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Errors: round-off vs.

truncation errors




Integer Representation

integers are represented exactly (range is machine dependent)
integer®4: 32 bits
integer*8: 64 bits (recommended with large integers)

0 1011011 91

sign bit (0: + nos., 0) value

for integer*4: 31 bits to represent value from -23!
(-2147483648) to 23'-1 (2147483647)




Real Numbers

represented with floating-point (decimal point is floating)

exponent ISi fraction  mantissa/significand
sign (11 bit) double precision (52 bit) &

|l I

O O
63 52

e.g., 152.6e5 =>0.1526€8
sign: O(+), exponent: 8, mantissa: 1526
(of course these are internally represented as binary)

largest/smallest number that can be represented:
2£(270-1)u9 1023 | ()£308

precision: 2°2~4x10'>; thus DP stores ~16 places of a decimal number
precisely; precision lost beyond that many digits




Machine Precision

smallest number represented in DP: 10398
What's the precision? Is it10-3%8? No. it is |6 decimal places.

| +10-'=] in DP!
subtracting almost equal nos. result in loss of precision, e.g.,
1.2345678901234567 - 1.2345678998765432 =
-9.75308656059326x 1097

T

dominated by round-off error

x?+bx+c=0; x = -b/2 * (b%-4c)'"2/2 What if c<<b??

precision not lost in multiplication/division




Round-Off Errors

|6 decimal places of precision is more than enough for most, but not all, applications.
High precision is required for, e.g., long term evolution of the solar system.

most of numerical analysis would remain even with infinite precision!
problem is not round-off errors but numerical stability
even tiny round-off errors grow rapidly if algorithm is not numerically stable

a b

golden mean: (a+b)/a=a/b=1/®P I T

O2+P-1=0 => @ = (-1£5'2)/2 = 0.618034, -1.618034 arb

a+bistoaasaistob

recursive formula for powers of ®: O"!=d-I.Onw, =], d'=0.618034




Numerical Instability

D =cbn-1cbn v bO= | 1 6 18”

P <0618 -
Lessons: e ,°@'=0.618034

while RO errors are small, not small

enough! =
2

10 o°0'=0,618033988749895

Algorithms must be numerically stable

Quiz: 10 | analytic result

At what n will iteration deviate from 40 60
the analytic result?
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Advection Equation
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evolve the solution in time

t

u=constant, advection equation
solution f(x,t) = f(x-ut,t=0)
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FTCS finite difference formula:
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FTCS is unstable!
von-Neumann stability analysis

FTCS: forward in time centered in space

VNSA: linear analysis of difference egs. w. Fourier modes

flr = Ce~twt" ik i =7 o i1 — Jita
At | 20

n+1

fin—}—l . fzn _ Ceika:,; (e—z’wt . e—iwt") _ Ce(z’kmi—i'wt"‘)(e—z’wAt . 1)

ikAx e—z’kA:z:)




VNSA contd.

amplification factor r=e™2t, so FTCS eq. becomes:

r=1—ikulAtsin(kAx) so |r|= \/1 + k2u2At2 sin?(kAz) > 1

FTCS is unconditionally unstable!

for numerical scheme to be stable
all modes in the box should have |r|<I
i.e., there should be no growing mode

<

k=2T1Tn/L, n=1,2,..,L/2AX
Even tiny RO error can’t handle numerical instability
we’ll have much more on this once we I(Nszr/AX

come to ODEs and PDEs

nonlinear stability much more difficult to prove!




Truncation Error

appears when the continuous problem of | u@_f 0
is discretized; for smooth f(x,t) Ot O

Taylor Expansion:

f,;”‘“:f;%. (g—{) At (a_f) At? /2

first order accurate in time second order accurate in space

(g—fy = (f"" = )/ At + O(At) ( Ty — f1)/20z + O(Az?)

it1 = Ji T (Z_:JUC)ZAQH_(@_JC) Az?/2+ ...

Z_f + ug_f + O(AL) + O(Az?) =0 consistent as Ax ,At—0
X




Truncation vs RO errors

truncation error controlled by programmer; choose a more accurate method!
RO error is fixed (16 decimal places in DP); less control

typically truncation error>>round-off error; e.g., Ax~10-3 2" order TE~10-¢

order of accuracy not the sole metric
stability, robustness, mathematical properties more crucial

Lax-Wendroff




Amplitude vs Phase
Errors

true solution for a Fourier mode: w=ku

itk(x—ut) T e = o~ tkult

foxe

r =1 —ikulAtsin(kAz) = |r|e®?

amplitude error: |reue|/|r|-1, phase error: Puue/@-1 (normalized)

recall for FCTS: |r| = \/1 + k2u2At? sin®(kAz) > 1

amplitude error results in growth in amplitude and phase error
introduces phase shift in the solution relative to the true solution.




How to measure error?

1/p

N

1

Lp= |~ Y |F; - F|P L, error
1=1

Fi: discrete approx. solution at x;, F: correct solution at x;
weighted to min. point-wise error weighted to max. point-wise error

What if we don’t know the correct solution? can use
the solution with half the step-size: Richardson error

1 N 1/p
Lp:(ﬁi:lFiA — F; /|p)
=1

Richardson Extrapolation: A - -l(/)’ =a,h" + O(ﬁhm}, a, 0, m>n h:AX

A(h/2)— A(h) 2" A(h/2) — A(h)
2n — 1 B 2n — 1

R(h) = A(h/2) + accurate to O(h™)




Modified Eq.

the equation that is really being solved

0 0
8{ | uai - O(At) + O(Az?) =0

lets write the next order terms:

3f 2! aZfAt/z | 83qu:z:2/3 + O(At?) + O(Az*) =0

ot | oz | ot? Ox3
of _ 8f O(At) = 82f — I O(At)

= —Uu— + U

ot Oz "oz T Y gg2
modified eq., just keeping the lowest order term:

of | 8f ( 2At/2) 82f anti-diffusion w. D=u?At/2

Ot 835. 835‘ responsible for amplitude error!

derivatives w. even (odd) powers: diffusive/amplitude (dispersive) error
(easy to see in Fourier space)




Fundamental Thm in
NA, here

for a consistent finite difference method for a well-posed linear initial
value problem, the method is convergent if and only if it is stable.

Well-Posed: unique solution exists, solution depends continuously on data
not well posed called ill-posed; e.g., anti-diffusion eq.

IVP: f(O) —> f(t) consistency + stability = convergence

Convergence: better & better agreement with solution as Ax,At— 0
Stability: already about VNSA; nonlinear stability is tough to prove

Consistent: solving the correct eq. as Ax,At —0

OF o1 2) _
Y -I-uax—i—(’)(At)—l—(’)(Am ) =20
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Interpolation & Extrapolation

given f; at x; find f(x); x1<x<x, interpolation
x outside the range: extrapolation

(cousin of data-fitting)
Lagrange interpolation: unique polynomial of degree N-1 through N pts.

L) = 3 yyt(a) O(N?)

j=0

. T — T, (x — xp) (T —xj-1) (T —Tj41) (T — xp)
{_'J- [ ;1;_') — | | , .- - . =
| 1

0<m<k ;f.'J' — Tm ( ;If.'J' — ID) ( Ij — ;l'.'J'_l_j ( ;l'.'J' —_ ;l'.'J'+1 ) ( Ij — Ty )

m#£j

Neville’s Algorithm:

constructing a higher order polynomial recursively

(CE — iUz'+m)P7;(7;+1)...(z'+m—1) - (CCz — x)P('i—l—l)(i—l—Q)...(i—l—m)

P’i 1+1 i+m) —
oy (41).(i+m) E——

Barycentric interpolation: O(N)



Rational interpolation

- pxt

Pu(m) _ Po + P1T A

QV(ZE) 4o + 1L -

m+1l=u+v+1

| qyxy

useful for functions with poles
which function to use for interpolations depends on nature of data
high order polynomial interpolation not always best!

Runge example

C  Data points
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Figure 8.5 Twentieth-order polynomial interpolation for a square wave.
:Runge

phenomenon




Splines

cubic spline: smooth in f’, continuous f”,

Cubic spline - or ) .
both inside the interval and at boundaries

y = Ay; + By,41

Ljt1 — &

Lj+1 = &

vy , Py
What about y”’? obtained from smoothness of y 2 = Ay’ + By,

dy  yj+1—y; 3A7-1 3B° — 1
o= ;H — lf — g (@it i)Yy + o (@1 - 5)Y5 11
J J

N-2 egs. for N unknowns;
tridiagonal system




Tridiagonal Systems

a;Tri—1 + bir; + iy = d,

07 [

T can be solved in O(n) operations

- not O(n3)!
I3

Ln

_— —

Forward Elimination: Backward Substitution:

| d,
for k = 2 step until n do T

rn, =
(; ) b'n
b for k = n-1 stepdown until 1 do
ol dy. — CpL.Tp
b = b, — mcp_q 2y = 2k ChThi
d;'. — ([;, - 7n.dA._1 bl.-
end loop (k) end loop (k)
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