is called a flux tube. In the regions of strong differential rotation, therefore, we
may have the magnetic field in the form of flux tubes aligned in the toroidal
direction. If a part of such a flux tube rises up and pierces the solar surface as
shown in Figure 5b, then we expect to have two sunspots with opposite polarities
at the same latitude. But how can a configuration like Figure 5b arise? The
answer to this question was provided by Parker (1955a) through his idea of
magnetic buoyancy. We have seen in (1) that a pressure B2/2µ is associated
with a magnetic field. If pin and pout are the gas pressures inside and outside a
flux tube, then we need to have

pout = pin +
B2

2µ
(5)

to maintain pressure balance across the surface of a flux tube. Hence

pin ≤ pout, (6)

which often, though not always, implies that the density inside the flux tube is
less than the surrounding density. If this happens in a part of the flux tube, then
that part becomes buoyant and rises against the gravitational field to produce
the configuration of Figure 5b starting from Figure 5a. We shall discuss in the
next section how the idea of magnetic buoyancy can be elaborated to model
different aspects of bipolar sunspots.

4 Formation of bipolar sunspots

A look at Figure 4 now ought to convince the reader that the sub-surface toroidal
field in the two hemispheres should have opposite polarity, if it is produced from
a poloidal field of dipolar nature as sketched in Figure 4. If this toroidal field
rises due to magnetic buoyancy to produce the bipolar sunspot pairs, then we
expect the bipolar sunspots to have opposite polarities in the two hemispheres
as seen in Figure 1. We thus see that combining the ideas of flux freezing,
magnetoconvection and magnetic buoyancy, we can understand many aspects
of the bipolar sunspot pairs. Flux freezing tells us that the magnetic field in the
interior of the Sun should be stretched in the toroidal direction by differential
rotation. Magnetoconvection calculations suggest that the magnetic field should
exist in the form of flux tubes within the convection zone. Finally, we use to idea
of magnetic buoyancy to explain how bipolar sunspots arise. To understand the
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Figure 5: Magnetic buoyancy of a flux tube. a. A nearly horizontal flux tube
under the solar surface. b. The flux tube after its upper part has risen through
the solar surface.

formation of bipolar sunspots more fully, we have to look at some of the details
like where exactly inside the Sun the toroidal field is formed and why parts of
it become buoyant.

Since the toroidal field is generated by the stretching of the poloidal field
by differential rotation, we expect the strongest toroidal fields to be generated
in the regions where differential rotation (i.e. the gradient of angular velocity)
is strongest. One of the major achievements of helioseismology in the last two
decades was to map the distribution of angular velocity in the interior of the
Sun. You must have learned about this in the lectures of Antia, and you must
be knowing that there is thin layer called tachocline at the bottom of the solar
convection zone where strong differential rotation is concentrated. It is within
this tachocline that we expect the strong toroidal field to be generated. If
interaction with convection keeps the magnetic field in the form of flux tube,
then the toroidal field generated in the tachocline may be in the form of flux rings
going around the rotation axis of the Sun. Now, it can be shown that magnetic
buoyancy is particularly destabilizing in the interior of the convection zone,
where convective instability and magnetic buoyancy reinforce each other. On
the other hand, if a region is stable against convection, then magnetic buoyancy
can be partially suppressed there (see, for example, Parker, 1979, §8.8). Since
the toroidal flux tube is produced at the bottom of the convection zone, we may
expect some parts of it to come into the convection zone and become buoyant,
whereas other parts may remain underneath the bottom of the convection zone
and stay anchored there due to the suppression of magnetic buoyancy. A part
of the flux tube coming within the convection zone is expected to rise and
eventually reach the solar surface to form sunspots, as sketched in Figure 5. In
order to model the formation of bipolar sunspots, we have to study the dynamics
of flux tubes rising through the convection zone due to magnetic buoyancy.

The best way to study this problem is to treat it as an initial-value problem.
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First, an initial configuration with a magnetic flux ring at the bottom of the
convection zone, having a part coming inside the convection zone, is specified,
and then its subsequent evolution is studied numerically. The evolution depends
on the strength of magnetic buoyancy, which is in turn determined by the value
of the magnetic field. We shall give arguments in §6 why most of the dynamo
theorists till the early 1990s believed that the magnetic energy density should
be in equipartition with the kinetic energy density of convection, i.e.

B2

2µ
≈ 1

2
ρv2. (7)

This suggests B ≈ 104 G on the basis of standard models of the convection
zone. If we use full MHD equations to study the evolution of the flux tube,
then the calculations become extremely complicated. However, if the radius of
cross-section of the flux tube is smaller than the various scale heights, then it is
possible to derive an equation for flux tube dynamics from the MHD equations
(Spruit, 1981; Choudhuri, 1990). Even this flux tube equation is a sufficiently
complicated nonlinear equation and has to be solved numerically. The evolu-
tion of such magnetic flux tubes due to magnetic buoyancy (starting from the
bottom of the convection zone) was studied by Choudhuri and Gilman (1987)
and Choudhuri (1989). It was found that the Coriolis force due to the Sun’s
rotation plays a much more important role in this problem than what anybody
suspected before. If the initial magnetic field is taken to have a strength around
104 G, then the flux tubes move parallel to the rotation axis and emerge at
very high latitudes rather than at latitudes where sunspots are seen. Only if
the initial magnetic field is taken as strong as 105 G, then magnetic buoyancy is
strong enough to overpower the Coriolis force and the magnetic flux tubes can
rise radially to emerge at low latitudes.

D’Silva and Choudhuri (1993) extended these calculations to look at the
tilts of emerging bipolar regions at the surface. These tilts are also produced
by the action of the Coriolis force on the rising flux tube. Figure 6 taken
from D’Silva and Choudhuri (1993) shows the observational tilt vs. latitude plot
of bipolar sunspots (i.e. Joy’s law) along with the theoretical plots obtained
by assuming different values of the initial magnetic field. It is clearly seen
that theory fits observations only if the initial magnetic field is about 105 G.
Apart from providing the first quantitative explanation of Joy’s law nearly three-
quarters of a century after its discovery, these calculations put the first stringent
limit on the value of the toroidal magnetic field at the bottom of the convection
zone. Several other authors (Fan, Fisher and DeLuca, 1993; Caligari et al., 1995)
soon performed similar calculations and confirmed the result. The evidence is
now mounting that the magnetic field at the bottom of the convection zone is
indeed much stronger than the equipartition value given by (7). We already
mentioned that the tilts of active regions have a large amount of scatter around
the mean given by Joy’s law. In fact, it is found that active regions often emerge
with initial tilts inconsistent with Joy’s law and then the tilts change in the next
few days to come closer to values given by Joy’s law (Howard, 1996). Longcope
and Choudhuri (2001) have argued that the vigorous convective turbulence in
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Figure 6: Plots of sin(tilt) against sin(latitude) theoretically obtained for dif-
ferent initial values of magnetic field indicated in kG. The observational data
indicated by the straight line fits the theoretical curve for initial magnetic field
100 kG (i.e. 105 G). Reproduced from D’Silva and Choudhuri (1993).

the top layers of the convection zone exerts a random force on the tops of the
rising flux loops, causing the scatter around the Joy’s law, and then the tilt
of the flux tube relaxes to the appropriate value after emergence when it is no
longer kicked by convective turbulence.

We thus see that flux tube dynamics simulations can explain many aspects
of bipolar sunspot formation and also put a tight constraint on the value of
the toroidal magnetic field at the bottom of the convection zone. We shall find
that this constraint is going to play a very important role in dynamo theory.
After understanding how to explain various properties of individual bipolar
sunspots, we now turn our attention to providing theoretical explanations for
the statistical properties of many sunspots, such as the 22-year cycle and the
latitude drift. We now have to get into the heart of dynamo theory to explain
these things.

5 The turbulent dynamo and mean field MHD

We begin our discussion of dynamo theory by raising the question whether it
is possible for motions inside the plasma to sustain a magnetic field. Ideally,
one would like to solve (1) and (2) to understand how velocity and magnetic
fields interact with each other. Solving these two equations simultaneously in
any non-trivial situation is an extremely challenging job. In the early years of
dynamo research, one would typically assume a velocity field to be given and

12



Figure 7: Different stages of the dynamo process. See text for explanation.

then solve (2) to find if this velocity field would sustain a magnetic field. This
problem is known as the kinematic dynamo problem. One of the first important
steps was a negative theorem due to Cowling (1934), which established that an
axisymmetric solution is not possible for the kinematic dynamo problem. One
is, therefore, forced to look for more complicated, non-axisymmetric solutions.

A major breakthrough occurred when Parker (1955b) realized that turbulent
motions inside the solar convection zone (which are by nature non-axisymmetric)
may be able to sustain the magnetic field. We have indicated in Figure 4 how
a magnetic field line in the poloidal plane may be stretched by the differential
rotation to produce a toroidal component. Parker (1955b) pointed out that the
uprising hot plasma blobs in the convection zone would rotate, as they rise,
because of the Coriolis force of solar rotation (just like cyclones in the Earth’s
atmosphere) and such helically moving plasma blobs would twist the toroidal
field shown in Figure 7a to produce magnetic loops in the poloidal plane as shown
in Figure 7b. Keeping in mind that the toroidal field has opposite directions in
the two hemispheres and helical motions of convective turbulence should also
have opposite helicities in the two hemispheres, we conclude that the poloidal
loops in both hemispheres should have the same sense as indicated in Figure 7c.
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Figure 8: Schematic representation of Parker’s idea of the turbulent dynamo.

Although we are in a high magnetic Reynolds number situation and the magnetic
field is nearly frozen in the plasma (i.e. molecular resistivity is negligible), we
expect the turbulent mixing to give rise to an effective diffusion and the poloidal
loops in Figure 7c should eventually coalesce to give the large-scale poloidal field
as sketched by the broken line in Figure 7c.

Figure 8 captures the basic idea of Parker’s turbulent dynamo. The poloidal
and toroidal components of the magnetic field feed each other through a closed
loop. The poloidal component is stretched by differential rotation to produce
the toroidal component. On the other hand, the helical turbulence acting on
the toroidal component gives back the poloidal component. Parker (1955b) de-
veloped a heuristic mathematical formalism based on these ideas and showed
by mathematical analysis that these ideas worked. However, a more systemic
mathematical formulation of these ideas had to await a few years, when Steen-
beck, Krause and Rädler (1966) developed what is known as mean field MHD.
Some of the basic ideas of mean field MHD are summarized below.

Since we have to deal with a turbulent situation, let us split both the velocity
field and the magnetic field into average and fluctuating parts, i.e.

v = v + v′, B = B + B′. (8)

Here the overline indicates the average and the prime indicates the departure
from the average. On substituting (8) in the induction equation (2) and aver-
aging term by term, we obtain

∂B

∂t
= ∇× (v ×B) + ∇× E + λ∇2B (9)

on remembering that v′ = B′ = 0. Here

E = v′ ×B′ (10)

is known as the mean e.m.f. and is the crucial term for dynamo action. This
term can be perturbatively evaluated by a scheme known as the first order
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smoothing approximation. Here we shall present only final results without going
through derivation and ask readers wishing to learn about first order smoothing
approximation to consult §16.5 of Choudhuri (1998), where full derivations can
be found. If the turbulence is isotropic, then this approximation scheme leads
to

E = αB − β ∇×B, (11)

where

α = −1

3
v′.(∇× v′) τ (12)

and

β =
1

3
v′.v′ τ. (13)

Here τ is the correlation time of turbulence. On substituting (11) in (9), we get

∂B

∂t
= ∇× (v ×B) + ∇× (αB) + (λ + β)∇2B (14)

It follows from (12) that α is a measure of average helical motion in the fluid.
It is this coefficient which describes the production of the poloidal component
from the toroidal component by helical turbulence. This term would go to zero
if turbulence has no net average helicity (which would happen in a non-rotating
frame). The other coefficient β is of the nature of a diffusion coefficient, as can
be seen in (14). Since this is basically diffusion induced by turbulence, it is called
turbulent diffusion. This is usually much larger than the molecular diffusion λ
so that λ can be neglected in (14). I may mention that turbulent diffusion is a
phenomenon which we very often encounter in our daily lives. Suppose we put
sugar in a cup of coffee and do not stir it. Then sugar will mix with the coffee
by molecular diffusion, which is an inefficient process and will take a very long
time (the coffee will get cold by that time). On the other hand, if we stir the
coffee with a spoon, then we produce some turbulence in the coffee cup, which
mixes the sugar much more quickly by turbulent diffusion.

Equation (14) is known as the dynamo equation and has to be solved to
understand the generation of magnetic field by the dynamo process. A variant
of this equation was first derived by rather intuitive arguments in the classic
paper of Parker (1955b). The mean field MHD developed by Steenbeck, Krause
and Rädler (1966) put this equation on a firmer footing. In the kinematic dy-
namo approach, one has to specify a velocity field v and then solve (14). After
developing the basic dynamo theory, Parker (1955b) showed that the dynamo
equation (14) admits of a periodic wave solution when there is differential rota-
tion. In the next section, we shall present this famous dynamo wave solution.
For many years, it was believed that the solar cycle is caused by such a peri-
odic dynamo wave propagating towards the equator inside the convection zone
of the Sun. Sunspots were supposed to be produced in the regions where the
wave had its crest. The equatorward propagation of the crest provided an ex-
planation why sunspots appear at lower and lower latitudes with the progress
of the solar cycle. The period of the solar cycle was supposed to be just the

15



period of the dynamo wave. The original derivation of dynamo wave by Parker
(1955b) reproduced in the next section used Cartesian geometry and could be
done analytically. Later Steenbeck and Krause (1969) were the first to solve
the dynamo equation (14) numerically in a spherical geometry with appropriate
boundary conditions and produced a theoretical butterfly diagram of sunspots.
Although for many years this seemed to provide a very elegant explanation of
the solar cycle, we now think that the solar dynamo does not operate exactly
this way for the following reason. One of the main assumptions in the theo-
retical model outlined above is that the toroidal field is twisted by the helical
turbulence to produce the poloidal field, as sketched in Figure 7b. Since the
magnetic tension of the toroidal field would resist any twisting, such a twist-
ing can be possible only if the toroidal field is not too strong. The maximum
possible value of the toroidal field was supposed to be the equipartition value
given by (7). We already pointed out in §4 that the flux tube rise simulations
of D’Silva and Choudhuri (1993), quickly followed by similar works by other
groups, established that the toroidal field at the bottom of the solar convection
zone has to be of order 105 G, whereas the equipartition value of magnetic field
there is only about 104 G. The convective turbulence will certainly not be able
to twist a toroidal field as strong as 105 G. We, therefore, think that the model
of the dynamo presented in this section is not the appropriate model for the
solar dynamo, although this model is probably applicable to dynamo processes
in many other astrophysical systems. In §7 we shall come to the question how,
according to our current belief, the solar dynamo works.

6 Parker’s dynamo wave solution

We now present what is the perhaps the most famous solution of the dynamo
equation (14) obtained by Parker in his classic paper (1955b). This solution was
originally proposed as a model for the solar cycle. As we already pointed out,
we now no longer think that this is the appropriate model for the solar dynamo.
However, this solution was historically very influential and still gives us a deep
insight into the behaviour of the dynamo.

We saw in §5 that the main idea of Parker’s turbulent dynamo (as summa-
rized in Figure 8) is that the poloidal and toroidal magnetic fields can sustain
each other—the toroidal field arises due to the action of differential rotation on
the poloidal field and the poloidal field is then generated back from the toroidal
field by helical turbulence. We now want to discuss the mathematical represen-
tation of these ideas on the basis of the dynamo equation (14). Since we shall
be concerned only with mean fields in this section, let us drop the overline sign
to denote averages. So v and B will stand for the mean velocity field and mean
magnetic field respectively. Denoting the diffusion coefficient by λT with the
subscript T to remind us that it is primarily turbulent diffusion, we write the
dynamo equation (14) in the form

∂B

∂t
= ∇× (v ×B) + ∇× (αB) + λT∇2B. (15)
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Figure 9: Local Cartesian coordinates at a point in the northern hemisphere of
a spherical body.

For applications to the Sun or to the Earth, one has to write down (15) in
spherical coordinates. Some of the basic features, however, can be understood
quite well by solving (15) in a local Cartesian coordinate system at a point in
the spherical object. Figure 9 shows a local Cartesian system at a point in the
northern hemisphere of a spherical body like the Sun. The x axis corresponds to
the radially outward direction, the y axis to the toroidal (i.e. φ) direction and
the z axis to the direction of increasing latitude. Since the statistics of sunspots
show a tendency for equatorward migration, we want to find a wave-like solution
of (15) propagating in the negative z direction. As Cowling’s theorem is not
applicable for mean fields, we expect to find solutions symmetric around the
rotation axis. With respect to the local Cartesian system, axisymmetry means
symmetry in y, i.e. we look for solutions for which ∂/∂y = 0.

The toroidal magnetic field in our representation is simply the component
Byey. The poloidal magnetic field is a two-dimensional solenoidal (i.e. zero di-
vergence) vector field with field lines lying in the xz plane. The most convenient
way of representing the poloidal field is to write it in the form ∇× [A(x, z)ey],
where A(x, z) is a function which can be easily shown to be constant on the
poloidal field lines in the xz plane. Hence the full magnetic field can be written
as

B = By(x, z)ey + ∇× [A(x, z)ey], (16)

where By and A respectively represent the toroidal and the poloidal compo-
nents. The mean velocity field is due to the differential rotation and hence has
a component in the y direction alone. Although this velocity field vy can be a
function of both x and z, let us take it to be a function of x alone, since this
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results in simpler solutions. So we write

v = vy(x)ey (17)

such that the velocity shear is given by

G =
∂vy

∂x
.

We shall now show that it is possible to have plane wave solutions propagating
in the z direction, if the velocity shear G and the coefficients α, λT are taken
as constants.

Substituting (16) and (17) in (15), it is straightforward to show that the y
component of (15) becomes

∂By

∂t
= GBx − α∇2A + λT∇2By. (18)

Apart from the y component, the other components of (15) can be put in the
form

∇×
(

∂A

∂t
ey − αByey − λT∇2Aey

)

= 0.

The easiest way to satisfy this equation is to take

∂A

∂t
= αBy + λT∇2A. (19)

It is straightforward to see that if the magnetic field is taken to be of the form
(16) with By and A satisfying (18) and (19), then the basic dynamo equation
(15) is satisfied. Hence we now have to solve the two simultaneous equations
(18) and (19).

Before solving these two equations (18) and (19), let us try to understand
their physical significance. The simpler equation (19) gives the evolution of the
poloidal field. If the term αBy were not there, then it would have been a simple
diffusion equation and would imply that any poloidal field diffuses away. The
additional term αBy acts as the source term which generates the poloidal field.
We have seen that α is a measure of helical motion in the turbulence. Hence
this source term corresponds to the production of the poloidal field as a result
of helical motions twisting the toroidal field By. The other equation (18) gives
the evolution of the toroidal field and has two source terms (the first two terms
on the right hand side). The term GBx corresponds to the velocity shear of
differential rotation stretching out the Bx component of the poloidal field to
produce the toroidal field. Just as the helical motion can twist the toroidal field
to produce the poloidal field, it can also twist the poloidal field to produce the
toroidal field as well. This is the origin of the other source term −α∇2A in (18).
If the astrophysical system has strong differential rotation, then the differential
rotation term GBx is much larger than the other source term −α∇2A, and this
other term can be neglected. Then (18) becomes

∂By

∂t
= −G

∂A

∂z
+ λT∇2By. (20)
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Equations (19) and (20) together constitute the mathematical representation of
Figure 8.

If the term −α∇2A in (18) is neglected (as we are doing here), then the
dynamo is known as an αΩ dynamo. When one uses spherical coordinates, the
rotation is usually denoted by Ω as we shall see in §7. Hence, for the αΩ dynamo
equations written in spherical geometry, the source term for the poloidal field
involves α and the source term for the toroidal field involves Ω, giving rise to
the name αΩ dynamo. On the other hand, if the astrophysical system does not
have much differential rotation, then the term GBx in (18) can be neglected and
the other source term −α∇2A retained. Such a dynamo is called an α2 dynamo,
because the source terms for both the components involve the α-coefficient. The
Earth’s magnetic field is produced by an α2 dynamo operating in the Earth’s
core which does not have much differential rotation.

We now wish to show that (19) and (20) admit of propagating wave-like
solutions of the type exp[i(ωt + kz)] for constant α, λT and G. Let us begin by
trying solutions of the form

A = Â exp(σt + ikz), By = B̂ exp(σt + ikz). (21)

Substituting in (19) and (20), we have

(σ + λT k2)Â = αB̂

and
(σ + λT k2)B̂ = − ikGÂ.

Combining these two equations, we get

(σ + λT k2)2 = − ikαG, (22)

from which

σ = −λT k2 ±
(

i − 1√
2

)√
kαG. (23)

Let us take k to be positive. We now separately discuss the two cases of αG > 0
and αG < 0.

First consider αG > 0. For the dynamo maintenance of magnetic fields, we
must have Re σ ≥ 0. This is possible only if we choose the negative sign in (23)
so that

σ = −λT k2 +

(

kαG

2

)1/2

− i

(

kαG

2

)1/2

. (24)

This expression makes it clear that the dynamo problem has the character of a
stability calculation. If αG, which gives the combined effect of helical turbulence
and differential rotation, is larger than a critical value, then only is it possible for
magnetic fields to grow. Otherwise magnetic fields decay away. We introduce a
dimensionless parameter called the dynamo number defined as

Nd =
|αG|
λ2

T k3
. (25)
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It is easy to see from (24) that the condition for the dynamo growth of the
magnetic field (i.e. for Re σ ≥ 0) is

Nd ≥ 2. (26)

For the marginally sustained magnetic field (i.e. for Nd = 2), the eigenmodes
are of the form

A, By ∼ exp

[

− i

(

kαG

2

)1/2

t + ikz

]

. (27)

This corresponds to a wave propagating in the positive z direction, i.e. in the
poleward direction (see Figure 9).

We now consider the case αG < 0 for which again the negative sign in (23)
has to be chosen such that

σ = −λT k2 +

(

k|αG|
2

)1/2

+ i

(

k|αG|
2

)1/2

. (28)

It is straightforward to see that the condition for dynamo growth (26) remains
the same, with Nd still defined by (25). The marginally sustained eigenmodes,
however, now become

A, By ∼ exp

[

i

(

k|αG|
2

)1/2

t + ikz

]

. (29)

This gives an equatorward propagating wave as desired in the solar context. On
this ground, it used to be assumed in the early years of dynamo research that
αG in the northern hemisphere of the Sun must be negative.

Let us recapitulate what determines the direction of the propagation vec-
tor. We took v along the y direction with its variation in the x direction (i.e.
∂vy/∂x 6= 0). Then the dynamo wave propagates in the third z direction. It
is to be noted that the wavefronts for our solution correspond to infinite planes
perpendicular to the z axis. This is because we took α, λT and G as constants.
In a realistic situation, one has to solve the dynamo equation in a finite region
with suitable boundary conditions on the boundaries. We shall not get into a
discussion of boundary conditions here, because they make the problem consid-
erably more complicated. We hope that the plane wave solution for constant
coefficients gives some idea on how to approach dynamo problems.

7 The Babcock–Leighton mechanism and flux

transport dynamo

Although the very elegant dynamo wave solution presented in the previous sec-
tion seemed to provide a natural explanation for the periodicity and equatorward
propagation associated with solar cycle, we have already pointed out at the end
of §5 that eventually it was realized that this is probably not the correct model
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for the solar dynamo. If the toroidal field at the bottom of the convection zone
is of order 105 as concluded by D’Silva and Choudhuri (1993) and others, then
helical turbulence would not be able to twist the toroidal field as required in
the dynamo model presented in §5–6. If it is not possible for helical turbulence
to produce the poloidal field as indicated in Figure 7, then we need an alterna-
tive mechanism for the production of the poloidal field. In fact, an alternative
mechanism for poloidal field generation was proposed by Babcock (1961) and
Leighton (1969) several decades ago. Within the last few years, several dy-
namo theorists have invoked this Babcock–Leighton mechanism for generating
the poloidal field in view of the difficulty in twisting a very strong toroidal field
by helical turbulence.

Let us now explain what this Babcock–Leighton mechanism is. We pointed
out in §2 that bipolar sunspots have tilts increasing with latitude, in accordance
with Joy’s law. Then we discussed in §4 how this law was explained by D’Silva
and Choudhuri (1993) by considering the action of the Coriolis force on rising
flux tubes. Now, a typical sunspot lives for a few days and the magnetic field
of the sunspot diffuses in the surrounding region by turbulent diffusion after
its decay. When a tilted bipolar sunspot pair with the leading spot nearer the
equator and the following spot at a higher latitude decays, the polarity of the
leading sunspot gets more diffused in the lower latitudes and the polarity of the
following sunspot gets more diffused in the higher latitudes. This essentially
gives rise to a poloidal field at the solar surface. Since sunspots form from
the toroidal field due to magnetic buoyancy, a tilted bipolar sunspot pair can
be viewed as a conduit through which a part of the toroidal field ultimately
gets transformed into the poloidal field. This is the basic idea of poloidal field
generation proposed by Babcock (1961) and Leighton (1969). If the toroidal field
is so strong that helical turbulence cannot twist it as required in the dynamo
model discussed in §5–6, then the Babcock–Leighton mechanism seems like the
natural option for the generation of the poloidal field.

We mentioned in §2 that weak, diffuse magnetic field of the Sun outside
sunspots migrates poleward with progress of the solar cycle. It is known for
about two decades that the plasma near the Sun’s surface continuously flows
from the equator to the pole, with a maximum flow speed of about 20 m s−1

in the mid-latitudes. This is known as the meridional circulation. By assum-
ing that the weak, diffuse magnetic field arises from the decay of tilted bipolar
sunspots by the Babcock–Leighton mechanism and is then carried by the merid-
ional circulation, Wang, Nash and Sheeley (1989) could model the evolution of
the weak, diffuse field on the Sun’s surface. Now the material brought from the
equatorial region to the polar region by the meridional circulation somehow has
to be returned back, if we do not want a gradual pile-up of additional material
near the poles. We believe that there is a counter-flowing part of the meridional
circulation underneath the Sun’s surface bringing back the material from the
polar region to the equatorial region. Although there is so far no direct obser-
vational evidence that such a counter-flow really exists underneath the Sun’s
surface, it has to be there to avoid the pile-up of material near the poles. It
is usually believed that the meridional circulation is driven by the turbulent
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Figure 10: A cartoon explaining how the solar dynamo works.

stresses in the convection zone, although we do not yet have a very satisfac-
tory theory of the meridional circulation. It is then natural to assume that
the counter-flow will be in the bottom layers of the convection zone. Figure 10
indicates how the streamlines of meridional circulation are expected to look like.

Since the meridional circulation sinks underneath the Sun’s surface near the
pole, the poloidal magnetic field, after being brought to the pole, must be carried
downward and brought to the bottom of the convection zone by the meridional
circulation. We have repeatedly referred to the famous helioseismology result
that the differential rotation is concentrated in the tachocline at the bottom of
the convection zone. Once the poloidal field is brought to the tachocline, the
differential rotation can act on it and produce the strong toroidal field. We have
discussed in §4 that tubes of toroidal field produced at the bottom of the convec-
tion zone can rise in parts due to magnetic buoyancy to produce the sunspots.
All these ideas are put together in a cartoon form in Figure 10, explaining how
the solar dynamo operates. The toroidal field is produced in the tachocline by
the differential rotation stretching out the poloidal field. Then this toroidal field
rises due to magnetic buoyancy to produce bipolar sunspots at the solar sur-
face, where the poloidal field is generated by the Babcock–Leighton mechanism
from these bipolar sunspots. The poloidal field so generated is carried by the
meridional circulation first to the polar region and then underneath the surface
to the tachocline to be stretched by the differential rotation—thus completing
the cycle. This type of dynamo is called a flux transport dynamo. Most of the
dynamo theorists at the present time believe that the solar dynamo operates in
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this way. Wang, Sheeley and Nash (1991) proposed the idea of the flux trans-
port dynamo. Choudhuri, Schüssler and Dikpati (1995) and Durney (1995) were
the first to construct two-dimensional models of the flux transport dynamo to
demonstrate that such a dynamo really does work.

How do we treat the flux transport dynamo mathematically? We can still
begin with the basic dynamo equation (15). In the original derivation for this
equation sketched in §5, the coefficient α was supposed to be a measure of helical
turbulence in the system as evident from (12). It follows from (19) that α finally
appears in the theory as a measure of poloidal field generation from the toroidal
field. Even the Babcock–Leighton process can be phenomenologically described
with the help of the coefficient α concentrated near the solar surface. Since this
α in the Babcock–Leighton process does not arise from helical turbulence, it
will no longer be given by (12), although it appears in the dynamo equation in
exactly the same form. Using spherical coordinates, we write the magnetic field
as

B = B(r, θ)eφ + ∇× [A(r, θ)eφ], (30)

which has a form very similar to (16) for Cartesian geometry. Here again B(r, θ)
is the toroidal component and A(r, θ) represents the poloidal component. We
can write the velocity field as v + r sin θΩ(r, θ)eφ, where Ω(r, θ) is the angular
velocity in the interior of the Sun and v is the velocity of meridional circulation
having components in r and θ directions. On substituting these forms of mag-
netic and velocity fields in (15), it can be shown that the poloidal and toroidal
components of an αΩ dynamo evolve according to the following equations

∂A

∂t
+

1

s
(v.∇)(sA) = λT

(

∇2 − 1

s2

)

A + αB, (31)

∂B

∂t
+

1

r

[

∂

∂r
(rvrB) +

∂

∂θ
(vθB)

]

= λT

(

∇2 − 1

s2

)

B+s(Bp.∇)Ω+
1

r

dλT

dr

∂

∂r
(rB),

(32)
where s = r sin θ. The dynamo model indicated in the cartoon form in Figure 10
is achieved by using the helioseismically determined Ω which has a strong gradi-
ent at the bottom of the convection zone, by choosing a meridional circulation
v as indicated in the Figure 10 and by making α concentrated near the solar
surface to represent the Babcock–Leighton process. Additionally, we have to
specify magnetic buoyancy in some suitable fashion. We have to solve the cou-
pled partial differential equations (31) and (32) numerically, since no non-trivial
calculations are possible analytically. Our research group in Bangalore has de-
veloped a numerical code Surya for solving the flux transport dynamo problem.
I can send the code Surya and a detailed guide for using it (Choudhuri, 2005) to
anybody who sends a request to my e-mail address arnab@physics.iisc.ernet.in.

As we pointed out in §5–6, it was believed in the early years of dynamo re-
search that Parker’s dynamo wave provides the explanation for the solar cycle.
We saw in §6 that the condition for equatorward propagation of such a wave is
αG < 0 in the northern hemisphere. Not much was known about the nature of
differential rotation G before the development of helioseismology. In the case of
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α which is supposed to be given by (12), not only its value, but even its sign was
uncertain! Dynamo theorists of earlier times used to make assumptions about
G and α which seemed reasonable at that time (but does not appear reasonable
now), making sure that their product was negative in the norther hemisphere.
One of the attractive aspects of current flux transport dynamo models is that
both the toroidal and poloidal field generation mechanisms are directly based
on observations. The angular velocity Ω is now completely mapped by helio-
seismology as discussed by Antia. So there is now no uncertainty in the toroidal
field generation term in the dynamo equation (the middle term in the right
hand side of (32)). On the other hand, we directly observe the poloidal field
generation by the Babcock–Leighton process on the Sun’s surface. When we
directly observe the basic processes, we do not have the freedom of choosing our
parameters arbitrarily. It appears that both α and G are positive in the regions
of northern hemisphere where sunspots are seen. That is why it was initially
not clear whether a flux transport model would be able to explain even such
a basic observation as the equatorward drift of sunspots with the solar cycle.
Choudhuri, Schüssler and Dikpati (1995) succeeded in settling this issue. Since
the toroidal field from which sunspots form is produced in the tachocline at the
bottom of the convection zone where the meridional circulation is equatorward
(as seen in Figure 10), Choudhuri, Schüssler and Dikpati (1995) showed that a
sufficiently strong meridional circulation can force an equatorward propagation
of the toroidal field even if αG is positive. Thus the condition that αG has to
be negative in the northern hemisphere, which was regarded almost sacrosanct
for several decades, is no longer applicable in the presence of meridional circula-
tion. With this demonstration by Choudhuri, Schüssler and Dikpati (1995), it
became clear that the flux transport dynamo provides an attractive model for
the solar cycle.

Dikpati and Charbonneau (1999), Küker, Rüdiger and Schultz (2001) and
Nandy and Choudhuri (2002) were amongst the first to construct models of flux
transport dynamo using the angular velocity distribution mapped by helioseis-
mology. Many of these initial models were of exploratory nature and did not
always fit different aspects of observational data. However, as dynamo theorists
kept gaining more experience of building models, it has eventually been possible
to construct models with such combinations of parameters that most aspects of
observational data are reproduced reasonably well. Figure 11 taken from Chat-
terjee, Nandy and Choudhuri (2004) shows a theoretically calculated butterfly
diagram of sunspots superposed on contours of constant Br at the surface in
a time-latitude plot. This figure has to be compared with the observational
Figure 2. Given the fact that this was one of the first serious attempts of repro-
ducing this observational figure, perhaps most of you will agree that it is not a
bad first theoretical fit.
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Figure 11: A theoretical butterfly diagram of sunspots superposed on contours
of constant Br at the solar surface in a time-latitude plot. This figure is taken
from Chatterjee, Nandy and Choudhuri (2004).

8 Conclusion

I hope that my presentation has given you some idea where solar dynamo theory
stands now. We have come a long way from Parker’s classic paper published
slightly more than half a century ago (Parker, 1955b). We saw that the dynamo
wave solution derived in that paper was supposed to provide a model for the so-
lar cycle for a very long time. When flux tube simulations pointed out that the
toroidal field at the bottom of the convection zone is probably very strong and
cannot be easily twisted by helical turbulence, this model had to be abandoned.
Within the last few years, the flux transport dynamo model has emerged as
the most promising model for the generation of solar magnetic cycle. I pointed
out that many aspects of the flux transport dynamo are based on direct obser-
vations. The differential rotation, which generates the toroidal field, is known
from helioseismology. On the other hand, we directly see the generation of the
poloidal field by the Babcock–Leighton mechanism on the solar surface. How-
ever, it should be kept in mind that some aspects of the flux transport dynamo
are still rather uncertain. Apart from the reasonable theoretical guess that the
streamlines of meridional circulation close at the bottom of the convection zone
with a flow towards the equator, we do not know anything more definite about
this crucial component of the flux transport dynamo. If a certain combination
of parameters gives theoretical results matching observational data, that does
not necessarily mean that the combination chosen by us is actually the ‘cor-
rect’ combination. See Choudhuri (2007) for a discussion of the still remaining
uncertainties in solar dynamo models.
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Figure 12: The theoretical monthly sunspot number for the last few years as well
as the upcoming next cycle, plotted along with the observational data (dashed
line) for the last few years. This figure is taken from Choudhuri, Chatterjee and
Jiang (2007).

I should also remind you that there are many important aspects of the solar
dynamo problem which I could not even touch upon in my lectures. A look at
Figure 3 should convince you that the solar cycle is only roughly periodic. Many
irregularities are found superposed on the underlying periodic behaviour. In
my lectures, I have mainly focused on the theoretical models of regular periodic
behaviour of the solar dynamo and have not discussed the irregularities, since
our theoretical understanding of these irregularities is still very primitive. We
saw in §5 that we have to average over fluctuations to get the mean field dynamo
equation. Fluctuations present around the mean provide an additional random
force acting on the periodic dynamo. Choudhuri (1992) suggested this as the
main cause behind irregularities of the solar cycle and that seems to be the most
satisfactory explanation. One question connected with the study of irregularities
is whether we can model individual cycles and can predict the strength of a
particular cycle before its onset. For example, the next maximum of solar
activity is scheduled around 2010–11. Whether this forthcoming maximum will
be strong or weak is being debated. Since theoretical calculations alone cannot
tell us about the nature of stochastic fluctuations associated with a particular
cycle, we have feed some observational data into the theoretical model in a
suitable way when we want to model individual cycles on the basis of dynamo
theory. Only recently research has begun on this subject. Dikpati and Gilman
(2006) have predicted that the next solar cycle will be one of the strongest in a
long time. On the other, the calculations of Choudhuri, Chatterjee and Jiang
(2007) based on a different model using a different methodology suggest that
the next cycle will be one of the weakest. Figure 12 taken from Choudhuri,
Chatterjee and Jiang (2007) shows the theoretically calculated sunspot number
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for the last few cycles along with observational data. It remains to be seen
whether the theoretical prediction for the next few years indicated in Figure 12
will be borne out or not.

While we now seem to have a broad-brush understanding of how the solar
dynamo works, many pieces of the jigsaw puzzle are still missing. It is unlikely
that theoretical research alone will supply all the missing pieces. Perhaps some
hitherto unforeseen kinds of observational data will come to our help in complet-
ing the picture. We certainly expect solar dynamo theory to remain an exciting
research field for years to come.
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