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Abstract 

Quantization of electrical conductance in condensed matter systems often arises from the 

presence of edge-modes1,2,3. These modes are globally protected from local perturbations by 

certain symmetries of the underlying system4,5. In the case of a time-reversal (TR) invariant 2-

dimensional topological insulator (TI) – also known as the Quantum Spin Hall (QSH) insulator 

state 6,7,8,9 - the bulk of the system is gapped, while the edges host counter-propagating, 

gapless metallic conducting states of opposite spin polarizations7,8,9. Realizing TR invariant 

QSH in intrinsic graphene systems has been elusive so far due to the extremely weak spin-

orbit interactions of carbon atoms. In this letter, we report the experimental observation of 

QSH state in bilayer graphene/single-layer WSe2 heterostructures - a system similar to the 

one in which the pioneering proposals of Kane and Mele envisaged the QSH insulator state8. 

We find the measured value of electrical conductance to be quantized to the theoretically 

predicted value of e2/h for each QSH edge-mode. The linear conductance obtained in several 

measurement configurations matches precisely with that obtained from a tight-binding model 

replicating our heterostructure with periodic [for bulk topology] and open-boundary conditions 

[for topological edge-modes]. Our work provides the pivotal affirmation of the archival Kane-

Mele model for QSH state in graphene and expands the material choices for QSH states. 

Main 

Topological phases of quantum many-body systems are characterized by global topological 

properties that emerge from symmetry protected, local degrees of freedom. They play a pivotal 

role in the study of electronic states like the Quantum Hall phase, which does not break any 

symmetries but has a set of distinct properties that cannot be changed via local perturbations 

without going through a quantum phase transition4,5. In essence, they are characterized by a 

bulk state which is topologically distinct from the vacuum and which has a finite quasiparticle 

energy gap: this leads to the appearance of dissipationless, quasi-one-dimensional edge-

modes.  A spinful system of electrons in two-dimensions has four-degrees of freedom - two 

spin species and two directions of momentum. In the QSH insulator phase, these four modes 

get separated in a TR invariant way to give rise to an insulating bulk and quantized, helical 

edge-modes (which form a Kramer’s doublet) that are topologically protected from scattering7.  
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The seminal proposal by Kane and Mele7,8, which acted as a precursor to topological 

insulators (TI), envisaged creating a QSH phase by coupling the orbital and (pseudo-)spin 

degrees of freedom in single-layer graphene. In this model, the separation between the helical 

edge states arises physically from the TR invariant spin-orbit coupling.  The spin-↑ and spin-↓ 

charge-carriers experience opposite forces due to spin-orbit interaction (SOI) and hence form 

edge-modes of opposite chirality9. Due to extremely weak spin-orbit coupling in graphene, 

experimental verification of the Kane-Mele model has been challenging to realize. There have 

been several attempts to increase the spin-orbit interaction in graphene by either decorating 

it with heavy atoms10 or by doping it with topological nanoparticles11. These methods, although 

providing signatures of the spin-Hall effect, were found to drastically degrade the mobility of 

the graphene.  

 

An alternative, non-invasive, method is to ‘induce’ strong spin-orbit coupling in graphene by 

proximity to an appropriate high SOI material12. Several studies, both theoretical and 

experimental, have demonstrated that a large SOI can be induced in graphene in proximity to 

few-layer transition metal dichalcogenides (TMD) like WS2 or WSe2
13. Recently, it has been 

predicted that graphene on WSe2, under certain conditions, can have an inverted band 

structure14. The system can thus host topologically protected helical edge states and is, 

therefore, a promising platform to study the QSH effect. Although the QSH effect has been 

observed in other semiconductor devices15,16,17,18,19,20, confirmation of the TR invariant Kane-

Mele model in graphene is lacking. 

 

In this letter, we report the first observation of robust TR invariant QSH state in bilayer 

graphene (BLG). Strong SOI was induced in the BLG by proximity to single-layer WSe2. The 

measured conductance in several multi-probe measurement configurations (both local and 

non-local) was found to be precisely quantized over a range of temperatures (20 mK- 10 K); 

the quantized value in all cases being equal to that expected for helical edge structure of QSH 

phase. We also find the measured non-local resistance to scale linearly with the longitudinal 

resistance, which firmly establishes that the electrical transport in our system proceeds via 

edge-states. 

Experimental details  

Hall bar devices based on an atomically sharp interface between bilayer graphene and a 

monolayer of semiconducting crystalline WSe2 were fabricated using standard dry transfer 

technique21 - the BLG/WSe2 being encapsulated between hexagonal boron nitride (hBN) 



 

 

crystals (Figure 1(a)). The hBN layers acted as gate dielectrics for the top and bottom gates. 

Electrical contacts were achieved by reactive dry ion etching and thermal deposition of Cr/Au 

(for details see Supplementary text 1: Device Fabrication and characterization). Figure 1(b) is 

the Raman spectra of the BLG/WSe2 stack. The presence of a peak near 250 cm-1 (and the 

absence of one at around 308 cm-1)22 confirmed the WSe2 flake to be a monolayer. The other 

two Raman, peaks centred around 1580 cm-1 (G peak) and 2800 cm-1 (2D peak), belong to 

the graphene layer. The spectral decomposition of the 2D peak (see Figure S5(b)), as well as 

the intensity ratio of G and 2D peaks, establish the graphene to be a bilayer23. The room 

temperature photoluminescence spectra of the WSe2 flake (Figure 1(c)) has a peak at ~1. 65 

eV, confirming that it is a monolayer24. 

All electrical measurements were performed in a cryogen-free dilution refrigerator at a base 

temperature of 20 mK using standard low-frequency lock-in techniques with excitation currents 

of 1 nA.  The dual-gate architecture of the device allowed independent tuning of both the 

charge-carrier number density, n, and the displacement field perpendicular to the device, D. A 

logarithmic scale contour plot of the 4-probe longitudinal resistance as functions of the back-

gate voltage, Vbg and the top-gate voltage, Vtg (Figure 1(d)) shows that the resistance at the 

primary Dirac point (PDP) increases with an increase in |D| establishing the opening of a 

bandgap in BLG.  Along with the prominent peak at the primary Dirac point (PDP), there are 

two other satellite peaks symmetrically placed around n = 0. These two satellite peaks, called 

clone Dirac points (CDP), are the result of band structure reconstruction of BLG due to the 

Moirè super-lattice potential, which is a long-wavelength, weak periodic potential caused by a 

near-perfect alignment of the top hBN layer with the top layer of the BLG25,26,27,28. From the 

positions of the CDP, the angle between top hBN and the BLG was found to be ~0.9° 

(Supplementary text 2: Hofstadter’s butterfly and Moir�̀� superlattice)26,29,30,31,32 . In Figure 1(e) 

is plotted the 2-probe resistance measured across the device versus the charge-carrier density 

n and the displacement field D.  The asymmetric feature seen near the PDP (outlined by 

dashed lines) is a consequence of the fact that depending on the direction of D,  the band-

splitting in the BLG by the induced SOI33 occurs either in the conduction band or in the valence 

band (see Supplementary text 5: Calculations of edge and bulk dispersion relations). 

Spin-orbit interaction in BLG 

In a system with SOI, long-range spin currents can be generated by the spin Hall effect 

(SHE)34,35,36,37 which produce a nonlocal signal at voltage probes remote from the charge 

current path via the inverse SHE. The zero magnetic (B)-field nonlocal resistance RNL is 

peaked sharply near the primary Dirac point (Figure 2(a)). At large |D|, RNL has a split peak 



 

 

(Figure 2(b)). Recall that the strength of the Berry curvature is most significant at the band-

edges, at the so-called ‘Berry curvature hot-spots.’ This causes the effect of the SHE to be 

most prominent when the chemical potential of the system lies at the band-edges38. With an 

increasing magnitude of |D|, the magnitude of bandgap in BLG increases causing the Berry 

curvature hot-spots in the valence- and conduction-bands to move apart – this can be mapped 

out in our system by monitoring the location of the peak of RNL in the n − D plane.  

A plot of the transverse resistance measured at finite values of |n| (when the chemical potential 

is inside the bulk valence band and at B = 0 is shown in Figure 2(c).  One finds a large Rxy 

arising from the SHE. The observation of a large RNL at band-edges, zero magnetic field Rxy 

inside the bulk band ( (a)), SOI induced splitting of the band-edges seen from SdH oscillations 

(Figure S6),  weak anti-localization correction to the low-field magnetoresistance (Figure S8; 

Supplementary text 3: Effect of the SOI induced by WSe2 in BLG) and the asymmetry in the 

plot of R(B = 0) (Figure 1(e)) all confirm that the induced SOI is considerably strong in the 

BLG. 

Quantized transport through edge-modes 

The observed significant increment in the strength of the spin-orbit interaction of the BLG 

heterostructure leads to the expectation that it will host the QSH phase (see Supplementary 

text 5: Calculations of edge and bulk dispersion relations).  The plots of the measured 4-probe 

and 2-probe longitudinal resistances for B = 0 and T  =  8 K shown in Figure 3 establish that 

this indeed is the case. Figure 3(a) shows precise quantization of the 4-probe longitudinal 

resistance to h/(2e2) at the primary Dirac point over a range of applied electric fields.  In 

Figure 3(b) is plotted the measured 2-probe resistance which quantizes to 3h/(2e2). These 

two values are exactly what one would expect from the given contact configuration for helical 

edge-modes (Supplementary text 4: Extended data and Landauer B�̈�ttiker formalism). The 

quantization of the 2-probe and 4-probe longitudinal resistances at the PDP over a range of 

values of the displacement field is the central result of this letter and establishes the presence 

of helical edge modes in our device. Figure 3(c) and Figure 3(d) are respectively the plots of 

the 4-probe, and 2-probe longitudinal resistance plotted versus n and |D|. The data projected 

on the n − R plane shows that the quantization in each case is centred around the primary 

Dirac point (with ∆n = ± 2 × 10−11 cm -2).  

It may be argued that the observed quantization of the 4-probe longitudinal resistance can be 

due to the ballistic nature of the short-channel device or a fortuitous arrangement of scatterers.  

To address the first issue, the longitudinal resistance of the device was measured in several 



 

 

multi-terminal configurations. The data for two such configurations are shown in Figure 4, 

along with the respective measurement configurations (results for two more configurations are 

presented in Supplementary text 4: Extended data and Landauer B�̈�ttiker formalism). The 

grey lines are the values of longitudinal resistance calculated for the helical QSH edge-modes 

using the Landauer-Büttiker formalism for quantum transport in multi-terminal devices. Note 

that, for chiral edge-modes, the expected values of the resistance for the configuration in 

Figure 4(a) is zero, and for that in Figure 4(b) is h/e2. The excellent match between the 

measured resistance and the predictions based on helical edge-modes establishes again that 

the system is indeed in the QSH phase near the primary Dirac point.  The second objection 

can be ruled out by noting that almost identical data were obtained over several thermal cycles 

of the device from room temperature to 20 mK (comparison of results from two cool-downs 

are presented in Figure S7). 

The RNL signal was measured as a function of the magnetic field, B applied perpendicular to 

the plane of the device. As B-field breaks TR symmetry, it should lead to a quenching of the 

QSH state and consequent decay of the non-local signal. However, the non-local signal can 

persist as long as 2Δ > 2EZ, where Δ is the energy-gap for the QSH state and EZ is the Zeeman 

energy39.  From the temperature dependence of the quantized conductance, Δ was estimated 

to be about 7 meV. This yields the maximum magnetic field range till which the quantization 

can persist to be Bmax~ ∆2/(mμBvF
2) = 0.1 T, which matches very well with our observations 

(see Supplementary text 6: Presence of non-local signal and edge transport).  Here m is the 

free-electron mass,  μB is the Bohr magneton and vF ~ 1.2 × 106 ms-1 the Fermi velocity.  

The measured quantization in longitudinal resistance in several different configurations 

(Figure 3,  Figure 4, and in Supplementary text 4: Extended data and Landauer B𝐮ttiker 

formalism) and the presence of a sizeable non-local signal at the primary Dirac point firmly 

establishes that the charge-carriers in this device are propagating via edge-modes.  

Theoretical calculations 

To get a quantitative estimate of the band structure, we construct a tight-binding model with 

SOI for the AB-stacked (Bernel stacking) BLG on WSe2 heterostructure, as used in our 

experimental investigations (for details see SI). Due to the difference in the electric polarization 

between the two layers for an applied electric field |D|  ≠ 0, the layer degeneracy in BLG is 

lifted, and a bandgap opens at the Fermi level.  This leads to the localization of carriers in 

conduction and valence band bands in different layers of the BLG.  The induced SOI is 

significant only for the band that accommodates the carriers localized in the layer closer to the 

single-layer WSe2. Hence in the corresponding band, the energy levels for the ↑ and ↓ spins 



 

 

split as seen in Figure S10 for D = 0.2 × 109 V/m and D = − 0.2 × 109. It is instructive to note 

that as one moves from negative to positive D, this band undergoes inversion and topological 

phase transition. For the other band, the splitting due to SOI is negligible.    

 

Next, we calculated the edge-modes with open boundary conditions in one direction - a zigzag 

edge on the boundary (see Supplementary text 5: Calculations of edge and bulk dispersion 

relations). For D  =  0, the dispersions of the edge-modes are extremely flat at the Fermi level 

with vF ~ 0 – these modes thus carry negligible current (Figure 4(e)).  With increasing |D|, the 

bulk becomes gapped, and dispersive edge states appear (Figure 4(d) and (f)). Each edge of 

the device now supports two such counter-propagating modes – one each for the up and the 

down spins. Thus, our calculations confirm the emergence of helical edge-modes of the QSH 

state in BLG with strong SOI (see Figure S10 in SI for detailed plots of band structure and 

density of states).  

 

Note that the bulk bandgap for BLG at |D| = 0.2 × 109 V/m is around 50 meV40 , which is much 

larger than the relevant energy scales in the problem - temperature (which ranges from 20 

mK-10 K), the energy-scale over which the edge states evolve (~1 meV) and ∆, the energy 

gap for the QSH state. This ensures that when the chemical potential is near the PDP at large 

|D| there is no contribution from the bulk of the BLG to electrical transport in the system. 

Discussions 

The presence of hBN aligned with the top layer of the BLG (with the consequent Moirè 

superlattice potential) suggests that the observed RNL  may also plausibly arise either from 

the Valley Hall (VH) or the Quantum Valley Hall (QVH) effect. The first scenario can be ruled 

out by noting that in the case of VH, transport proceeds through the bulk of the material 

resulting in the non-local resistance RNL scaling as ρ3, where ρ is the local 4-probe longitudinal 

resistivity Figure 4(c) shows that in our device scales linearly with ρ, where ρ is the local 4-

probe longitudinal resistivity, establishing again that transport in confined to the edges of the 

device41,42. Figure 4(c) shows that in our device scales linearly with ρ, establishing again that 

transport in confined to the edges of the device.  

In the case of the QVH effect43, the quantization in the measured resistance at zero magnetic 

fields has been observed primarily near the CDP, not the PDP39. On the contrary, the 

quantization results presented in this letter were all obtained at the PDP. Measurements of 

RNL in the presence of a perpendicular magnetic field shows that for B < Bmax, the non-local 

signal also appears only near the PDP (see Supplementary text 6: Presence of non-local 



 

 

signal and edge transport).  These, and the fact that the 4-probe conductance quantization 

observed in our device was 2e2/h; and not 4e2/h as should be the case for QVH for BLG (two 

modes originating from spin-degeneracy and two from layer quantum number) effectively rule 

out QVH as the origin of our observations.   

In summary, the experiments presented in this letter unambiguously demonstrate the QSH 

insulator phase in bilayer graphene/ single-layer WSe2 heterostructure. Our approach 

demonstrates magnetic field independent edge-state transport in an ultra-high mobility 

material system. It provides a novel and accessible platform to controllably perform 

measurements of spin-transport in two-dimensional systems in geometries analogous to those 

employed in quantum optics. It thus opens a new paradigm for utilizing the pseudospin degree 

of freedom in graphene for various pseudo-spintronics44 and quantum computation 

applications45, including quantum information and quantum processing. 
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Figure 1: Device structure and characterization. (a) A schematic of the device configuration. 

The co-laminated heterostructure of BLG (shown as honeycombed structure) and single-layer 

WSe2 (grey layer) is sandwiched between two hBN flakes, each of thickness ∼ 20 nm. (b) 

Room temperature Raman spectra of the WSe2 and BLG flakes. The peaks corresponding to 

single-layer WSe2 and BLG are marked. (c) Room temperature photoluminescence response 

of WSe2 flake – the peak at 1.65 eV establishes it to be a monolayer. (d) Contour plot of the 

4-probe longitudinal resistance as a function of the 𝑉𝑏𝑔 and 𝑉𝑡𝑔. The panel on the right shows 

the projection of the data on 𝑅 − 𝑉𝑏𝑔 plane, while the left-panel shows the projection of the 

data on the 𝑅 − 𝑉𝑡𝑔 plane. The data presented in this figure were acquired at 𝑇 =  20 mK and 

𝐵 =  0 T. (e) Logarithmic scale color plot of the 2-probe longitudinal resistance versus the 

displacement field |D| and the net charge carrier concentration, 𝑛. The asymmetry around the 

primary Dirac point (region marked by the dashed line) is a consequence of the fact that only 

one of the bands (either valence-band or conduction-band, depending on the direction of D) 

get split due to induced SOI. The data presented in this figure were acquired at 𝑇 =  8 K and 

B = 0 T.   

  



 

 

 

Figure 2: Non-local resistance and SHE. (a) Measured non-local resistance, 𝑅𝑁𝐿 plotted 

versus 𝑛 for 𝐷 =  1.2 × 108 V/m. Left inset: zoom-in of 𝑅𝑁𝐿 near the PDP. Right inset: 

schematic of the measurement configuration. (b) Contour plot of 𝑅𝑁𝐿 as a function of 𝑛 and 𝐷. 

The yellow dotted lines highlight the splitting observed in the 𝑅𝑁𝐿 peak at large |𝐷|. (c)  A plot 

of 𝑅𝑥𝑦 measured at 𝐵 = 0.  For the data plotted in solid blue line, the current is sourced 

between contacts 1 and 4 while the voltage drop is measured between contacts 6 and 2. For 

the data plotted in solid red line, the current and voltage contacts are interchanged. The 𝑅𝑥𝑦 

arises from SHE (for details see main text). The data were collected at 𝐵 = 0 and 𝑇 =  20 mK.  

 



 

 

 

Figure 3: Quantization of longitudinal resistance at 𝑩 = 𝟎. (a) Quantization of the 4-probe 

resistance to ℎ/(2𝑒2)  at several values of 𝑉𝑡𝑔 (keeping 𝑉𝑏𝑔 fixed) such that the fermi level lies 

in the bulk bandgap. The inset is a schematic of the 4-probe measurement configuration - the 

red and green lines represent the spin-filtered edge-modes.  (b) Quantization of the 2-probe 

resistance to 3ℎ/(2𝑒2), the data were acquired simultaneously with the data presented in (a). 

The inset is a schematic of the 2-probe measurement configuration (c) Plot of 4-probe 𝑅 

versus 𝑛 and |𝐷|. The projection on the 𝑅 − 𝑛 plane shows that the quantization is around 𝑛 =

0, while the projection on the 𝑅 − 𝐷 shows the quantization over a range of values of the 

displacement field. (d) A plot of 2-probe 𝑅 versus 𝑛 and |𝐷|. The projection on the 𝑅 − 𝑛 plane 

again shows that the quantization is around the PDP. All the data were acquired at T = 8 K 

and 𝐵 = 0 T (quantization obtained at 20 mK and for other cool-downs are presented in the 

SI). 

  



 

 

 

 

Figure 4: Quantization of longitudinal resistance at different multi-probe measurement 

configurations. (a) Quantization of 𝑅 to 2ℎ/(3𝑒2) in a 3-probe measurement geometry – the 

corresponding measurement configuration is sketched in the inset. Note that for chiral edge 

states, in this configuration, 𝑅 would equal zero. (b) Quantization of 𝑅 to 5ℎ/(6𝑒2) – the 

corresponding measurement configuration is shown in the inset. For this measurement 

configuration, chiral edge states would yield 𝑅 =   ℎ/𝑒2.  (c) Plot of 𝑅𝑁𝐿 versus the local 

longitudinal resistivity 𝜌𝑙𝑜𝑐𝑎𝑙 measured at 𝐷  =   − 1.2  × 108 V/m. The filled red circles are the 

measured data points, the solid blue line is a fit to 𝑅𝑁𝐿  ∝  𝜌𝐿. The solid green line represents 

a plot of 𝑅𝑁𝐿  ∝  𝜌𝐿
3. The linear dependence of the non-local resistance on the local resistivity 

indicates that edge-transport dominates in the system. The lower panel shows the calculated 

spin splitting of the edge-modes for (d) 𝐷 = − 0.2  × 109 V/m, (e) 𝐷 =  0 V/m, and (f) 𝐷 =

 0.2   × 109 V/m.  
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Supplementary text 1: Device Fabrication and characterization 
 

Device fabrication 

 
Graphene WSe2 heterostructure encapsulated with hBN flakes were fabricated following a 

standard dry transfer technique46,47,48. Flakes of hBN (~15-40nm), bilayer graphene (BLG), 

and single-layer WSe2 (SL-WSe2) were mechanically exfoliated on SiO2/Si wafers. BLG was 

identified from Raman spectroscopy, while and the thickness of the WSe2 was determined 

using both Raman spectroscopy and photoluminescence, as described in the main text. The 

2D-peak of graphene could be spectrally decomposed into four Lorentzians23 with peak 

frequencies 2639, 2675, 2693, and 2709 cm-1  as shown in Figure S5(c). All the flakes - hBN, 

BLG, and WSe2 were staked using the “hot pick-up” technique21. The transfers were done in 

a customized home-built transfer set-up based on a mechanically controllable XYZ stage using 

a long working distance 50X-objective under an optical microscope.   

To assemble the flakes in the desired sequence, Polydimethylsiloxane (PDMS) was coated 

with PolyBisphenol A Carbonate (PC) and mounted on the glass slide clamped to the 

micromanipulator. The exfoliated hBN was first picked on PC at 90o C, then BLG was picked 

up by hBN 90oC with its edge aligned with that of the hBN to achieve Moire superlattice.  This 



 

 

was followed by sequential pick up of SL-WSe2 and hBN. Next, the full assembled stack was 

then transferred on to SiO2/Si++ wafer at 180oC.The stack was cleaned in chloroform (CHCl3) 

followed by acetone and isopropylalcohal (IPA) for removing PC residue. The wafer was 

coated with the electron beam resist poly(methyl methacrylate) (PMMA) for patterning the 

contacts. After writing the contacts by electron-beam lithography, the patterned contacts were 

exposed to reactive ion etching to achieve 1D edge contacts46. Metallic contacts (5 nm Cr/60 

nm Au) were made using thermal evaporation, followed by lift-off in warm acetone. Each 

device was etched into a Hall bar with six contacts - a schematic of the device structure with 

the probes (not to scale) is shown in Figure S5(a). The full structure was then encapsulated 

by another hBN (~25-40nm) and metallic (5 nm Cr/ 60 nm Au) top gates defined by electron-

beam lithography. An optical image of one such complete device is shown in Figure S5(b). 

The mobility of the device was found using equation σ = neμ, where σ  is electrical conductivity  

n is charge number density, e is the electronic charge, and μ is the mobility. The mobility fit is 

shown in Figure S5(d). The calculated mobility of the sample was  ~ 1,12,000 cm2V-1s-1 for 

holes and ~ 93,000 cm2 V-1s-1 for electrons. 

Supplementary text 2: Hofstadter’s butterfly and Moir�̀� superlattice    

In the presence of both a periodic potential and a perpendicular magnetic field, the single-

particle energy spectra show a recursive spectrum26,27,28. This spectrum is due to the interplay 

between the length scales associated with periodic potential (which in our case is the 

wavelength of the Moirè potential) and the magnetic length scale lB = (ℏ/eB)1/2. This 

recursive spectrum is known as Hofstadter’s butterfly29,30 ,3131,32 and has been observed earlier 

in graphene superlattices26.  

The 4-probe longitudinal magnetoconductivity (σxx) was measured by varying the magnetic 

field and the back-gate voltage. The data are plotted in Figure S9. In the plot, the x-axis is the 

filling factor ν, and the y-axis is  ϕ0/ϕ, which is the magnetic flux penetrating the unit cell of 

the superlattice26. ϕ is given by B⊥ × A, B⊥ is the externally applied magnetic field 

perpendicular to the plane of the sample of area A and ϕ0 = h/e. The bright lines parallel to 

the x-axis at ϕ0/ϕ = 2, 3, 4, 5, 6 are independent of the filling factor and result from the 

formation of the fractal states in the presence of the magnetic field. The colour contrast lines 

parallel to the y-axis at ν = ± 4, ± 8, ±12, ±16 are quantum hall plateaus for the BLG49,50. 

Figure S6(a) is a contour plot of logarithmic-scale longitudinal resistance conductivity σxx(B) 

as a function of the normalized carrier density (n/n0) and the normalized magnetic flux (ϕ/ϕ0) 

threading one Moirè super-lattice cell. Here, n0 is the number density required to fill the one 



 

 

Moirè  miniband, ϕ = BA with B the applied perpendicular magnetic field and A  the area of 

one Moirè  unit cell, ϕ0 = h/e is the quantum flux quanta, h is Planck constant, and e the 

elementary charge. The measured dispersion of σxx(B) is characteristic of quantum Hall effect 

of BLG along with Landau-fan diagram of Hofstadter’s butterfly; the latter arising due to the 

presence of a Moirè super-lattice potential2929,30,31. The electron density ns required to fill a 

Moirè mini-band is related to the angle θ between the hBN and the BLG26.  The angle θ is 

related to the charge carrier density through the relation26 ns =
8θ2

√3a2, where a = 0.246 nm is the 

graphene lattice constant. Using ns = 
CBG|(VCDP−VPDP)|

q
, the angle was found to be  θ =  0.910. 

Similarly, using the data of top gate scan, the angle was calculated to be  θ =  0.930. 

Supplementary text 3: Effect of the SOI induced by WSe2 in BLG  

Determination of splitting in Fermi surface from SdH oscillations  
 

 Figure S6(b) shows the plot of σxx(B) (with the background subtracted) as a function of the 

inverse of the applied magnetic field, 1/B (measured for n = 2.3 × 1016 m2 and |D| = 3.7 × 108  

Vm-1). There is a clear beating pattern in the oscillations of σxx(B) (see also the splitting in 

the Fourier peaks plotted in Figure S6(c) indicating the splitting of the Fermi surface into two 

very closely-spaced ones. This is a consequence of the band-structure modification of BLG 

due to proximity-induced SOI51. 

Weak anti-localization in BLG 
 

Quantum interference of electronic wavefunctions leads to corrections to the Drude-

Boltzmann conductivity. In bilayer graphene, which has a berry phase of 2π, this leads to 

weak-localization in low-field magnetoconductance. On the other hand, when the BLG is 

placed in close physical contact with a TMDC, due to proximity induced spin-orbit 

coupling52,53,54,55,56,57, weak anti-localization (WAL) is observed. In Figure S8Figure S8 is 

plotted the change in conductance of our device as a function of the magnetic field, Δσ =

σ(B) − σ(0). As expected, we observe WAL in our BLG/WSe2 device, signifying strong 

proximity induced spin-orbit coupling in the BLG. The WAL data was fitted using the HLN 

equation58: 

∆σ(B) = σ(B) − σ(0) = −
e2

2πh
[F(

τB
−1

τφ
−1) − F(

τB
−1

τφ
−1 + 2τasy

−1 ) − 2F(
τB
−1

τφ
−1 + τasy

−1 + τsym
−1 )] 



 

 

Here, F(x) = ln(x) + Ψ(
1

2
+

1

x
), with Ψ(x) the digamma function, τB

−1 = 
4eDB

ℏ
 , D is the diffusion 

constant, τφ
−1 is the coherent scattering rate, τasy

−1  is the scattering rate due to the spin-orbit 

coupling term that breaks the inversion symmetry about the z-axis. τsym
−1  is the scattering rate 

due to SOI that preserves the inversion symmetry about the z-axis. The fit is shown in Figure 

S8 by the red line. From the fit, the spin scattering time τsym was found to be 23 ps.  

Supplementary text 4: Extended data and Landauer B�̈�ttiker formalism 

Reproducibility of the 2-probe and 4-probe quantization data 
 

The quantization of the 4-probe 2-probe longitudinal resistance were measured to be 

reproducible over different cool downs. Figure S7(c) shows the four-probe longitudinal 

resistance as a function of top gate voltage for different back-gate voltages at ~20 mK for the 

first cool down. The maxima in R is at number density  n~0 and displacement field  

0.47 × 109  V m−1 < |D| < 0.54 × 109 Vm−1. It was found to be quantized to h/(2e2). At these 

values of n and D, the chemical potential lies in the bulk bandgap, and we are probing purely 

edge state. Figure S7(d) is the data at the same temperature from another cool down – in this 

case also the quantization of the 4-probe longitudinal resistance to h/(2e2) is seen.  

Measurements in multi-terminal configurations  
 

We measured the resistance of the device as a function of gate voltage in different 

configurations, the data are plotted in Figure S7(b). We used Landauer Büttiker (LB) 

formalism59 of quantum transport to calculate the resistance in these measurement 

configurations considering helical edge. The calculations were done by considering a 6-

terminal hall device that mimics our device geometry – a schematic of the device structure 

with the probes (not to scale) is shown in Figure S7(a). For a multiprobe conductor, the net 

current flowing into the ith contact to all other contacts is given by:  

Ii =  ∑ (Tj←iμi − Ti←jμj)j =  
e2

h
∑ (Mj←iVi − Mi←jVj)j  ---(1) 

where μi is the potential of the ith   contact and Mj←i is the number of modes going from contact 

i to j. Equation (1) can be written in a matrix form as: 

(

 
 
 

I1
I2
I3
I4
I5
I6)

 
 
 

=  
e2

h

(

  
 

2
−1
0
0
0

−1

   

−1
2

−1
0
0
0

   

0
−1
2

−1
0
0

   

0
0

−1
2

−1
0

   

0
0
0

−1
2

−1

   

−1
0
0
0

−1
2 )

  
 

(

 
 
 

V1

V2

V3

V4

V5

V6)

 
 
 

 ---(2) 



 

 

Below we use solve Equation (2) for each configuration and compare the results with the 

experimental observations 

Four-probe longitudinal resistance: 

 

For the measurement of 4-probe longitudinal resistance, the current is injected from contact 

1, contact number 4 is grounded, and all other contacts are the voltage probes. The voltage 

matrix in this case is: 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =  
h

e2
I

(

 
 

2 −1 0
−1 2 −1
0
0

−1

−1
0
0

2
0
0

     

0 −1
0 0
0
2

−1

0
−1
2 )

 
 

−1

(

 
 

1
0
0
0
0)

 
 

 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =
h

e2
I

(

 
 

1.5
1.0
0.5
0.5
1.0)

 
 

 

The 4-probe resistance is: R23,14 =  R65,14 =
V2−V3

I
=

1

2

h

e2. As shown in Figure S7(b) by solid 

green line (also in Figure 4 of the main text), these values match exceptionally well with our 

experimental results measured result over a range of electric field near the primary Dirac point, 

n ≈ 0.  

Two-probe longitudinal resistance: 

 

For current injected from contact number 3 and contact number 4 grounded, equation 2 

becomes:   

 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =  
h

e2
I

(

 
 

2 −1 0
−1 2 −1
0
0

−1

−1
0
0

2
0
0

     

0 −1
0 0
0
2

−1

0
−1
2 )

 
 

−1

(

 
 

0
0
1
0
0)

 
 

 

(

 
 

V1

V3

V4

V5

V6)

 
 

 =
h

e2
I

(

 
 

0.500
0.667
0.833
0.166
0.333)

 
 

 



 

 

R34,34 =
V3 − V4

I
=

5

6

h

e2
 

This matches very well with the measured result at n = 0 shown in Figure S7 (b) by the solid 

red line.  

Similarly, for the set of two probes 1 and 4, equation 2 can be written as: 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =  
h

e2
I

(

 
 

2 −1 0
−1 2 −1
0
0

−1

−1
0
0

2
0
0

     

0 −1
0 0
0
2

−1

0
−1
2 )

 
 

−1

(

 
 

1
0
0
0
0)

 
 

 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =
h

e2
I

(

 
 

1.5
1.0
0.5
0.5
1.0)

 
 

 

This gives R14,14 =
V1−V4

I
=

3

2

h

e2. The results are plotted in Figure S7(b) by the solid black line.  

Resistance in multi-probe configurations: 

 

The blue line shown in Figure S7(b) is the result of measurements in the following 

configuration: voltage measured between contacts 1 and 3 by injecting current in contact 6 

and grounding contact 4. From equation 2, we can again write the matrix equation as follows: 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =  
h

e2
I

(

 
 

2 −1 0
−1 2 −1
0
0

−1

−1
0
0

2
0
0

     

0 −1
0 0
0
2

−1

0
−1
2 )

 
 

−1

(

 
 

0
0
0
0
1)

 
 

 

(

 
 

V1

V2

V3

V5

V6)

 
 

 =
h

e2
I

(

 
 

1.0000
0.6667
0.3333
0.6667
1.3333)

 
 

 

From the above matrix, the resistance can be extracted to be:   

R13,64 =
V1 − V3

I
=

2

3

h

e2
 

The measured data are plotted in solid blue line in Figure S7(b).  



 

 

Thus, in several different configurations, the measured resistance matches exceptionally well 

with the value expected for helical edge-modes with one set of counter-propagating 1-D 

channels at each edge. 

Supplementary text 5: Calculations of edge and bulk dispersion relations 

 

We construct a tight-binding model with spin-orbit coupling (SOI) for the AB-stacked (Bernel 

stacking) BLG on WSe2 heterostructure. The model Hamiltonian is: 

H = HTB + HSOC                         (1) 

Here HTB gives the tight-binding model for bilayer graphene, and HSOC is the SOI term. HTBis 

given by: 

HTB = ∑ tciσ,1
† cjσ,1  +  tciσ,2

† cjσ,2<ij>,σ + t′ciσ,1
† cjσ,2 + h. c                   (2) 

where ciσ,γ
†

 andciσ,γare creation and annihilation operators at lattice site i  with σ and  γ indices 

representing spin and layer, respectively. t(t′) is the nearest neighbor intra(inter)-layer 

hopping parameter, ciσ,γ
†

 is a spinor, decomposed in the sublattice basis ciσ,γ
† = aiσ,γ

† biσ,γ
†

. So 

we obtain 

HTB = ∑ t(aiσ,1
† bjσ,1 + aiσ,2

† bjσ,2 ) <ij>,σ + t′aiσ,1
† bjσ,2 + h. c            (3) 

where aiσ,γ
†

 and ajσ,γ(biσ,γ
†

 and bjσ,γ) are creation and annihilation operators at sublattice site 

a(b). 

We include a mirror-symmetric SOI via a spin-dependent second nearest neighbor hopping 

term 

HSOC = iλSO,γ ∑ υijciσ,γ
† szcjσγ,<<i,j≫,σ,γ        (4) 

Where λSO is spin-orbit coupling strength, sz is given by Pauli spin matrix indicating the spin 

(±σz). vij = 
2

√3
(𝐝𝐢 × 𝐝𝐣), where 𝐝𝐢 and 𝐝𝐣  are the unit vectors in the direction of two bonds 

that the electron traverses in going from the site I to site j. 

In our case of BLG /WSe2 heterostructure, earlier studies have suggested the appearance of 

a strong SOI in the graphene layer next to WSe2  and a weaker SOI in other graphene layers14. 

We study the effect of an applied transverse electric field on the heterostructure by including 

positive and negative chemical potential shifts in the two graphene layers. If V is the voltage 



 

 

difference due to the applied electric field between two layers, then our tight-binding 

Hamiltonian becomes: 

HTB = ∑ t(aiσ,1
† bjσ,1 + aiσ,2

† bjσ,2 ) 

<ij>,σ

+ t′aiσ,1
† bjσ,2 + h. c + ∑

V

2
i,σ

(aiσ,1
† aiσ,1 + biσ,1

† biσ,1

− aiσ,2
† aiσ,2 − biσ,2

† biσ,2 ) − − − − − − − − − − − − − −(5) 

To get the band structure for our model from eq. 1 together with eq. 5, we first do a Fourier 

transformation. In k-space our Hamiltonian takes the form: 

H = C𝐤
†H(𝐤)C𝐤,                               (6) 

with  

C𝐤
† = (a𝐤↑1

† b𝐤↑1
† a𝐤↓1

† b𝐤↓1
† a𝐤↑2

† b𝐤↑2
† a𝐤↓2

† b𝐤↓2
† )            (7) 

We write  

H(𝐤) =  [
H1 D

D′ H2
],                     (8) 

H1 = 

[
 
 
 
 ϵSOC

1 −
V

2
     0                      ε𝐤                    0

0
ε𝐤

0

−ϵSOC
1 −

V

2

0
ε𝐤

        0

−ϵSOC
1 −

V

2

0

                ε𝐤

               0

ϵSOC
1 −

V

2 ]
 
 
 
 

              (9) 

H2 = 

[
 
 
 
 ϵSOC

2 +
V

2
     0                      ε𝐤                    0

0
ε𝐤

0

−ϵSOC
2 +

V

2

0
ε𝐤

       0

−ϵSOC
2 +

V

2

0

                ε𝐤

               0

ϵSOC
2 +

V

2 ]
 
 
 
 

              (10) 

D = [

0    0 0 0
0     0 0 0
0 −t′ 0 0
−t′ 0 0 0

]           (11) 

Where D′ is the transpose of D, and 

ε𝐤 = −t(2exp(
−iky

2√3
) cos

kx

2
+ exp(

iky

√3
)),               (12) 

ϵSOC
i =  λSO,i (2 sin kx − 4 sin

kx

2
cos

√3ky

2
),                   (13) 



 

 

Diagonalizing the matrix H(𝐤), we get the band structure for our model (see Figure S10). In 

all our calculation we used t = 2.78eV, t′ = 0.37eV, λSOC,1 = 2meV  and λSOC,2 = 20μeV. 

For bulk band structure, we focus our study on the four bands nearest to the Fermi level around 

the K point (Figure S10(c-e) first two rows). For no applied electric field (first row) we find from  

Figure S10(d) that the top and bottom bands have band weight contributions from the high-

SOI layer, and consequently, they are spin-split. The middle two bands are nearly degenerate 

around the K point because of their band weight contribution is from the low-SOI layer. As we 

apply an electric field, the band weight gets redistributed, and for positive field Figure S10(e)), 

the upper two layers are spin-split as their band weight contribution comes from high SOI layer 

while the lower two bands are almost degenerate. For negative electric fields, (Figure S10(c)) 

opposite effect is observed. Similar observations were reported in an earlier DFT study14. We 

show our edge state calculation in the third row of Figure S10(c–e). We can see the presence 

of edge states in the bulk bandgap region. For no applied electric field, the edge-states are 

nearly flat, indicating that they carry negligible current. For finite |D|, these states become 

dispersive and can carry current. We show the spin splitting of the edge states in the fourth 

row of Figure S10, which shows the presence of two counter-propagating states with an 

opposite spin at each edge.   

Supplementary text 6: Presence of non-local signal and edge transport  

 

Ohmic contribution to non-local signal: 

 

For electronic systems which have the finite Berry curvature, besides the conventional band 

velocity vB (=  
1

ℏ

∂E

∂k
 ), the charge carriers gain an anomalous velocity given60 by 

d𝐩/dt  ×  ΩBerry.This anomalous velocity does not depend on the charge degree of freedom; 

instead, it is related to a spin or pseudospin degree of freedom - like the site-, layer- or valley-

degree of freedom. This anomalous velocity will lead to a non-local signal55,61,62 in these 

systems. However, in addition to the topological origin, there can also be some ohmic 

contribution to the non-local signal61,62,63. The value of this ohmic component is generally 

minimal compared to the non-local signal of topological one. The measured non-local signal 

and calculated ohmic contribution are plotted in Figure S11(a) – one can see that the ohmic 

contribution to the signal is indeed very small as compared to the total measured RNL. This 

eliminates ohmic diffusive current as the origin of the observed non-local signal in our 

measurements.   



 

 

B-field dependence of 𝐑𝐍𝐋: 

 
The non-local resistance RNL signal was measured as a function of the magnetic field, B 

applied perpendicular to the plane of the device. As B-field breaks TR symmetry, it should 

lead to a quenching of the QSH state and consequent decay of the non-local signal. However, 

the non-local signal can persist as long as39,64 2Δ > 2EZ, where Δ is the energy-gap for the 

QSH state and EZ is the Zeeman energy given by Ez(B)  =  0.5g∗μBB.  Here g∗ is the effective 

g-factor and μB is the Boltzmann constant.  The effective g-can be estimated from g∗ =

(2mvF
2)/∆ , where m is the mass of the free electron and vF is the Fermi-velocity in the band. 

Thus, the maximum perpendicular magnetic field till which one would expect the QSH state to 

persist is given by: 

Bmax  =  
∆2

mμBvF
2 

From measurements of the temperature dependence of the 4-probe conductance, ∆ was 

estimated to be approximately 7 meV. Using   𝑣𝐹   =  1.2 × 106 ms-1, one gets 𝐵𝑚𝑎𝑥 ~ 0.  1 T. A 

plot of the B-field dependence of the quantized 4-probe longitudinal resistance is shown in 

Figure S11(b). One can see that the quantization breaks down beyond about 0.1-0.2 T 

establishing the correctness of the estimate of ∆.  Measurements of 𝑅𝑁𝐿 in the presence of a 

perpendicular magnetic field show that the non-local signal appears only near the PDP for 

𝐵 ∼ 0 (Figure S11(c)). On the other hand, 𝑅𝑁𝐿 is completely absent at the CDP over the field 

range −0.1 𝑇 <  𝐵  <  0.1 𝑇 – beyond this field range Quantum Hall sets in.   

  



 

 

 

 

 

Figure S5: (a) Optical image of the device (in 100X magnification) after hall bar etching and 

metallization of the contact pads. (b) Optical image of the device (in 100X magnification) after 

adding the top gate. (c) Spectral decomposition of the 2D peak of BLG showing the four 

Lorentzian components. (d) The solid blue line indicates the measured 4-probe conductance 

plotted versus the charge carrier number density. The dotted red lines are linear fits to the 

equation 𝜎 = 𝑛𝑒𝜇. The data were taken at T=20 mK and B= 0 T.  



 

 

 

 

Figure S6: Lifting of the degeneracies. (a) A logarithmic scale plot of the 4-probe longitudinal 

conductivity 𝜎𝑥𝑥 as a function of charge-carrier density 𝑛 (normalized by  𝑛0 - the number 

density required to fill the one Moir�̀�  miniband) and the flux 𝜙 (normalized by 𝜙0 = ℎ/𝑒 - the 

quantum flux quanta) threading the device.  In addition to the usual Landau fan diagram 

emanating from 𝑛/𝑛0 = 0, one can see two additional sets of fans originating at 𝑛/𝑛0 = ±0. 

These are the Landau levels corresponding to the Moir�̀� sub-bands. (b) Shubnikov-de Haas 

(SdH) oscillations plotted versus 1/𝐵 - a beating pattern can clearly be seen. (c) Fourier 

transform of the SdH oscillations showing the appearance of two closely spaced peaks.  All 

the data were acquired at 𝑇 =  20 mK. 

  



 

 

 

 
 

Figure S7: (a) Schematic of 6-terminal device showing the numbering of the contacts. (b) 

Resistance measured in different configurations plotted versus charge carrier number 

density. Black line: R14,14, green line: R23,14, red line:  R34,34 and blue line: R13,64.  In each 

case, the notation Rij,kl represents a configuration where the current is injected at the kth 

contact, lth contact is grounded, and the voltage drop is measured between the ith and the jth 

contacts. The grey dotted line in each case is the value expected for helical QSH modes. 

(c) Quantization of the 4-probe resistance to ℎ/(2𝑒2) at several values of 𝑉𝑡𝑔 for fixed value 

of 𝑉𝑏𝑔 for the first cool down. (d)  Quantization of 4 probe resistance to ℎ/(2𝑒2) at several 

values of 𝑉𝑡𝑔 for fixed value of 𝑉𝑏𝑔 for the second cool down. The data in (c) and (d) were 

all taken at 𝑇 = 20 mK and at 𝐵 = 0. 

  



 

 

 

Figure S8:  Weak antilocalization fit to the negative magnetoconductance – the measurements 

were done at 𝑇 = 20 mK. The measured data are shown in blue filled circles; the solid red line 

is the HLN fit to the data. 



 

 

 
Figure S9: Fractal pattern observed in longitudinal conductivity in a perpendicular magnetic 

field. In the plot, the x-axis is the filling factor 𝜈, and the y-axis is  𝜙0/𝜙 which is the magnetic 

flux penetrating the unit cell of the superlattice. 𝜙 is given by 𝐵⊥ × 𝐴, 𝐵⊥ is the externally 

applied magnetic field perpendicular to the plane of the sample of area 𝐴 and 𝜙0 = ℎ/𝑒. The 

bright lines parallel to the x-axis at 𝜙0/𝜙 = 2, 3, 4, 5, 6… are independent of the filling factor 

and result from the formation of the fractal states in the presence of the magnetic field. The 

colour contrast lines parallel to the y-axis at 𝜈 = ± 4, ± 8, ±12, ±16 are quantum hall plateaus 

for the BLG. 

 



 

 

 
 

Figure S10: (a) Bulk band structure and (b) edge modes for BLG/WSe2 heterostructure. 

Bulk band structure and edge modes plotted near the 𝐾-point for applied displacement field 

(c) − 0. 2 V/nm, (d) 0 V/nm, and (e) 0.2 V/nm. The first row shows the bulk band structure 

with band weight contribution from different layers zoomed around K point as indicated by 

a small square box in (a). The second row shows the spin-splitting of the bulk bands around 

the 𝐾 point. The third row shows zoomed edge states, as indicated by a small square box 

in (b). The fourth row shows the spin splitting of the edge states.  



 

 

 

 
 

Figure S11: (a) Plot of non-local resistance versus top-gate voltage Vtg. The solid red line 

is a plot of the estimated maximum ohmic contribution to 𝑅𝑁𝐿 from diffusive transport. (b) 

Magnetic field dependence of the 4-probe quantized resistance for 𝐵 perpendicular to the 

device plane.   (c) A plot of 𝑅𝑁𝐿 versus 𝐵 and 𝑉𝑏𝑔.     
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