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Extremely Imp. 

• used almost everywhere

• multi-D root finding, interpolation, PDEs

• even for nonlinear systems

• exact solution O(N3) expensive! special 
forms (tridiagonal) much faster

• iterative methods - very useful in physics

• LAPACK - the linear algebra library



Introduction

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Chapter 2. Solution of Linear
Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a11x1 + a12x2 + a13x3 + · · · + a1NxN = b1

a21x1 + a22x2 + a23x3 + · · · + a2NxN = b2

a31x1 + a32x2 + a33x3 + · · · + a3NxN = b3

· · · · · ·

aM1x1 + aM2x2 + aM3x3 + · · ·+ aMNxN = bM

(2.0.1)

Here the N unknowns xj , j = 1, 2, . . . , N are related by M equations. The
coefficients aij with i = 1, 2, . . . ,M and j = 1, 2, . . ., N are known numbers, as
are the right-hand side quantities bi, i = 1, 2, . . . ,M .

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of xj’s. Analytically, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if all equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa.) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additional things can go wrong:
• While not exact linear combinations of each other, some of the equations
may be so close to linearly dependent that roundoff errors in the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.
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if N=M; good chance of finding unique solution. No unique soln. if
-row degeneracy: if one or more rows a linear combination of others

-column degeneracy: all eqs. have certain unknowns in same linear comb.
degenerate set of eqs. : singular

be careful, numerical solution of close to singular systems is tricky!
if N large: round-off errors can make the intermediate system singular
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• Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of x’s that are wrong, as can be discovered by direct substitution back
into the original equations. The closer a set of equations is to being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 bits), this number can readily
be extended to N as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, N in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices

Equation (2.0.1) can be written in matrix form as

A · x = b (2.0.2)

Here the raised dot denotes matrix multiplication,A is the matrix of coefficients, and
b is the right-hand side written as a column vector,

A =





a11 a12 . . . a1N

a21 a22 . . . a2N

· · ·
aM1 aM2 . . . aMN



 b =





b1
b2
· · ·
bM



 (2.0.3)

By convention, the first index on an element aij denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

a11, a21, . . . , aM1, a12, a22, . . . , aM2, . . . , a1N , a2N , . . . aMN
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might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices

Equation (2.0.1) can be written in matrix form as

A · x = b (2.0.2)

Here the raised dot denotes matrix multiplication,A is the matrix of coefficients, and
b is the right-hand side written as a column vector,

A =
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· · ·
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 b =





b1
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· · ·
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 (2.0.3)

By convention, the first index on an element aij denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

a11, a21, . . . , aM1, a12, a22, . . . , aM2, . . . , a1N , a2N , . . . aMN

M<N, or if eqs. are degenerate, infinitely many solutions; x=xp+any linear 
combination of (N-M) vectors (null-space)

M>N: overdetermined, no solution in general; least sqr. solution s.t., 
||b-Ax||2 is minimized

we will only deal with NxN matrices



How fast diff. ops.?

• vector-vector dot product uT.v : N Flops

• matrix-vector product: N2 Flops

• matrix-matrix product: N3 Flops (can be bettered!)

• matrix inverse, e.g., Gaussian Elim., Gauss-Jordan, 
LU decomposition: N3 Flops (can be bettered!)

• solving Ax=b: O(N3) for exact solution: can be 
faster for special (e.g., banded) matrices; iterative 
methods 



Gauss-Jordan Elimination
slower than LU decomposition for solving Ax=b but good for finding inverse

28 Chapter 2. Solution of Linear Algebraic Equations
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For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 ·








x11
x21
x31
x41



 �




x12
x22
x32
x42



 �




x13
x23
x33
x43



 �




y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44









=








b11
b21
b31
b41



 �




b12
b22
b32
b42



 �




b13
b23
b33
b43



 �




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).
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Ok to interchange rows of A and corresponding rows of b (& I); just reordering  eqs.

soln. unchanged if a row in A and b (&I) are replaced by linear comb. of other rows.

Interchanging any two columns of A gives the same solution set only if we simultaneously interchange corresponding rows 
of the x’s and of Y.

Gauss-Jordan elimination uses one or more of the above operations to reduce the matrix A to the identity matrix.
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For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 ·








x11
x21
x31
x41



 �




x12
x22
x32
x42



 �




x13
x23
x33
x43
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y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44









=








b11
b21
b31
b41



 �




b12
b22
b32
b42



 �




b13
b23
b33
b43



 �




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).

1 a12/a11 a13/a11 a14/a11

relabel

28 Chapter 2. Solution of Linear Algebraic Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
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b32
b42
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).

1

R2=R2-a21R1

R3=R3-a31R1

...
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For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 ·
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x31
x41
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x32
x42
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x33
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y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44









=








b11
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b31
b41
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b12
b22
b32
b42
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b23
b33
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).

1
R2/a22
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For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 ·
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x21
x31
x41
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x22
x32
x42
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x23
x33
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y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44
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b31
b41
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b12
b22
b32
b42
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b13
b23
b33
b43
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1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).

1
1

a12

a32

a42

R1=R1-a12R2

R3=R3-a32R2

...
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For clarity, and to avoid writingendless ellipses (· · ·) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N × N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44



 ·
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x21
x31
x41



 �
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x22
x32
x42



 �
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x33
x43



 �




y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44









=








b11
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b31
b41



 �
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b22
b32
b42



 �




b13
b23
b33
b43



 �




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







 (2.1.1)

Here the raised dot (·) signifies matrix multiplication, while the operator � just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the � operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are bij, i = 1, 2, 3, 4; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

[A] · [x1 � x2 � x3 � Y] = [b1 � b2 � b3 � 1] (2.1.2)

where A and Y are square matrices, the bi’s and xi’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A · x1 = b1 A · x2 = b2 A · x3 = b3 (2.1.3)
and

A ·Y = 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):
• Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

• Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by a linear combination of itself and any other row,
as long as we do the same linear combination of the rows of the b’s and 1
(which then is no longer the identity matrix, of course).

1
1

and so-on

apply same row operations to the RHS; transform A to I, 
transformed b/I will be the solution/inverse



Pivoting
 run into trouble if we ever encounter a zero element on the (then current) diagonal (pivot) 

Pivoting: changing order of rows/columns in the matrix (A) to choose a desirable pivot, 
[& RHS (b), unknown (x)]

Partial pivoting: just rearranging rows of A and b (almost always fine)
Full pivoting: rearranging columns of A and rows of x

w.o. pivoting GJ and other methods are numerically unstable!

 simply picking the largest (in magnitude) available element as the pivot is a very good choice
largest after normalizing the biggest coefficient to 1: implicit pivoting

PP applied only to
non-zeroed part of matrix 



Row vs. Column Ops.
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matrix R. For example, the matrix R with components

Rij =






1 if i = j and i �= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchangeA’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(1) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(2.1.7)

which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:
Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]
Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:

Wiley), Example 5.2, p. 282.
Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:

McGraw-Hill), Program B-2, p. 298.
Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations

(New York: Wiley).
Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:

McGraw-Hill), §9.3–1.
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matrix R. For example, the matrix R with components

Rij =






1 if i = j and i �= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchangeA’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(1) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(2.1.7)

which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:
Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]
Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:

Wiley), Example 5.2, p. 282.
Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:

McGraw-Hill), Program B-2, p. 298.
Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations

(New York: Wiley).
Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:

McGraw-Hill), §9.3–1.

row-operations column operations
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matrix R. For example, the matrix R with components

Rij =






1 if i = j and i �= 2, 4
1 if i = 2, j = 4
1 if i = 4, j = 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A · x = b

(· · ·R3 · R2 · R1 · A) · x = · · ·R3 · R2 · R1 · b

(1) · x = · · ·R3 · R2 · R1 · b

x = · · ·R3 · R2 · R1 · b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchangeA’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inverse, between the matrix
A and the unknown vector x:

A · x = b

A · C1 · C−1
1 · x = b

A · C1 · C2 · C−1
2 · C−1

1 · x = b

(A · C1 · C2 · C3 · · ·) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(1) · · ·C−1
3 · C−1

2 · C−1
1 · x = b

(2.1.7)

which (peeling of the C−1’s one at a time) implies a solution

x = C1 · C2 · C3 · · · b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.
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2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):





a�
11 a�

12 a�
13 a�

14

0 a�
22 a�

23 a�
24

0 0 a�
33 a�

34

0 0 0 a�
44



 ·





x1

x2

x3

x4



 =





b�
1

b�
2

b�
3

b�
4



 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b�
4/a

�
44 (2.2.2)

With the last x known we can move to the penultimate x,

x3 =
1

a�
33

[b�
3 − x4a

�
34] (2.2.3)

and then proceed with the x before that one. The typical step is

xi =
1

a�
ii



b�
i −

N�

j=i+1

a�
ijxj



 (2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.
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But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely
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4/a

�
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The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):
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Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b�
4/a
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44 (2.2.2)

With the last x known we can move to the penultimate x,
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The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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The usefulness of Gaussian elimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not all the way to the identity matrix, but
only halfway, to a matrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When a22

is the pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only a32 and a42, not a12 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):
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Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the x’s? The last x (x4 in this example) is already
isolated, namely

x4 = b�
4/a

�
44 (2.2.2)

With the last x known we can move to the penultimate x,
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and then proceed with the x before that one. The typical step is
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The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:



α11 0 0 0
α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44



 ·




β11 β12 β13 β14
0 β22 β23 β24
0 0 β33 β34
0 0 0 β44



 =




a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44





(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)
and then solving

U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1
α11

yi =
1

αii



bi −
i−1�

j=1

αijyj



 i = 2, 3, . . . , N
(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN
βNN

xi =
1

βii



yi −
N�

j=i+1

βijxj



 i = N − 1, N − 2, . . . , 1
(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2N
3 to 1

6N
3, while (2.3.7) is unchanged at 1

2N
3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.
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We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)
and then solving

U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
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α11
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1
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1
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Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1
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3 to 1
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3, while (2.3.7) is unchanged at 1
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forward substitution
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U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1
α11

yi =
1

αii



bi −
i−1�

j=1

αijyj



 i = 2, 3, . . . , N
(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN
βNN

xi =
1

βii



yi −
N�

j=i+1

βijxj



 i = N − 1, N − 2, . . . , 1
(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2N
3 to 1

6N
3, while (2.3.7) is unchanged at 1

2N
3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.

backward substitution

~N2 Flops



LU algorithm
αii≣1; N2 unknown and N2 eqs.
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Performing the LU Decomposition
How then can we solve for L and U, given A? First, we write out the

i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)
A surprising procedure, now, is Crout’s algorithm, which quite trivially solves

the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . ., j, use (2.3.8), (2.3.9), and (2.3.11) to solve for βij , namely

βij = aij −
i−1�

k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken tomean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij, namely

αij =
1

βjj

�
aij −

j−1�

k=1

αikβkj

�
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding αij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,





β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44



 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

Crout’s algorithm:
αii = 1, i = 1,...,N
For each j = 1,2,3,...,N 

for i = 1, 2, . . ., j
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Performing the LU Decomposition
How then can we solve for L and U, given A? First, we write out the

i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)
A surprising procedure, now, is Crout’s algorithm, which quite trivially solves

the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . ., j, use (2.3.8), (2.3.9), and (2.3.11) to solve for βij , namely

βij = aij −
i−1�

k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken tomean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij, namely

αij =
1

βjj

�
aij −

j−1�

k=1

αikβkj

�
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding αij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,





β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44



 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

for i = j + 1,j + 2,...,N
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Performing the LU Decomposition
How then can we solve for L and U, given A? First, we write out the

i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)
A surprising procedure, now, is Crout’s algorithm, which quite trivially solves

the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . ., j, use (2.3.8), (2.3.9), and (2.3.11) to solve for βij , namely

βij = aij −
i−1�

k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken tomean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij, namely

αij =
1

βjj

�
aij −

j−1�

k=1

αikβkj

�
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding αij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,





β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44



 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).
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Performing the LU Decomposition
How then can we solve for L and U, given A? First, we write out the

i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · · + αiiβij = aij (2.3.8)
i = j : αi1β1j + αi2β2j + · · · + αiiβjj = aij (2.3.9)
i > j : αi1β1j + αi2β2j + · · · + αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)
A surprising procedure, now, is Crout’s algorithm, which quite trivially solves

the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . ., j, use (2.3.8), (2.3.9), and (2.3.11) to solve for βij , namely

βij = aij −
i−1�

k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken tomean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij, namely

αij =
1

βjj

�
aij −

j−1�

k=1

αikβkj

�
. (2.3.13)

Be sure to do both procedures before going on to the next j.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding αij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,





β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44



 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).
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Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

det =
N�

j=1

βjj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subse-
quent backsubstitutions by lubksb.

INTEGER np,indx(np)
REAL a(np,np)
...
call ludcmp(a,n,np,indx,d) This returns d as ±1.
do 11 j=1,n

d=d*a(j,j)
enddo 11

The variable d now contains the determinant of the original matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations
If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)

LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A+ iC) · (x+ iy) = (b+ id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and lubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x− C · y = b

C · x+ A · y = d
(2.3.17)

which can be written as a 2N × 2N set of real equations,
�
A −C
C A

�
·
�
x
y

�
=

�
b
d

�
(2.3.18)
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SUBROUTINE tridag(a,b,c,r,u,n)

INTEGER n,NMAX

REAL a(n),b(n),c(n),r(n),u(n)

PARAMETER (NMAX=500)

Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).

a(1:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.

Parameter: NMAX is the maximum expected value of n.
INTEGER j

REAL bet,gam(NMAX) One vector of workspace, gam is needed.

if(b(1).eq.0.)pause ’tridag: rewrite equations’

If this happens then you should rewrite your equations as a set of order N − 1, with u2
trivially eliminated.

bet=b(1)

u(1)=r(1)/bet

do 11 j=2,n Decomposition and forward substitution.

gam(j)=c(j-1)/bet

bet=b(j)-a(j)*gam(j)

if(bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.

u(j)=(r(j)-a(j)*u(j-1))/bet

enddo 11

do 12 j=n-1,1,-1 Backsubstitution.

u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return

END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for a nonsingular matrix. In practice, this is not something to lose
sleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

|bj | > |aj | + |cj | j = 1, . . . , N (2.4.2)

(called diagonal dominance) then it can be shown that the algorithmcannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causes numerical instability. In practice, however, such instability is almost
never encountered — unlike the general matrix problem where pivoting is essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routines bandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additional elements (e.g., upper right and lower left corners) also allow rapid
solution; see §2.7.

Band Diagonal Systems
Where tridiagonal systems have nonzero elements only on the diagonal plus or minus

one, band diagonal systems are slightly more general and have (say)m1 ≥ 0 nonzero elements
immediately to the left of (below) the diagonal andm2 ≥ 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification ifm1 andm2 are both� N .
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N ×N case.

GE & LU decomp. less expensive for banded matrices, e.g., Thomas algorithm for tridiagonal matrices 
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The precise definition of a band diagonal matrix with elements aij is that

aij = 0 when j > i+m2 or i > j +m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns and N rows. This is best illustrated by an example:
The band diagonal matrix





3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4




(2.4.4)

which has N = 7, m1 = 2, andm2 = 1, is stored compactly as the 7 × 4 matrix,




x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x




(2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements aij out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to pass N , m1,
m2, and the physical dimensions np≥ N and mp≥ m1 + 1 + m2.

SUBROUTINE banmul(a,n,m1,m2,np,mp,x,b)

INTEGER m1,m2,mp,n,np

REAL a(np,mp),b(n),x(n)

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector x and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:j,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k

do 12 i=1,n

b(i)=0.

k=i-m1-1

do 11 j=max(1,1-k),min(m1+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)

enddo 11

enddo 12

return

END
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The precise definition of a band diagonal matrix with elements aij is that

aij = 0 when j > i+m2 or i > j +m1 (2.4.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45◦ clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + m2 columns and N rows. This is best illustrated by an example:
The band diagonal matrix





3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4




(2.4.4)

which has N = 7, m1 = 2, andm2 = 1, is stored compactly as the 7 × 4 matrix,




x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x




(2.4.5)

Here x denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m1 + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elements aij out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to pass N , m1,
m2, and the physical dimensions np≥ N and mp≥ m1 + 1 + m2.

SUBROUTINE banmul(a,n,m1,m2,np,mp,x,b)

INTEGER m1,m2,mp,n,np

REAL a(np,mp),b(n),x(n)

Matrix multiply b = A · x, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector x and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:j,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER i,j,k

do 12 i=1,n

b(i)=0.

k=i-m1-1

do 11 j=max(1,1-k),min(m1+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)

enddo 11

enddo 12

return

END

stored as

do not want to store zeros and waste memory
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Figure 2.5.1. Iterative improvement of the solution to A · x = b. The first guess x + δx is multiplied by
A to produce b + δb. The known vector b is subtracted, giving δb. The linear set with this right-hand
side is inverted, giving δx. This is subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)

INTEGER n,np,indx(n),NMAX

REAL a(np,np),alud(np,np),b(n),x(n)

PARAMETER (NMAX=500) Maximum anticipated value of n.

C USES lubksb
Improves a solution vector x(1:n) of the linear set of equations A · X = B. The matrix

a(1:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also

input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also

returned by that routine. On output, only x(1:n) is modified, to an improved set of values.

INTEGER i,j

REAL r(NMAX)

DOUBLE PRECISION sdp

do 12 i=1,n Calculate the right-hand side, accumulating the resid-

ual in double precision.sdp=-b(i)

do 11 j=1,n

sdp=sdp+dble(a(i,j))*dble(x(j))

enddo 11

r(i)=sdp

enddo 12

call lubksb(alud,n,np,indx,r) Solve for the error term,

do 13 i=1,n and subtract it from the old solution.

x(i)=x(i)-r(i)

enddo 13

return

END

You should note that the routine ludcmp in §2.3 destroys the input matrix as it
LU decomposes it. Since iterative improvement requires both the original matrix
and itsLU decomposition, you will need to copyA before calling ludcmp. Likewise
lubksb destroys b in obtaining x, so make a copy of b also. If you don’t mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have already
spent of order N3 operations.
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Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multipliedby thematrixA, your slightlywrong
solutiongives a product slightlydiscrepant from the desired right-handsideb, namely

A · (x+ δx) = b+ δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x+ δx)− b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:

numerical soln. not exact
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even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multipliedby thematrixA, your slightlywrong
solutiongives a product slightlydiscrepant from the desired right-handsideb, namely

A · (x+ δx) = b+ δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x+ δx)− b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:
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(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multipliedby thematrixA, your slightlywrong
solutiongives a product slightlydiscrepant from the desired right-handsideb, namely

A · (x+ δx) = b+ δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x+ δx)− b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:
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2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If this happens to you, there is a neat trick to restore the full machine precision,
called iterative improvement of the solution. The theory is very straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A · x = b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + δx,
where δx is the unknown error. When multipliedby thematrixA, your slightlywrong
solutiongives a product slightlydiscrepant from the desired right-handsideb, namely

A · (x+ δx) = b+ δb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A · δx = δb (2.5.3)

But (2.5.2) can also be solved, trivially, for δb. Substituting this into (2.5.3) gives

A · δx = A · (x+ δx)− b (2.5.4)

In this equation, the whole right-hand side is known, since x + δx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error δx, then subtract this from the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do all this is concise and straightforward:

apply the correction: O(N2) matrix-vector 
multiplication & since LU decomp. already available

NR recommends this highly



LAPACK
a F90 library of linear algebra routines (http://www.netlib.org/lapack/)

you can download it and install on your computer 
# --------------------------------------------------------
# Available SIMPLE and DIVIDE AND CONQUER DRIVER routines:
# --------------------------------------------------------

file dgesv.f  dgesv.f plus dependencies
prec double
for  Solves a general system of linear equations AX=B.
gams d2a1

file dsgesv.f  dsgesv.f plus dependencies
prec double / single
for  Solves a general system of linear equations AX=B using iterativement refinement.

file dgbsv.f  dgbsv.f plus dependencies
prec double
for  Solves a general banded system of linear equations AX=B.
gams d2a2

file dgtsv.f  dgtsv.f plus dependencies
prec double
for  Solves a general tridiagonal system of linear equations AX=B.
gams d2a2a

http://en.wikipedia.org/wiki/List_of_numerical_libraries
a list of libraries:

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/double/dgesv.f
http://www.netlib.org/lapack/double/dgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgesv.f
http://www.netlib.org/lapack/double/dsgesv.f
http://www.netlib.org/lapack/double/dsgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dsgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dsgesv.f
http://www.netlib.org/lapack/double/dgbsv.f
http://www.netlib.org/lapack/double/dgbsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgbsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgbsv.f
http://www.netlib.org/lapack/double/dgtsv.f
http://www.netlib.org/lapack/double/dgtsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgtsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgtsv.f
http://en.wikipedia.org/wiki/List_of_numerical_libraries
http://en.wikipedia.org/wiki/List_of_numerical_libraries
http://en.wikipedia.org/wiki/List_of_numerical_libraries


Example
      SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*  Purpose
*  =======
*  DGTSV  solves the equation
*     A*X = B,
*  where A is an n by n tridiagonal matrix, by Gaussian elimination with
*  partial pivoting.
*  Arguments
*  =========
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, DL must contain the (n-1) sub-diagonal elements of
*          A.
*
*          On exit, DL is overwritten by the (n-2) elements of the
*          second super-diagonal of the upper triangular matrix U from
*          the LU factorization of A, in DL(1), ..., DL(n-2).
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, D must contain the diagonal elements of A.
*
*          On exit, D is overwritten by the n diagonal elements of U.
*
*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, DU must contain the (n-1) super-diagonal elements
*          of A.
*
*          On exit, DU is overwritten by the (n-1) elements of the first
*          super-diagonal of U.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, the N by NRHS matrix of right hand side matrix B.
*          On exit, if INFO = 0, the N by NRHS solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, U(i,i) is exactly zero, and the solution
*               has not been computed.  The factorization has not been
*               completed unless i = N.
*
*  =====================================================================
*

be careful & read the routine description; 
some of the input matrices are overwritten!



once LAPACK libraries are installed, you can just call the routines


