
AA 372

Homework III
Please submit your codes together with your write-ups. Please email/meet

me if something is unclear.

1. Romberg Integration of improper integrals: Numerically inte-
grate the following equation:

I =
∫ 1

−∞

sin x

x
dx. (1)

Since (sin x/x) is symmetric about x = 0,

I = I1 + 2I2, (2)

where

I1 =
∫

∞

1

sin x

x
dx, & I2 =

∫ 1

0

sin x

x
dx. (3)

Now we should evaluate I1 and I2 separately. Its simple to evaluate I2
via the mid-point rule (we do not want to use the trapezoidal rule here
because function evaluation at x = 0 is numerically ill-posed) because
we have to integrate over a finite interval, unlike in I1. Use Romberg’s
method to evaluate I2 correct to 8 decimal places.

Recall that the sinc function (sin x/x) has zeros at x = nπ. The range
2nπ < x < (2n + 1)π contributes positively to the integral and (2n −
1)π < x < 2nπ contributes negatively. The absolute value of the area
contributed by the interval [nπ, (n + 1)π] decreases with x due to 1/x
factor in the integrand. However, the integrand decreases rather slowly
with increasing x. Therefore we need to integrate to large values of x
to get I1 to several significant digits.

Plot the sinc function sin x/x and approximate I1 as

I1,n =
∫ (2n+1)π

1

sin x

x
dx. (4)

Evaluate I1,n using the mid-point method combined with Romberg for
n = 10, 100, 1000, 10000. How much do the results differ for dif-
ferent n? Can you use Richardson extrapolation to estimate how I1,n
varies with n? Hint: Assume that I = In + cn−α + dn−β + ... (where
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c, d, α, β are arbitrary constants); find α, β, etc. by taking appropri-
ate combinations of I1,n, I1,2n, etc. Can you get a good estimate of I1
by combining I1,n for several n’s? Try to obtain I1 correct to 8 decimal
places using above hints. Now calculate the integral by combining I1
and I2 via Eq. 2.

I mentioned in the class that for improper integrals its better to change
variables such that the integral is over a finite domain. You can change
the variable to s = 1/x and

I1 =
∫ 1

0

sin(1/x)

x
dx,

however the integrand oscillates wildly near x = 0 and this integral
is not that easy to evaluate (try this!) because sin(1/x) is unresolved
close to x = 0. Therefore, the tricks mentioned in class should not be
used blindly; its best to plot the integrand and have a feel for how the
integral behaves throughout the domain.

Recall that
∫

∞

0 (sin x/x)dx = π/2; this is obtained via contour integra-
tion in the complex plane. So, to obtain result good to 8 decimal places,
you can combine this result with I2 which is evaluated much more eas-
ily than I1. You can verify if your answer is correct to 8 deicmal places
using this fact.

2. MonteCarlo Integration: Find the volume of the domain formed
by the intersection of a sphere of radius 2 and a cylinder of radius 1
passing through the center of the sphere. The equation for points lying
within the sphere is x2 + y2 + z2 < 4 and the equation for points lying
within the cylinder is x2 + y2 < 1. The volume is given by the integral

I =
∫ ∫ ∫

V
dxdxdz, (5)

where the integral is over the domain of interest (satisfying x2+y2+z2 <
4 & x2 + y2 < 1). We can consider a cube of side 4 circumscribing the
sphere and generate random numbers representing x, y, z (even if the
numbers are not random we will get the right answer, as long as they
are uniformly distributed within the cube) uniformly distributed over
the cube. The integral is given by

I ≈ V 〈f〉 ± V

√

〈f 2〉 − 〈f〉2

N
, (6)
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where 〈f〉 is the average value of f (recall f = 1 for points within the
desired domain and zero outside it) over the known volume V (=64 in
case of a cube of side 4) sampled with N uniformly distributed random
numbers. The default random number generators in C, Fortran, and
MATLAB are not good enough to get accurate answers. Use the NR
subroutine ran2 for generating random numbers.

Another way of evaluating the integral is

I =
∫ ∫ ∫

V
r2dr sin θdθdφ =

∫ ∫ ∫

V
d(r3/3)θd(cos θ)dφ, (7)

where you can calculate 〈f〉 either by choosing random points uniformly
distributed in r, θ and φ (in that case f = r2 sin θ if the random point
lies within the volume of interest and f = 0 otherwise) or by choosing
points uniformly distributed in r3/3, cos θ and φ (in this case f = 1 if
the random point lies inside the domain of interest and f = 0 other-
wise). Notice that in these cases the volume of the domain over which
we are distributing the random numbers is sphere of radius 2. Which
of the three methods (choosing a cube, sphere with points uniformly
distributed in (r, θ, φ), or sphere with points uniformly distributed in
r3/3, cos θ and φ) is better and why? Hint: recall that the error in the
MonteCarlo method is given by the second term on the RHS of Eq.
6. You should calculate this expected error in each case and see if this
gives a good error estimate (i.e., are you within one standard deviation
of the correct answer?).

An even better choice of domain is the cylinder going from z = −2 to
2. We know the volume of this cylinder and most of the points will
contribute to the integral and the error will be much smaller (why?).
Implement this and compare with previous choices. Integral in this
case is

I =
∫ ∫ ∫

V
dφdzd(R2/2). (8)

Plot the volume as a function of number of random points. Does the
result converge to a constant value with increasing N , as it should if the
random numbers are good enough (i.e., really uniformly distributed).
You can analytically calculate this integral and compare your numerical
results.
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3. π: Calculate π using the Monte Carlo method. Assume a 2-D square
domain [0, 1] × [0, 1]. The value of π is given by four times the area
of the quarter-circle. Using a good random number generator (e.g.,
ran2) calculate the value of π for N × N uniformly distributed guess
points (N = 2k, where k = 1, 2, ..., 13). Plot the value of π as a
function of number of guess points. Calculate the error estimate of
the Monte Carlo method and compare with the actual error. Does it
go like N−1, as expected (the expected trend is N−1 and not N−1/2

because there are N2 sampling points)? Bonus: Do the same exercise
in 3-D (by considering 1/8th of a unit sphere) and show how the error
converges with number of grid points. Which method (2-D or 3-D) is
more efficient?
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