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Numerical Integration
recall that derivative of any function can be 
calculated analytically, not true of integral!
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Chapter 4. Integration of Functions

4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could
be, served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even themost primitive sort involvingdesk calculators and rooms full of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

I =

� b

a
f(x)dx (4.0.1)

is precisely equivalent to solving for the value I ≡ y(b) the differential equation

dy

dx
= f(x) (4.0.2)

with the boundary condition

y(a) = 0 (4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable” or
“adaptive” choices of stepsize. We will not, therefore, develop that material here.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)–(4.0.3) and use
the methods of Chapter 16.

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods
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can be cast as ODE:
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via function approximation: e.g., cubic spline interpolation  
some integrals via Fast Fourier Transform (FFT) 
Monte-Carlo integration for multidimensions



Simple Formulae
mid-point/rectangle rule

trapezoidal rule

can apply these rules at much smaller intervals and obtain accurate integrals

Aim: minimum function evaluations & highest accuracy

O(h3)

possible to construct higher 
order w. higher deg. polynomial



Quadrature
an approx. of definite integral as a wtd. sum of fn. values at specified points

4.1 Classical Formulas for Equally Spaced Abscissas 127
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Notice that the integral from a = x0 to b = x5 is estimated, using only the interior
points x1, x2, x3, x4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introduce in §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from x0 to x1, using values of the
function f at x1, x2, . . . . These will be useful building blocks for the “extended”
open formulas.

� x1

x0

f(x)dx = h[f1] + O(h2
f
�) (4.1.7)

� x1

x0

f(x)dx = h

�
3

2
f1 −

1

2
f2

�
+ O(h3

f
��) (4.1.8)

� x1

x0

f(x)dx = h

�
23

12
f1 −

16

12
f2 +

5

12
f3

�
+O(h4

f
(3)) (4.1.9)

� x1

x0

f(x)dx = h

�
55

24
f1 −

59

24
f2 +

37

24
f3 −

9

24
f4

�
+O(h5

f
(4))(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p, q, r, s. Without loss of generality take x0 = 0 and x1 = 1, so h = 1. Substitute in
turn for f(x) (and for f1, f2, f3, f4) the functions f(x) = 1, f(x) = x, f(x) = x2,
and f(x) = x3. Doing the integral in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, q, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N − 1 times, to do the integration in the intervals
(x1, x2), (x2, x3), . . . , (xN−1, xN), and then add the results,we obtain an “extended”
or “composite” formula for the integral from x1 to xN .

Extended trapezoidal rule:
� xN

x1

f(x)dx = h

�
1

2
f1 + f2 + f3+

· · · + fN−1 +
1

2
fN

�
+ O

�
(b− a)3f ��

N2

� (4.1.11)

Here we have written the error estimate in terms of the interval b− a and the number
of points N instead of in terms of h. This is clearer, since one is usually holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased

extended Trapezoidal rule,  exact for linear polynomial
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x0 xN xN + 1

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN+1. Closed formulas evaluate the function on the boundary points, while open
formulas refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted x0, x1, . . . , xN ,

xN+1 which are spaced apart by a constant step h,

xi = x0 + ih i = 0, 1, . . . , N + 1 (4.1.1)

A function f(x) has known values at the xi’s,

f(xi) ≡ fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit
b, where a and b are each equal to one or the other of the xi’s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), is called
a closed formula. Occasionally, we want to integrate a function whose value at one
or both endpoints is difficult to compute (e.g., the computation of f goes to a limit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only xi’s strictly
between a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule:
� x2

x1

f(x)dx = h

�
1

2
f1 +

1

2
f2

�
+O(h3

f
��) (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h3 times the value

equally spaced abscissa:

128 Chapter 4. Integration of Functions
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by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.

The extended formula of order 1/N3 is:

� xN

x1

f(x)dx = h

�
5

12
f1 +

13

12
f2 + f3 + f4+

· · · + fN−2 +
13

12
fN−1 +

5

12
fN

�
+ O

�
1

N3

� (4.1.12)

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,

we get the extended Simpson’s rule:

� xN

x1

f(x)dx = h

�
1

3
f1 +

4

3
f2 +

2

3
f3 +

4

3
f4+

· · · + 2

3
fN−2 +

4

3
fN−1 +

1

3
fN

�
+O

�
1

N4

� (4.1.13)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

� xN

x1

f(x)dx = h

�
3

8
f1 +

7

6
f2 +

23

24
f3 + f4 + f5+

· · · + fN−4 + fN−3 +
23

24
fN−2 +

7

6
fN−1 +

3

8
fN

�

+O

�
1

N4

�
(4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which the first and last step are done with the trapezoidal rule (4.1.3). The
trapezoidal step is two orders lower than Simpson’s rule; however, its contribution
to the integral goes down as an additional power of N (since it is used only twice,
not N times). This makes the resulting formula of degree one less than Simpson.

extended Simpson’s rule, exact for cubic



remember Richardson extrapolation for smooth functions: 

Richardson Extrapolation
both mid-point & trapezoidal rule are 2nd order accurate

Using a generalized mean value theorem a sum of n values of a continuous function
can be written as n times a function value at some intermediate point. With
nh = b − a we get

R = (b − a)
∑

j=1

h2j

(2j + 1)!22j
f (2j)(ξjn). (6)

Since ξjn may depend on n this is not quite what we need. So we look for another
argument to get the ξ independent of n. If we apply (4) to f ′′, turn the formula
around, and use it together with (5) we get

h
n∑

i=1

f ′′(mi) =
∫ b

a
f ′′(x)dx −

∑

j=1

ĉjh
2j+1. (7)

So we can express a sum of function values as an integral (independent of n) and
a remainder term which involves even powers of h times similar sums of function
values. Using this argument repeatedly we arrive at

∫ b

a
f(x)dx = h

n∑

i=1

f(mi) + c2h
2 + c4h

4 + · · · (8)

where the c-coefficients involve corresponding derivatives of f with numerical
factors which we do not wish to compute analytically.

2. Extrapolation

Before we carry on let us generalize (8) a bit. Let M(f) be a mathematical
problem (such as determining the value of a definite integral) and let N(f, h) be
a numerical method to produce an approximation to M based on a step size h.
Furthermore assume that the leading terms in the remainder contain h to the
powers p and q with coefficients cp and cq independent of h:

M(f) = N(f, h) + cph
p + cqh

q + · · · (9)

A calculation with twice the step size leads to

M(f) = N(f, 2h) + cp(2h)p + cq(2h)q + · · · (10)

Subtracting (9) from (10) gives

N(f, h) − N(f, 2h) = cp(2
p − 1)hp + cq(2

q − 1)hq + · · · (11)

The leading error term in (9) can now be expressed as

cph
p =

N(f, h) − N(f, 2h)

2p − 1
− c̃qh

q − · · · (12)

3
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can be written as n times a function value at some intermediate point. With
nh = b − a we get

R = (b − a)
∑

j=1

h2j

(2j + 1)!22j
f (2j)(ξjn). (6)

Since ξjn may depend on n this is not quite what we need. So we look for another
argument to get the ξ independent of n. If we apply (4) to f ′′, turn the formula
around, and use it together with (5) we get

h
n∑

i=1

f ′′(mi) =
∫ b

a
f ′′(x)dx −

∑

j=1

ĉjh
2j+1. (7)

So we can express a sum of function values as an integral (independent of n) and
a remainder term which involves even powers of h times similar sums of function
values. Using this argument repeatedly we arrive at

∫ b

a
f(x)dx = h

n∑

i=1

f(mi) + c2h
2 + c4h

4 + · · · (8)

where the c-coefficients involve corresponding derivatives of f with numerical
factors which we do not wish to compute analytically.

2. Extrapolation

Before we carry on let us generalize (8) a bit. Let M(f) be a mathematical
problem (such as determining the value of a definite integral) and let N(f, h) be
a numerical method to produce an approximation to M based on a step size h.
Furthermore assume that the leading terms in the remainder contain h to the
powers p and q with coefficients cp and cq independent of h:

M(f) = N(f, h) + cph
p + cqh

q + · · · (9)

A calculation with twice the step size leads to

M(f) = N(f, 2h) + cp(2h)p + cq(2h)q + · · · (10)

Subtracting (9) from (10) gives

N(f, h) − N(f, 2h) = cp(2
p − 1)hp + cq(2

q − 1)hq + · · · (11)

The leading error term in (9) can now be expressed as

cph
p =

N(f, h) − N(f, 2h)

2p − 1
− c̃qh

q − · · · (12)

3

leading order error w.

with

c̃q = cq
2q − 1

2p − 1
. (13)

So we have a formula for estimating (the leading term of) the error if we know p.
But what if we do not know p, or if we think we know it but are not too sure?
Well, we can perform a third calculation doubling the step size once again:

M(f) = N(f, 4h) + cp(4h)p + cq(4h)q + · · · (14)

Subtract (10) from (14):

N(f, 2h) − N(f, 4h) = cp(2
p − 1)(2h)p + cq(2

q − 1)(2h)q + · · · (15)

and divide (15) by (11):

N(f, 2h) − N(f, 4h)

N(f, h) − N(f, 2h)
= 2p cp + c̃q(2h)q−p + · · ·

cp + c̃qhq−p + · · ·
(16)

As the step size becomes smaller the leading terms in the numerator and the
denominator become more and more dominant and the whole expression will
approach 2p (if p < q). So we have an experimental method for determining or
verifying the value of p. And once we know p we can use formula (12) to estimate
(the leading term of) the error. Even more, we can use this expression to modify
the computed result:

N(f, h) +
N(f, h) − N(f, 2h)

2p − 1
= M(f) + (c̃q − cq)h

q + · · · (17)

So by adding the correction term we have eliminated the leading term of the error
and have arrived at a method of order q instead of p. The constant in front of q has
changed, but this is of less concern since we did not know it from the beginning
anyway. This process is known as extrapolation and is often associated with the
name Richardson, who described this process in a special case [7]. According
to Eduard Stiefel [10] the process was known as early as 1654, when Christiaan
Huygens used it to calculate approximations to π [5].

3. Back to integration

A necessary condition for formula (8) to hold is that f is differentiable a certain
number of times; and for the process of extrapolation to be useful it is also
important that these derivatives do not grow too fast. Instead of spending a few
hours with a tedious pencil-and-paper analysis it would be a lot more efficient
to have the computer use a few seconds on extra calculations in order to help us

4

reduces error to O(hq)

make decisions. But is it possible? - and is it safe? In my opinion the answer to
both questions is yes.

Formula (16) provides the necessary tool if used properly. In our integration
procedure we expect the powers of h to be 2, 4, (6, 8, . . . ). Therefore we expect
the ratio in (16) to be close to 4 (= 22). Now what do we mean by ‘close to’?
And what if it is not?

Well, we should not base far reaching conclusions on just a single number. Rather
we could imagine a series of calculations each with half the step size of the previous
one: h = b−a

n ; n = 2k; k = 0, 1, 2, . . .

With k calculations we have k − 1 differences and k − 2 quotients. As h gets
smaller the effect of the second term (cq) and subsequent terms in the error will
diminish and we would expect to see a series of quotients with values approaching
4.00. In Fig. 2 we show the results of a series of calculations using the mid-point
formula on the integral of exp(x) from 0 to 1.

k n N(f, h) = Rk,0 difference quotient

0 1 1.6487212707001282
1 2 1.7005127166502081 0.0517914459500799
2 4 1.7138152797710871 0.0133025631208790 3.893
3 8 1.7171636649956870 0.0033483852245999 3.973
4 16 1.7180021920526605 0.0008385270569735 3.993
5 32 1.7182119133838587 0.0002097213311982 3.998
6 64 1.7182643493168632 0.0000524359330045 4.000
7 128 1.7182774586501623 0.0000131093332991 4.000
8 256 1.7182807360053651 0.0000032773552028 4.000
9 512 1.7182815553455351 0.0000008193401699 4.000
10 1024 1.7182817601806615 0.0000002048351264 4.000

Fig. 2.

It is rather obvious that the quotients approach 4.000 as n increases in accor-
dance with the fact that exp(x) is a smooth function. It is therefore justified to
extrapolate which in this case amounts to adding 1/3 of the difference to N(f, h).
Renaming N(f, h) as Rk,0 we can write

Rk,1 = Rk,0 +
Rk,0 − Rk−1,0

3
. (18)

In this way we eliminate the h2-term in (8). The resulting extrapolated values
(Rk,1) will satisfy a similar expansion with exponents 4, 6, 8, . . . in h. So why

5



Romberg Integration

but if we do anyway they do little harm, usually they do nothing at all.

k n Rk,3 difference quotient

3 8 1.7182818281262471
4 16 1.7182818284577124 0.0000000003314653
5 32 1.7182818284590391 0.0000000000013267 249.839
6 64 1.7182818284590453 0.0000000000000062 213.393
7 128 1.7182818284590449 -0.0000000000000004 -14.000
8 256 1.7182818284590440 -0.0000000000000009 0.500
9 512 1.7182818284590466 0.0000000000000027 -0.333
10 1024 1.7182818284590444 -0.0000000000000022 -1.200

Fig. 5.

k Rk,0 Rk,1 Rk,2 Rk,3 Rk,4

0 1.6487212707001282
1 1.7005127166502081 1.7177765319669014
2 1.7138152797710871 1.7182494674780466 1.7182809965121231
3 1.7171636649956870 1.7182797934038869 1.7182818151322763 1.7182818281262471
4 1.7180021920526605 1.7182817010716516 1.7182818282495025 1.7182818284577124 1.7182818284590122
5 1.7182119133838587 1.7182818204942580 1.7182818284557650 1.7182818284590391 1.7182818284590442
6 1.7182643493168632 1.7182818279611980 1.7182818284589940 1.7182818284590453 1.7182818284590453

Fig. 6. The Romberg scheme

Looking at the extrapolated values we note that R6,4 is accurate to within 2 bits.
So with just 127 function evaluations we do much better with extrapolation than
with the original mid-point rule with 2047 function evaluations.

6. Error estimation

‘No numerical result is worth anything without a reliable error estimate’ my old
Numerical Analysis teacher instructed me. In this context the correction term

Rk,m−1 − Rk−1,m−1

22m − 1
(20)

can be viewed as an estimate of the error in Rk,m−1 and the reliability hinges
on whether 2m is the right order. This can be ascertained if we have one (or
preferably more than one) quotient with a value close to 22m. And when we say
‘close’ we mean that there can be a small deviation in the second digit (4.2 for 4,
and 210 for 256). Furthermore if Rk,m−1 is close to Rk−1,m−1 then the order may
not even be that important if we intend to use (20) as an error estimate.
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not continue the process now with p = 4, q = 6. In Fig. 3 we show Rk,1 together
with the corresponding differences and quotients.

k n Rk,1 difference quotient

1 2 1.7177765319669014
2 4 1.7182494674780466 0.0004729355111452
3 8 1.7182797934038869 0.0000303259258403 15.595
4 16 1.7182817010716516 0.0000019076677646 15.897
5 32 1.7182818204942580 0.0000001194226065 15.974
6 64 1.7182818279611980 0.0000000074669400 15.994
7 128 1.7182818284279286 0.0000000004667307 15.998
8 256 1.7182818284570993 0.0000000000291707 16.000
9 512 1.7182818284589250 0.0000000000018257 15.978
10 1024 1.7182818284590369 0.0000000000001119 16.313

Fig. 3.

Again the quotients display a convergent behaviour, now towards 24 = 16.000.
We can conclude that indeed exp(x) is smooth and that the error can be assumed
to be of the form as in (9) and consequently that we can extrapolate once more

Rk,2 = Rk,1 +
Rk,1 − Rk−1,1

15
.

In general we can define

Rk,m = Rk,m−1 +
Rk,m−1 − Rk−1,m−1

22m − 1
(19)

because the leading term in the error of Rk,m−1 contains h2m when the integrand
is smooth. But it is always a good idea to check that extrapolation is justified
by checking that these quotients actually look like 22m.

4. Romberg integration

The R′s in the previous section should remind us of the Norwegian mathematician
Werner Romberg [8] who first described this systematic extrapolation procedure
in connection with a related numerical integration formula called the trapezoidal
rule which is based on the function values at the end points of each subinterval
and which has an error series similar to (8). The use of the mid-point rule was
also mentioned by Romberg and later by Tore H̊avie [6].
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n=2k

expensive

cheap, more accurate

Aitken extrapolation:
 can determine leading order error by comparing N(f,h), N(f,2h) and N(f,4h) 
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Extended Formulas (Open and Semi-open)
We can construct open and semi-open extended formulas by adding the closed

formulas (4.1.11)–(4.1.14), evaluated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)–(4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at
both ends are as follows:

Equations (4.1.7) and (4.1.11) give
� xN

x1

f(x)dx = h

�
3

2
f2 +f3 +f4 + · · ·+fN−2 +

3

2
fN−1

�
+O

�
1

N2

�
(4.1.15)

Equations (4.1.8) and (4.1.12) give
� xN

x1

f(x)dx = h

�
23

12
f2 +

7

12
f3 + f4 + f5+

· · · + fN−3 +
7

12
fN−2 +

23

12
fN−1

�

+ O

�
1

N3

�
(4.1.16)

Equations (4.1.9) and (4.1.13) give
� xN

x1

f(x)dx = h

�
27

12
f2 + 0 +

13

12
f4 +

4

3
f5+

· · · + 4

3
fN−4 +

13

12
fN−3 + 0 +

27

12
fN−1

�

+ O

�
1

N4

�
(4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

� xN

x1

f(x)dx = h

�
55

24
f2 −

1

6
f3 +

11

8
f4 + f5 + f6 + f7+

· · · + fN−5 + fN−4 +
11

8
fN−3 −

1

6
fN−2 +

55

24
fN−1

�

+ O

�
1

N4

�

(4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule, and is accurate to the same order as (4.1.15):

� xN

x1

f(x)dx = h[f3/2 + f5/2 + f7/2+

· · · + fN−3/2 + fN−1/2] +O

�
1

N2

� (4.1.19)
extended mid-point rule

apply w. Romberg method
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since, when the number of steps is tripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem
on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

SUBROUTINE qromo(func,a,b,ss,choose)

INTEGER JMAX,JMAXP,K,KM

REAL a,b,func,ss,EPS

EXTERNAL func,choose

PARAMETER (EPS=1.e-6, JMAX=14, JMAXP=JMAX+1, K=5, KM=K-1)

C USES polint
Romberg integration on an open interval. Returns as ss the integral of the function func
from a to b, using any specified integrating subroutine choose and Romberg’s method.
Normally choose will be an open formula, not evaluating the function at the endpoints. It
is assumed that choose triples the number of steps on each call, and that its error series
contains only even powers of the number of steps. The routines midpnt, midinf, midsql,
midsqu, are possible choices for choose. The parameters have the same meaning as in
qromb.

INTEGER j

REAL dss,h(JMAXP),s(JMAXP)

h(1)=1.

do 11 j=1,JMAX

call choose(func,a,b,s(j),j)

if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)

if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=h(j)/9. This is where the assumption of step tripling and an even
error series is used.enddo 11

pause ’too many steps in qromo’

END

The differences between qromo and qromb (§4.3) are so slight that it is perhaps
gratuitous to list qromo in full. It, however, is an excellent driver routine for solving
all the other problems of improper integrals in our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

� b

a
f(x)dx =

� 1/a

1/b

1

t2
f

�
1

t

�
dt ab > 0 (4.4.2)

can be used with either b→∞ and a positive, or with a→ −∞ and b negative, and
works for any function which decreases towards infinity faster than 1/x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e.g.) qromo and midpnt to do the numerical evaluation, or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version of midpnt, called midinf, which allows b to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 × 1030), or a to be negative and infinite.

change of variable w. finite range
having intuitive feel of `f ’ very useful

Gaussian quadrature:
conveniently spaced abscissa & smooth enough function can give double the 

order of accuracy compared to e.g., Trapezoidal. We won’t cover it.



Multidimensional Integn.
expensive: N3 in 3D, where N fn. evals. needed in 1D; complicated boundaries

try to reduce dimension

if complicated boundary & integrand is not strongly peaked in isolated regions 
& low accuracy is fine => MonteCarlo integration

7.6 Simple Monte Carlo Integration 295
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Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard,
1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, Na-
tional Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York:
Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in §10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pickN random points, uniformly distributed in a multidimen-
sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

�
f dV ≈ V �f� ± V

�
�f2� − �f�2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

�f� ≡ 1

N

N�

i=1

f(xi)
�
f2
�
≡ 1

N

N�

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error
is distributed as a Gaussian, so the error term should be taken only as a rough
indication of probable error.

Suppose that you want to integrate a function g over a region W that is not
easy to sample randomly. For example, W might have a very complicated shape.
No problem. Just find a region V that includes W and that can easily be sampled
(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero
for points outside of W (but still inside the sampled V ). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an
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Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard,
1980, NBS Special Publication 500–20 (Washington: U.S. Department of Commerce, Na-
tional Bureau of Standards). [3]

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley). [4]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), Chapter 6. [5]

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York:
Oxford University Press). [6]

7.6 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we
shall see in §10.9) is rooted in a thermodynamic analogy. And who does not feel at
least a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pickN random points, uniformly distributed in a multidimen-
sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

�
f dV ≈ V �f� ± V

�
�f2� − �f�2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

�f� ≡ 1

N

N�

i=1

f(xi)
�
f2
�
≡ 1

N

N�

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error
is distributed as a Gaussian, so the error term should be taken only as a rough
indication of probable error.

Suppose that you want to integrate a function g over a region W that is not
easy to sample randomly. For example, W might have a very complicated shape.
No problem. Just find a region V that includes W and that can easily be sampled
(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero
for points outside of W (but still inside the sampled V ). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated
(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an
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area A

!fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.
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Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

296 Chapter 7. Random Numbers

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

area A

!fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.
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Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

random number generator 
must be good enough.

defaults are not!



Root-Finding
solving f(x)=0, multi-D in general

finding roots in multi-D very challenging, bracketing works in 1-D
except for linear systems root-finding is iterative (having a good initial guess crucial)

may not converge or worse converge to a wrong root

feel for what the fn. looks like! always best to plot the function

bracketing the root: function changes
 sign in a given interval; fafb<0

don’t let the guess go out of best bracket 
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a b

(b)

x1

e f c x1 d a b

b

a

(c)

(d)

(a)

x2 x3

Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root x1 bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.
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pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.



Bisection, Secant Methods

-bracket the root, fafb<0
-halve the interval c=(a+b)/2

fafc<0 or fbfc<0?
-again halve w. bracketing

until desired accuracy in x0
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1 continue
nb=nbb
return
END

Bisection Method

Once we know that an interval contains a root, several classical procedures are
available to refine it. These proceed with varying degrees of speed and sureness
towards the answer. Unfortunately, the methods that are guaranteed to converge plod
along most slowly, while those that rush to the solution in the best cases can also dash
rapidly to infinity without warning if measures are not taken to avoid such behavior.

The bisection method is one that cannot fail. It is thus not to be sneered at
as a method for otherwise badly behaved problems. The idea is simple. Over
some interval the function is known to pass through zero because it changes sign.
Evaluate the function at the interval’s midpoint and examine its sign. Use the
midpoint to replace whichever limit has the same sign. After each iteration the
bounds containing the root decrease by a factor of two. If after n iterations the root
is known to be within an interval of size �n, then after the next iteration it will be
bracketed within an interval of size

�n+1 = �n/2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

n = log2
�0
�

(9.1.3)

where �0 is the size of the initially bracketing interval, � is the desired ending
tolerance.

Bisection must succeed. If the interval happens to contain two or more roots,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When amethod converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to converge linearly. Methods
that converge as a higher power,

�n+1 = constant× (�n)
m m > 1 (9.1.4)

are said to converge superlinearly. In other contexts “linear” convergence would be
termed “exponential,” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.

It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that computers use a fixed number of binary digits to represent floating-point
numbers. While your function might analytically pass through zero, it is possible
that its computed value is never zero, for any floating-point argument. One must
decide what accuracy on the root is attainable: Convergence to within 10−6 in
absolute value is reasonable when the root lies near 1, but certainly unachievable if

convergence criterion: fractional error in x0: e.g., |dx/x0|<10-6

root need not remain bracketed
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x

Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in
the order that they are used.

f (x)

x

4

3

2

1

Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.
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Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in
the order that they are used.
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Figure 9.2.2. False position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.

False Position Method:
root kept bracketed

xn+1=xn-fn(xn-xn-1)/(fn-fn-1)
=(xn-1fn-xnfn-1)/(fn-fn-1)
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Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

has opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio” 1.618 . . . ,
so that

lim
k→∞

|�k+1| ≈ const× |�k|1.618 (9.2.1)

The secant method has, however, the disadvantage that the root does not necessarily
remain bracketed. For functions that are not sufficiently continuous, the algorithm
can therefore not be guaranteed to converge: Local behavior might send it off
towards infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimes be kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare, Ridders’ method, described below, or Brent’s
method, in the next section, are almost always better choices. Figure 9.2.3 shows the
behavior of secant and false-position methods in a difficult situation.

FUNCTION rtflsp(func,x1,x2,xacc)

INTEGER MAXIT

REAL rtflsp,x1,x2,xacc,func

EXTERNAL func

PARAMETER (MAXIT=30) Set to the maximum allowed number of iterations.
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filter (k = 0). The phase response becomes more nonlinear as k 
varies from 0 to 1. 

Figs. I and 8 show the amplitude and phase responses of 
third-order TRXY filters varying from the elliptic filter to the 
Bessel rational filter of (7) with m =2, n =3, (Y = p=O, and 
y=OS. The phase response improves as k varies from 0 to 1. 
These results are similar to those of Figs. 1 and 2. The Bessel 
rational filter was not frequency scaled in this case. 

Transitional TRXY filters are important because they provide 
the filter designer a compromise between the desirable properties 
of the X filter and those of the Y filter. By proper choice of X 
and Y filters the designer is offered a wide selection of amplitude 
and phase responses. 
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A New Algorithm for Computing a Single Root of a 
Real Continuous Function 

C. J. F. RIDDERS 

Absrrrrct-A fast and simple iterative’ method is proposed for the 
determination of a single real root of a real continuous function. The idea 
is based upon linearizing the original function whereafter the regrrla f&i is 
applied to tbis modified function which leads to a very simple algorithm. 
The rate of convergence is shown to be quadratic or better. 

I. METHOD 

Let the function be represented by F(x). We create a new 
function H(x) = 4x)-e - in such a way that for three equidis- 

Manuscript received January 31, 1979. 
The author is with the Department of Electrical Engineering, Delft Univer- 

sity of Technology, Delft, The Netherlands. 

I 

Fig. 1. 

tant x values x0, x, an x2 the following requirement is met: 

H,-2H,+ H,,=O, with H,, = H(x,). 

Let d-x2- x1 = x, - x0 and Fo.F2 < 0, then from (1) it follows 
F2*eZmd-2F,.emd+ F,=O 

with the analytical solution 
emd- F~-sign(Fo)** 

F2 
9 with W= Ff - FoFF (3) 

The factor sign ( Fo) is deduced from the conditions W > 0 and 
emd > 0. The next step is the application of the regulu falsi to the 
points (x,, H,) and (x2, H2), which leads to the expression 

x,H,.- x2H, d x3= 
Hz-H, =x’- H2/H,-1 (4) 

where xg is the first approximation of the root of F(x) and 
H2/ H, = F2.ed/F,. Equation (4) can be written in the form 

F,+d 
x3 = x1 + sign( F,). m . 

To avoid the factor sign (F,) we divide numerator and de- 
nominator by F. and obtain the final expression for the algo- 
rithm: 

x,=x,+d. WFo 

$W~O~~-WFO . 
(6) 

When Fo.F2 < 0, x3 will be on the interval [x0,x2] so convergence 
is guaranteed. 

After computation of the first iterate x3 we build up a new 
interval consisting of xj and one of the other remaining x values 
in such a way that F3.Fn <0 (n =0,1,2) in order to be sure that 
the next iterate will remain on the starting interval. The proce- 
dure is depicted in Fig. 1. 

The described method can even be used when F,= F, or 
F, = F2 as can accidentally happen. 

Suppose F(x)= x3- x - 5 and we choose [ - 1,3] as the start- 
ing interval. 

F,= F,= -5; F,= 19. 
For x3 we compute the value 1.9128, which is already fairly 

close to the root 1.9@4160859+ . . . 

0098-4094/79/ 1 lOO-0979$00.75 0 1979 IEEE 

Ridder’s Method
9.2 Secant Method, False Position Method, and Ridders’ Method 349

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

2f (x)

1 3 4

x

Figure 9.2.3. Example where both the secant and false position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

has opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio” 1.618 . . . ,
so that

lim
k→∞

|�k+1| ≈ const× |�k|1.618 (9.2.1)

The secant method has, however, the disadvantage that the root does not necessarily
remain bracketed. For functions that are not sufficiently continuous, the algorithm
can therefore not be guaranteed to converge: Local behavior might send it off
towards infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimes be kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare, Ridders’ method, described below, or Brent’s
method, in the next section, are almost always better choices. Figure 9.2.3 shows the
behavior of secant and false-position methods in a difficult situation.

FUNCTION rtflsp(func,x1,x2,xacc)

INTEGER MAXIT

REAL rtflsp,x1,x2,xacc,func

EXTERNAL func

PARAMETER (MAXIT=30) Set to the maximum allowed number of iterations.

secant method/false position may be too slow!instead of f(x)=0; solve h(x)=f(x)emx=0; m chosen s. t.
h0-2h1+h2=0 (i.e., center-pt. lies in middle)

x1=(x0+x2)/2; 
x0-x2=x2-x1=d

apply false position to h(x):
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filter (k = 0). The phase response becomes more nonlinear as k 
varies from 0 to 1. 

Figs. I and 8 show the amplitude and phase responses of 
third-order TRXY filters varying from the elliptic filter to the 
Bessel rational filter of (7) with m =2, n =3, (Y = p=O, and 
y=OS. The phase response improves as k varies from 0 to 1. 
These results are similar to those of Figs. 1 and 2. The Bessel 
rational filter was not frequency scaled in this case. 

Transitional TRXY filters are important because they provide 
the filter designer a compromise between the desirable properties 
of the X filter and those of the Y filter. By proper choice of X 
and Y filters the designer is offered a wide selection of amplitude 
and phase responses. 
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A New Algorithm for Computing a Single Root of a 
Real Continuous Function 

C. J. F. RIDDERS 

Absrrrrct-A fast and simple iterative’ method is proposed for the 
determination of a single real root of a real continuous function. The idea 
is based upon linearizing the original function whereafter the regrrla f&i is 
applied to tbis modified function which leads to a very simple algorithm. 
The rate of convergence is shown to be quadratic or better. 

I. METHOD 

Let the function be represented by F(x). We create a new 
function H(x) = 4x)-e - in such a way that for three equidis- 
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tant x values x0, x, an x2 the following requirement is met: 

H,-2H,+ H,,=O, with H,, = H(x,). 

Let d-x2- x1 = x, - x0 and Fo.F2 < 0, then from (1) it follows 
F2*eZmd-2F,.emd+ F,=O 

with the analytical solution 
emd- F~-sign(Fo)** 

F2 
9 with W= Ff - FoFF (3) 

The factor sign ( Fo) is deduced from the conditions W > 0 and 
emd > 0. The next step is the application of the regulu falsi to the 
points (x,, H,) and (x2, H2), which leads to the expression 

x,H,.- x2H, d x3= 
Hz-H, =x’- H2/H,-1 (4) 

where xg is the first approximation of the root of F(x) and 
H2/ H, = F2.ed/F,. Equation (4) can be written in the form 

F,+d 
x3 = x1 + sign( F,). m . 

To avoid the factor sign (F,) we divide numerator and de- 
nominator by F. and obtain the final expression for the algo- 
rithm: 

x,=x,+d. WFo 

$W~O~~-WFO . 
(6) 

When Fo.F2 < 0, x3 will be on the interval [x0,x2] so convergence 
is guaranteed. 

After computation of the first iterate x3 we build up a new 
interval consisting of xj and one of the other remaining x values 
in such a way that F3.Fn <0 (n =0,1,2) in order to be sure that 
the next iterate will remain on the starting interval. The proce- 
dure is depicted in Fig. 1. 

The described method can even be used when F,= F, or 
F, = F2 as can accidentally happen. 

Suppose F(x)= x3- x - 5 and we choose [ - 1,3] as the start- 
ing interval. 

F,= F,= -5; F,= 19. 
For x3 we compute the value 1.9128, which is already fairly 

close to the root 1.9@4160859+ . . . 
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Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.
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Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as in rtsafe, would save the day.
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Figure 9.4.3. Unfortunate case where Newton’s method enters a nonconvergent cycle. This behavior
is often encountered when the function f is obtained, in whole or in part, by table interpolation. With
a better initial guess, the method would have succeeded.

This is not, however, a recommended procedure for the following reasons: (i) You
are doing two function evaluations per step, so at best the superlinear order of
convergence will be only

√
2. (ii) If you take dx too small you will be wiped

out by roundoff, while if you take it too large your order of convergence will be
only linear, no better than using the initial evaluation f �(x0) for all subsequent
steps. Therefore, Newton-Raphson with numerical derivatives is (in one dimension)
always dominated by the secant method of §9.2. (In multidimensions, where there
is a paucity of available methods, Newton-Raphson with numerical derivatives must
be taken more seriously. See §§9.6–9.7.)

The following subroutine calls a user supplied subroutine funcd(x,fn,df)
which returns the function value as fn and the derivative as df. We have included
input bounds on the root simply to be consistent with previous root-finding routines:
Newton does not adjust bounds, and works only on local information at the point
x. The bounds are used only to pick the midpoint as the first guess, and to reject
the solution if it wanders outside of the bounds.

FUNCTION rtnewt(funcd,x1,x2,xacc)

INTEGER JMAX

REAL rtnewt,x1,x2,xacc

EXTERNAL funcd

PARAMETER (JMAX=20) Set to maximum number of iterations.
Using the Newton-Raphson method, find the root of a function known to lie in the interval
[x1, x2]. The root rtnewtwill be refined until its accuracy is known within ±xacc. funcd
is a user-supplied subroutine that returns both the function value and the first derivative
of the function at the point x.

INTEGER j

REAL df,dx,f
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Newton-Raphson is not restricted to one dimension. The method readily
generalizes to multiple dimensions, as we shall see in §9.6 and §9.7, below.

Far from a root, where the higher-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let
the search interval include a local maximum or minimum of the function. This can
be death to the method (see Figure 9.4.2). If an iteration places a trial guess near
such a local extremum, so that the first derivative nearly vanishes, then Newton-
Raphson sends its solution off to limbo, with vanishingly small hope of recovery.
Like most powerful tools, Newton-Raphson can be destructive used in inappropriate
circumstances. Figure 9.4.3 demonstrates another possible pathology.

Why do we call Newton-Raphson powerful? The answer lies in its rate of
convergence: Within a small distance � of x the function and its derivative are
approximately:

f(x + �) = f(x) + �f �(x) + �2
f ��(x)

2
+ · · · ,

f �(x + �) = f �(x) + �f ��(x) + · · ·
(9.4.3)

By the Newton-Raphson formula,

xi+1 = xi −
f(xi)

f �(xi)
, (9.4.4)

so that

�i+1 = �i −
f(xi)

f �(xi)
. (9.4.5)

When a trial solutionxi differs from the true root by �i, we can use (9.4.3) to express
f(xi), f �(xi) in (9.4.4) in terms of �i and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

�i+1 = −�2i
f ��(x)

2f �(x)
. (9.4.6)

Equation (9.4.6) says that Newton-Raphson converges quadratically (cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximately doubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of its poor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two
or four its number of significant figures!

For an efficient realization of Newton-Raphson the user provides a routine that
evaluates both f(x) and its first derivative f �(x) at the point x. The Newton-Raphson
formula can also be applied using a numerical difference to approximate the true
local derivative,

f �(x) ≈ f(x + dx)− f(x)

dx
. (9.4.7)

very rapid convergence; use w. bisection when high accuracy needed
can calculate f ’ numerically f ’=[f(xi+ε)-f(xi)]/ε
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Raphson sends its solution off to limbo, with vanishingly small hope of recovery.
Like most powerful tools, Newton-Raphson can be destructive used in inappropriate
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Why do we call Newton-Raphson powerful? The answer lies in its rate of
convergence: Within a small distance � of x the function and its derivative are
approximately:

f(x + �) = f(x) + �f �(x) + �2
f ��(x)

2
+ · · · ,

f �(x + �) = f �(x) + �f ��(x) + · · ·
(9.4.3)

By the Newton-Raphson formula,

xi+1 = xi −
f(xi)

f �(xi)
, (9.4.4)

so that

�i+1 = �i −
f(xi)

f �(xi)
. (9.4.5)

When a trial solutionxi differs from the true root by �i, we can use (9.4.3) to express
f(xi), f �(xi) in (9.4.4) in terms of �i and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

�i+1 = −�2i
f ��(x)

2f �(x)
. (9.4.6)

Equation (9.4.6) says that Newton-Raphson converges quadratically (cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximately doubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of its poor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two
or four its number of significant figures!

For an efficient realization of Newton-Raphson the user provides a routine that
evaluates both f(x) and its first derivative f �(x) at the point x. The Newton-Raphson
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f �(x) ≈ f(x + dx)− f(x)

dx
. (9.4.7)
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This equation, if used with i ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-called zero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be useful at the
polishing stage.
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

Wemake an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(x, y) = 0

g(x, y) = 0
(9.6.1)

The functions f and g are two arbitrary functions, each of which has zero
contour lines that divide the (x, y) plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f’s point of view, or from g’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to knowwhen we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N − 1.
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solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f’s point of view, or from g’s. In order to find all common points, which are
the solutions of our nonlinear equations, we will (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to knowwhen we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N − 1.
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Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer to f(x, y),
dashed curves to g(x, y). Each equation divides the (x, y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

You see that root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do I expect a unique solution?” and
“Approximately where?” Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problemgivesN functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi. In the neighborhood of x, each of the functions Fi can be expanded
in Taylor series

Fi(x+ δx) = Fi(x) +
N�

j=1

∂Fi
∂xj

δxj + O(δx2). (9.6.3)

must have intuition about how 
functions look like!
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You see that root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do I expect a unique solution?” and
“Approximately where?” Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problemgivesN functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi. In the neighborhood of x, each of the functions Fi can be expanded
in Taylor series

Fi(x+ δx) = Fi(x) +
N�

j=1

∂Fi
∂xj

δxj + O(δx2). (9.6.3)
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You see that root finding becomes virtually impossible without insight! You
will almost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do I expect a unique solution?” and
“Approximately where?” Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problemgivesN functional relations to be zeroed, involving variables
xi, i = 1, 2, . . . , N :

Fi(x1, x2, . . . , xN) = 0 i = 1, 2, . . . , N. (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi. In the neighborhood of x, each of the functions Fi can be expanded
in Taylor series

Fi(x+ δx) = Fi(x) +
N�

j=1

∂Fi
∂xj

δxj + O(δx2). (9.6.3)
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The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian
matrix J:

Jij ≡
∂Fi

∂xj
. (9.6.4)

In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx+ O(δx2). (9.6.5)

By neglecting terms of order δx2 and higher and by setting F(x + δx) = 0, we
obtain a set of linear equations for the corrections δx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routinemnewt performs ntrial iterations starting from an initial
guess at the solution vector x of length n variables. Iteration stops if either the sum
of the magnitudes of the functionsFi is less than some tolerance tolf, or the sum of
the absolute values of the corrections to δxi is less than some tolerance tolx. mnewt
calls a user supplied subroutine usrfunwhich must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)

INTEGER n,ntrial,NP

REAL tolf,tolx,x(n)

PARAMETER (NP=15) Up to NP variables.
C USES lubksb,ludcmp,usrfun

Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)

REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)

do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec

and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return

do 12 i=1,n Right-hand side of linear equations.
p(i)=-fvec(i)

enddo 12

374 Chapter 9. Root Finding and Nonlinear Sets of Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).
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In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx+ O(δx2). (9.6.5)

By neglecting terms of order δx2 and higher and by setting F(x + δx) = 0, we
obtain a set of linear equations for the corrections δx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routinemnewt performs ntrial iterations starting from an initial
guess at the solution vector x of length n variables. Iteration stops if either the sum
of the magnitudes of the functionsFi is less than some tolerance tolf, or the sum of
the absolute values of the corrections to δxi is less than some tolerance tolx. mnewt
calls a user supplied subroutine usrfunwhich must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)

INTEGER n,ntrial,NP

REAL tolf,tolx,x(n)

PARAMETER (NP=15) Up to NP variables.
C USES lubksb,ludcmp,usrfun

Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)

REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)

do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec

and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return

do 12 i=1,n Right-hand side of linear equations.
p(i)=-fvec(i)

enddo 12

matrix equation; linear system
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The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian
matrix J:

Jij ≡
∂Fi

∂xj
. (9.6.4)

In matrix notation equation (9.6.3) is

F(x + δx) = F(x) + J · δx+ O(δx2). (9.6.5)

By neglecting terms of order δx2 and higher and by setting F(x + δx) = 0, we
obtain a set of linear equations for the corrections δx that move each function closer
to zero simultaneously, namely

J · δx = −F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

xnew = xold + δx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routinemnewt performs ntrial iterations starting from an initial
guess at the solution vector x of length n variables. Iteration stops if either the sum
of the magnitudes of the functionsFi is less than some tolerance tolf, or the sum of
the absolute values of the corrections to δxi is less than some tolerance tolx. mnewt
calls a user supplied subroutine usrfunwhich must return the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt(ntrial,x,n,tolx,tolf)

INTEGER n,ntrial,NP

REAL tolf,tolx,x(n)

PARAMETER (NP=15) Up to NP variables.
C USES lubksb,ludcmp,usrfun

Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)

REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)

do 14 k=1,ntrial

call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec

and Jacobian matrix in fjac.errf=0.

do 11 i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if(errf.le.tolf)return

do 12 i=1,n Right-hand side of linear equations.
p(i)=-fvec(i)

enddo 12

step only if |F| is smaller; otherwise try a new initial guess
other methods available too, see NR.


