
AA 372: Numerical &
Statistical Techniques

Prateek Sharma (prateek@physics.iisc.ernet.in)
Office: D2-08

Office Hours: Fri. 2-3 pm (I expect to see you!)

mailto:prateek@physics.iisc.ernet.in
mailto:prateek@physics.iisc.ernet.in

Two parts

• Numerical Analysis by me at IISc

• Statistical Methods by Desh at RRI

Organization

Syllabus:
http://ps-teaching.wikispaces.com/AA+372+Syllabus

I’ve created a wikipage for this course:
http://ps-teaching.wikispaces.com/

I’ll upload slides/problem-sets here
grading: weekly homeworks, project

http://ps-teaching.wikispaces.com/AA+372+Syllabus
http://ps-teaching.wikispaces.com/AA+372+Syllabus
http://ps-teaching.wikispaces.com
http://ps-teaching.wikispaces.com

some basics about how
modern computers

work

Computer Architecture

both instructions & data sent by input devices to memory
loaded from memory to CPU registers

Instruction Set Architecture (ISA): machine language instruction set,
word size, registers

hard disk

RAM

decodes instructions

performs calculations

bitwise logic ops.
AND, OR, NOT,XOR

integer arithmetic ops.
add,subtract,multiply,divide

bit shifting (* or / by 2n)

ALU

FPU: floating point unit

+,-,* fast / slow and so are exp, cos, & other transcendental fns.
commonly used function are coded in machine language

Hierarchical Memory

in ALU

L1, L2, L3 cache
close to ALU

shortest access time
highest price
smallest size

implication:
try to reuse cache

Cache Utilization
data stored in memory as a 1-D array

column major in fortran

 do j = 1, jmax
 do i = 1, imax
 a(i,j) = float(i-j)/float(i+j)
 enddo
 enddo

faster than
 do i = 1, imax
 do j = 1, jmax
 a(i,j) = float(i-j)/float(i+j)
 enddo
 enddo

sometimes compilers do these optimizations (-O3)

row major in C!

Latency & Bandwidth
minimum time to do an action

(access time)
rate of action once action is initialized

read/write in MB/s

ns

better to minimize memory access due to latency!

L1 cache ~ 5 times faster than L3 cache ~5 times faster than RAM!

Nehalem processor:
L1~64 kB
L2~2 MB
L3~30 MB

Clock Rate
clock coordinates
different actions

modern CPUs upto 4 FLOPs per cycle:
2.4 GHz => 4x2.4 109 ~1010 FLOPs/cycle/core (10 GF)

if the cluster has 80 cores => 800 GF machine

this is not the only parameter! since data access is more
time-consuming (40 ns) than FLOPs (0.1 ns); having larger RAM/

cache/interconnects more important than just clock speed

Architecture level Parallelism

five-stage pipeline in a RISC (IF = Instruction Fetch, ID = Instruction Decode,
EX = Execute, MEM = Memory access, WB = Register write back)

instruction level parallelism

bit level parallelism: 4 bit ... 32 to 64 bit word-size (=register size);
more bits processed/cycle

Moore’s Law

saturation of clock-speed,
power efficiency, ILP

=> paradigm shift

multiple processors/chip
rather than faster processors

thread/data level parallelism
requires programming

(MPI,openMP) unlike ILP

improvements governed by technology

architecture, compiler, programs reflect this

power issues!
chips becoming smaller and smaller

P=1/2 C V2f

higher frequency => more power
 consumption & heating

can’t be air cooled!
reduce operating voltage (transistor errors),

frequency (speed reduction)

software closely tied to hardware
esp. with parallel systems

source code: high level language (fortran, c, c++)

compiler (also optimizes the code, e.g., -O2, -O3 flags)

object code & executable (lower level assembly/machine code)

interpreted languages (e.g., python, perl,MATLAB, Mathematica, IDL
scripting languages) slower but handy/easier

important to remember architecture to attain maximum performance

Parallel Computing
multicore: multiple processors on the same chip

shared memory (SMP): all processors have common main memory

Distributed memory: beowulf cluster, parallel clusters w. specialized interconnects

Grid computing: computers communicating over the internet; e.g., SETI@home

GPUs (graphics processing units): driven by games/graphics industry, fast FP operations

Software: MPI (message passing interface; distributed systems),
openMP (shared memory)

message passing; MPI

distributed memory
programming model

shared memory
programming model

multithreading; openMP

Trends in Supercomputing
http://top500.org/:

list of 500 fastest (based on LINPACK benchmark) computers in the world

shows trends in architecture, interconnects, vendors, etc.

http://top500.org
http://top500.org

the list

Some Statistics

testing performance
strong scaling: increase the no. of

procs. on a fixed problem-size

weak scaling: keep the problem per
processor the same and inc. the

problem-size (& processor count)

poor scaling for small problem size
communication time >> computation time

remember latency?

computation ~ N3, communication~N2

going to bigger problem size helps with
communication overhead

Summary
• just touched the tip of the iceberg

• lot of info online

• modern computer architecture:
communication >> computation => cache
contiguous data, minimize data access

• parallel systems: programming models

• free tools (e.g., LAPACK) online; no need
to reinvent the wheel; good to know basics

