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Errors: round-off vs. 
truncation errors



Integer Representation
integers are represented exactly (range is machine dependent)

integer*4: 32 bits
integer*8: 64 bits (recommended with large integers)

for integer*4: 31 bits to represent value from -231 

(-2147483648) to 231-1 (2147483647)

_                       _ _ _ _ _ _ _ 

sign bit (0: + nos., 0) value

1011011 910



Real Numbers
represented with floating-point (decimal point is floating)

e.g., 152.6e5 => 0.1526e8
sign: 0(+), exponent: 8, mantissa: 1526 

(of course these are internally represented as binary)

mantissa/significanddouble precision

largest/smallest number that can be represented: 
2±(2^10-1)~2±1023~10±308

precision: 252~4x1015; thus DP stores ~16 places of a decimal number 
precisely; precision lost beyond that many digits



Machine Precision
smallest number represented in DP: 10-308

What’s the precision? Is it10-308? No. it is 16 decimal places.

1+10-16=1 in DP!
subtracting almost equal nos. result in loss of precision, e.g.,

1.2345678901234567 - 1.2345678998765432 = 
-9.75308656059326x10-09 

dominated by round-off error

x2+bx+c=0;  x = -b/2 ± (b2-4c)1/2/2 What if c<<b2?

precision not lost in multiplication/division



Round-Off Errors
16 decimal places of precision is more than enough for most, but not all, applications.

High precision is required for, e.g., long term evolution of the solar system.

most of numerical analysis would remain even with infinite precision!
problem is not round-off errors but numerical stability

even tiny round-off errors grow rapidly if algorithm is not numerically stable

golden mean: (a+b)/a=a/b=1/Φ 
Φ2+Φ-1=0 => Φ = (-1±51/2)/2 = 0.618034, -1.618034

recursive formula for powers of Φ:  Φn+1=Φn-1-Φn w. Φ0=1, Φ1=0.618034



Numerical Instability
Φn+1=Φn-1-Φn w. Φ0=1

Lessons:

while RO errors are small, not small 
enough!

Algorithms must be numerically stable 

Quiz:

At what n will iteration deviate from 
the analytic result?



Advection Equation
u=constant, advection equation

solution f(x,t) = f(x-ut,t=0)

ut

FTCS finite difference formula:

evolve the solution in time

t

x
xi xi+1xi-1

tn
fni-1 fni fni+1

tn+1
fn+1i-1 fn+1i fn+1i+1

Δt
Δx



FTCS is unstable!
von-Neumann stability analysis

VNSA: linear analysis of difference eqs. w. Fourier modes

FTCS: forward in time centered in space



amplification factor r≣e-iwΔt, so FTCS eq. becomes:

so

FTCS is unconditionally unstable!

VNSA contd.

L

k=2πn/L, n=1,2,..,L/2Δx
kNy=π/Δx

for numerical scheme to be stable
all modes in the box should have |r|<1
i.e., there should be no growing mode

Even tiny RO error can’t handle numerical instability
we’ll have much more on this once we 

come to ODEs and PDEs

nonlinear stability much more difficult to prove!



Truncation Error
appears when the continuous problem

is discretized; for smooth f(x,t)

Taylor Expansion:

first order accurate in time second order accurate in space

consistent as Δx ,Δt➝0



Truncation vs RO errors
truncation error controlled by programmer; choose a more accurate method! 

RO error is fixed (16 decimal places in DP);  less control 
typically truncation error>>round-off error; e.g., Δx~10-3 2nd order TE~10-6

order of accuracy not the sole metric
 stability, robustness, mathematical properties more crucial



Amplitude vs Phase 
Errors

true solution for a Fourier mode: w=ku

amplitude error: |rtrue|/|r|-1, phase error: φtrue/φ-1 (normalized)

recall for FCTS:

amplitude error results in growth in amplitude and phase error 
introduces phase shift in the solution relative to the true solution.



How to measure error?
Lp error

Fi: discrete approx. solution at xi, F: correct solution at xi

L1<L2<L3.....<L∞
weighted to min. point-wise error weighted to max. point-wise error

What if we don’t know the correct solution? can use 
the solution with half the step-size: Richardson error

Richardson Extrapolation: 

accurate to O(hm)

h=∆x



Modified Eq.
the equation that is really being solved

lets write the next order terms:

modified eq., just keeping the lowest order term:

anti-diffusion w. D=u2∆t/2 
responsible for amplitude error!

derivatives w. even (odd) powers: diffusive/amplitude (dispersive) error 
(easy to see in Fourier space) 



Fundamental Thm in 
NA, here

for a consistent finite difference method for a well-posed linear initial 
value problem, the method is convergent if and only if it is stable.

Well-Posed:  unique solution exists, solution depends continuously on data 
not well posed called ill-posed; e.g., anti-diffusion eq.

IVP: f(0)     f(t)

Convergence:  better & better agreement with solution as Δx,Δt      0

Stability: already about VNSA; nonlinear stability is tough to prove

Consistent: solving the correct eq. as Δx,Δt      0 

!

610 IV. Branches of Mathematics

or, using the abbreviation fn = f(tn, vn),
vn+1 = vn +∆tfn.

Both the ODE itself and its numerical approximation
may involve one equation or many, in which case
u(t,x) and vn become vectors of an appropriate
dimension. The Adams formulas are higher-order gen-
eralizations of Euler’s formula that are much more effi-
cient at generating accurate solutions. For example, the
fourth-order Adams–Bashforth formula is

vn+1 = vn + 1
24∆t(55fn − 59fn−1 + 37fn−2 − 9fn−3).

The term “fourth-order” reflects a new element in
the numerical treatment of problems of analysis: the
appearance of questions of convergence as ∆t → 0.
The formula above is of fourth order in the sense that it
will normally converge at the rateO((∆t)4). The orders
employed in practice are most often in the range 3–6,
enabling excellent accuracy for all kinds of computa-
tions, typically in the range of 3–10 digits, and higher-
order formulas are occasionally used when still more
accuracy is needed.

Most unfortunately, the habit in the numerical analy-
sis literature is to speak not of the convergence of these
magnificently efficient methods, but of their error, or
more precisely their discretization or truncation error
as distinct from rounding error. This ubiquitous lan-
guage of error analysis is dismal in tone, but seems
ineradicable.

At the turn of the twentieth century, the second great
class of ODE algorithms, known as Runge–Kutta or
one-step methods, was developed by Runge, Heun, and
Kutta. For example, here are the formulas of the famous
fourth-order Runge–Kutta method, which advance a
numerical solution (again scalar or system) from time
step tn to tn+1 with the aid of four evaluations of the
function f :

a = ∆tf (tn, vn),
b = ∆tf (tn + 1

2∆t, v
n + 1

2a),

c = ∆tf (tn + 1
2∆t, v

n + 1
2b),

d = ∆tf (tn +∆t, vn + c),
vn+1 = vn + 1

6 (a+ 2b + 2c + d).
Runge–Kutta methods tend to be easier to implement
but sometimes harder to analyze than multistep for-
mulas. For example, for any s, it is a trivial matter to
derive the coefficients of the s-step Adams–Bashforth
formula, which has order of accuracy p = s. For Runge–
Kutta methods, by contrast, there is no simple relation-

ship between the number of “stages” (i.e., function eval-
uations per step) and the attainable order of accuracy.
The classical methods with s = 1,2,3,4 were known to
Kutta in 1901 and have order p = s, but it was not until
1963 that it was proved that s = 6 stages are required
to achieve order p = 5. The analysis of such problems
involves beautiful mathematics from graph theory and
other areas, and a key figure in this area since the 1960s
has been John Butcher. For orders p = 6,7,8 the mini-
mal numbers of stages are s = 7,9,11, while for p > 8
exact minima are not known. Fortunately, these higher
orders are rarely needed for practical purposes.

When computers began to be used to solve differ-
ential equations after World War II, a phenomenon of
the greatest practical importance appeared: once again,
numerical instability. As before, this phrase refers
to the unbounded amplification of local errors by a
computational process, but now the dominant local
errors are usually those of discretization rather than
rounding. Instability typically manifests itself as an
oscillatory error in the computed solution that blows
up exponentially as more numerical steps are taken.
One mathematician concerned with this effect was Ger-
mund Dahlquist. Dahlquist saw that the phenomenon
could be analyzed with great power and generality,
and some people regard the appearance of his 1956
paper as one of the events marking the birth of mod-
ern numerical analysis. This landmark paper intro-
duced what might be called the fundamental theorem
of numerical analysis:

consistency+ stability = convergence.

The theory is based on precise definitions of these three
notions along the following lines. Consistency is the
property that the discrete formula has locally positive
order of accuracy and thus models the right ODE. Sta-
bility is the property that errors introduced at one time
step cannot grow unboundedly at later times. Conver-
gence is the property that as ∆t → 0, in the absence
of rounding errors, the numerical solution converges
to the correct result. Before Dahlquist’s paper, the idea
of an equivalence of stability and convergence was per-
haps in the air in the sense that practitioners realized
that if a numerical scheme was not unstable, then it
would probably give a good approximation to the right
answer. His theory gave rigorous form to that idea for
a wide class of numerical methods.

As computer methods for ODEs were being devel-
oped, the same was happening for the much bigger

http://en.wikipedia.org/wiki/Well-posed
http://en.wikipedia.org/wiki/Well-posed
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Limit_of_a_sequence
http://en.wikipedia.org/wiki/Limit_of_a_sequence
http://en.wikipedia.org/wiki/Numerical_stability
http://en.wikipedia.org/wiki/Numerical_stability


Interpolation & Extrapolation
given fi at xi find f(x); x1<x<xn interpolation

x outside the range: extrapolation 

Lagrange interpolation: unique polynomial of degree N-1 through N pts.

Neville’s Algorithm: 

3.1 Polynomial Interpolation and Extrapolation 103
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The various P ’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, with N = 4,

x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4 : y4 = P4

(3.1.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

Pi(i+1)...(i+m) =
(x − xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

(3.1.3)

This recurrence works because the two parents already agree at points xi+1 . . .
xi+m−1.

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (for m = 1, 2, . . . ,
N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1)

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.1.4)

Then one can easily derive from (3.1.3) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

Cm+1,i =
(xi − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

(3.1.5)

At each levelm, the C’s andD’s are the corrections that make the interpolation one
order higher. The final answer P1...N is equal to the sum of any yi plus a set of C’s
and/orD’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation:

SUBROUTINE polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX

REAL dy,x,y,xa(n),ya(n)

PARAMETER (NMAX=10) Largest anticipated value of n.
Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that
P (xai) = yai, i = 1, . . . ,n, then the returned value y = P (x).

INTEGER i,m,ns

REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)

ns=1

dif=abs(x-xa(1))
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The various P ’s form a “tableau” with “ancestors” on the left leading to a single
“descendant” at the extreme right. For example, with N = 4,

x1 : y1 = P1

P12

x2 : y2 = P2 P123

P23 P1234

x3 : y3 = P3 P234

P34

x4 : y4 = P4

(3.1.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

Pi(i+1)...(i+m) =
(x − xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

(3.1.3)

This recurrence works because the two parents already agree at points xi+1 . . .
xi+m−1.

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (for m = 1, 2, . . . ,
N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1)

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.1.4)

Then one can easily derive from (3.1.3) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

Cm+1,i =
(xi − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

(3.1.5)

At each levelm, the C’s andD’s are the corrections that make the interpolation one
order higher. The final answer P1...N is equal to the sum of any yi plus a set of C’s
and/orD’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapolation:

SUBROUTINE polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX

REAL dy,x,y,xa(n),ya(n)

PARAMETER (NMAX=10) Largest anticipated value of n.
Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that
P (xai) = yai, i = 1, . . . ,n, then the returned value y = P (x).

INTEGER i,m,ns

REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)

ns=1

dif=abs(x-xa(1))

constructing a higher order polynomial recursively

Barycentric interpolation: O(N)

(cousin of data-fitting)



Rational interpolation
3.2 Rational Function Interpolation and Extrapolation 105
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(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(3.2.1)

Since there are µ+ ν + 1 unknown p’s and q’s (q0 being arbitrary), we must have

m+ 1 = µ+ ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability tomodel functionswith poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values of x, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for all
finite real x, but has an analytic continuation with poles in the complex x-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values of x, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). This is called Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithmproduces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)�

x−xi
x−xi+m

��
1− R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

�
− 1

(3.2.3)

This recurrence generates the rational functions through m + 1 points from the
ones through m and (the term R(i+1)...(i+m−1) in equation 3.2.3) m − 1 points.
It is started with

Ri = yi (3.2.4)
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(xi, yi) . . . (xi+m, yi+m). More explicitly, suppose

Ri(i+1)...(i+m) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · · + pµxµ

q0 + q1x + · · · + qνxν
(3.2.1)

Since there are µ+ ν + 1 unknown p’s and q’s (q0 being arbitrary), we must have

m+ 1 = µ+ ν + 1 (3.2.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability tomodel functionswith poles, that is, zeros of the denominator
of equation (3.2.1). These poles might occur for real values of x, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for all
finite real x, but has an analytic continuation with poles in the complex x-plane.
Such poles can themselves ruin a polynomial approximation, even one restricted to
real values of x, just as they can ruin the convergence of an infinite power series
in x. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
pole is rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also
mention in passing that rational function approximations can be used in analytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). This is called Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an algorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of equation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithmproduces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(i+1)...(i+m) = R(i+1)...(i+m)

+
R(i+1)...(i+m) − Ri...(i+m−1)�

x−xi
x−xi+m

��
1− R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

�
− 1

(3.2.3)

This recurrence generates the rational functions through m + 1 points from the
ones through m and (the term R(i+1)...(i+m−1) in equation 3.2.3) m − 1 points.
It is started with

Ri = yi (3.2.4)

useful for functions with poles
which function to use for interpolations depends on nature of data

high order polynomial interpolation not always best!

Central differencing to determine
slopes can lead to overshoots in
reconstruction

Just going to higher order doesn’t 
help near sharp gradient regions 
(Gibb’s phenomena)

Top Fig. From  R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge Univ. Press (2002).
2cd Fig. From C.B. Laney, Computational Gasdynamics, Cambridge Univ. Press (1998).

wild oscillations with
high order polynomials

:Runge
phenomenon



Splines
cubic spline: smooth in f ’, continuous f ’’, 

both inside the interval and at boundaries

3.3 Cubic Spline Interpolation 107
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w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§2.2. [1]
Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall), §6.2.
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3.3 Cubic Spline Interpolation

Given a tabulated function yi = y(xi), i = 1...N , focus attention on one
particular interval, between xj and xj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj +Byj+1 (3.3.1)
where

A ≡ xj+1 − x

xj+1 − xj
B ≡ 1−A =

x− xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas xj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of yi, we
also have tabulated values for the function’s second derivatives, y��, that is, a set
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of numbers y��i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y��j on the left to a value y��j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 +Cy��j +Dy��j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1

6
(A3 − A)(xj+1 − xj)

2 D ≡ 1

6
(B3 −B)(xj+1 − xj)

2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y�� is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
dD/dx. The result is

dy

dx
=

yj+1 − yj
xj+1 − xj

− 3A2 − 1

6
(xj+1 − xj)y

��
j +

3B2 − 1

6
(xj+1 − xj)y

��
j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay��j + By��j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y�� is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).

The only problemnow is that we supposed the y��i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y��i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y��j−1 +

xj+1 − xj−1

3
y��j +

xj+1 − xj
6

y��j+1 =
yj+1 − yj
xj+1 − xj

− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y��i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . Themost common ways of doing this are either
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of numbers y��i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y��j on the left to a value y��j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 +Cy��j +Dy��j+1 (3.3.3)

where A and B are defined in (3.3.2) and
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2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y�� is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
dD/dx. The result is

dy

dx
=

yj+1 − yj
xj+1 − xj

− 3A2 − 1

6
(xj+1 − xj)y
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j +

3B2 − 1
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(xj+1 − xj)y

��
j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay��j + By��j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y�� is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).

The only problemnow is that we supposed the y��i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y��i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y��j−1 +

xj+1 − xj−1

3
y��j +

xj+1 − xj
6

y��j+1 =
yj+1 − yj
xj+1 − xj

− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y��i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . Themost common ways of doing this are either

What about y”? obtained from smoothness of y’
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of numbers y��i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y��j on the left to a value y��j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 +Cy��j +Dy��j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1
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(B3 −B)(xj+1 − xj)

2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y�� is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
dD/dx. The result is

dy

dx
=

yj+1 − yj
xj+1 − xj

− 3A2 − 1
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(xj+1 − xj)y
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j +

3B2 − 1
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j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay��j + By��j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y�� is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).

The only problemnow is that we supposed the y��i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y��i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y��j−1 +

xj+1 − xj−1
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y��j +

xj+1 − xj
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y��j+1 =
yj+1 − yj
xj+1 − xj

− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y��i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . Themost common ways of doing this are either
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of numbers y��i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y��j on the left to a value y��j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 +Cy��j +Dy��j+1 (3.3.3)

where A and B are defined in (3.3.2) and
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Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y�� is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
dD/dx. The result is
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for the first derivative, and

d2y

dx2
= Ay��j + By��j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y�� is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).

The only problemnow is that we supposed the y��i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y��i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)
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These are N − 2 linear equations in the N unknowns y��i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . Themost common ways of doing this are either
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of numbers y��i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y��j on the left to a value y��j+1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
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Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (throughA and
B) the cubic x-dependence of C and D.

We can readily check that y�� is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A,B, C,D to compute dA/dx, dB/dx, dC/dx, and
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for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y�� is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj, xj+1).

The only problemnow is that we supposed the y��i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y��i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x = xj in the interval (xj−1, xj) equal to the same equation evaluated forx = xj but
in the interval (xj, xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)
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These are N − 2 linear equations in the N unknowns y��i , i = 1, . . . , N . Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x1 and xN . Themost common ways of doing this are either

N-2 eqs. for N unknowns; 
tridiagonal system



Tridiagonal Systems

can be solved in O(n) operations 
not O(n3)!

Forward Elimination: Backward Substitution:


