Linear Systems &
Matrices

Prateek Sharma (prateek(@physics.iisc.ernet.in)
Office: D2-08

mailto:prateek@physics.iisc.ernet.in
mailto:prateek@physics.iisc.ernet.in

Extremely Imp.

used almost everywhere
multi-D root finding, interpolation, PDEs
even for nonlinear systems

exact solution O(N?) expensive! special
forms (tridiagonal) much faster

iterative methods - very useful in physics

LAPACK - the linear algebra library

Introduction

N unknowns z;, 7 = 1,2,..., N are related by M equations
a1121 + a1222 + a13r3 + - +aiNTN = b1
a2121 + a22%2 + a23T3 + -+ - + aaNTN = b2

a31T1 + azox2 + aszz3xrs + - - - +asyxry = b3

ap1T1 + aproxs + aprsxs + -+ apyNTN = by

if N=M; good chance of finding unique solution. No unique soln. if
-row degeneracy: if one or more rows a linear combination of others
-column degeneracy: all eqgs. have certain unknowns in same linear comb.
degenerate set of eqs. : singular
be careful, numerical solution of close to singular systems is tricky!
if N large: round-off errors can make the intermediate system singular

Matrices

A-x=Db

M<N, or if egs. are degenerate, infinitely many solutions; x=x,+any linear
combination of (N-M) vectors (null-space)

M>N: overdetermined, no solution in general; least sqgr. solution s.t.,
||b-Ax]|2 is minimized

we will only deal with NxN matrices

How fast diff. ops.!

vector-vector dot product u'.v : N Flops
matrix-vector product: N? Flops
matrix-matrix product: N3 Flops (can be bettered!)

matrix inverse, e.g., Gaussian Elim., Gauss-Jordan,
LU decomposition: N3 Flops (can be bettered!)

solving Ax=b: O(N3) for exact solution: can be
faster for special (e.g., banded) matrices; iterative
methods

Gauss-Jordan Elimination

slower than LU decomposition for solving Ax=b but good for finding inverse

a12 ais I11 12 13 Y11 Y12 Y13 Y14
I21 22 23 Y21 Y22 Y23 Y24
T31 32 33 Y31 Y32 Y33 Y34
T41 T42 43 Ya1 Y42 Y43 Ya4

b11 b12 b13
ba1 bao ba3
b31 b32 b33
ba1 bao b43

Al - [xg Uxo LUx3 Y] = [by Ubsg Libs L]

A'X1:b1 A'X2:b2 A'X3:b3

Y =1

Ok to interchange rows of A and corresponding rows of b (& |); just reordering egs.

soln. unchanged if a row in A and b (&l) are replaced by linear comb. of other rows.

Interchanging any two columns of A gives the same solution set only if we simultaneously interchange corresponding rows
of the x’s and of Y.

Gauss-Jordan elimination uses one or more of the above operations to reduce the matrix A to the identity matrix.

)

| aj2/ar) ars/ar aj4/a

a1 @22 Q23 a24
Ri/ar relabel

R3=R3-a32R>

Ri=Ri-a12R2 l

I
I
a3

d4?2

Ra/a2;

apply same row operations to the RHS; transform A to |,
transformed b/l will be the solution/inverse

Pivoting

run into trouble 1f we ever encounter a zero element on the (then current) diagonal (pi1vot)

Pivoting: changing order of rows/columns in the matrix (A) to choose a desirable pivot,
[& RHS (b), unknown (x)]
Partial pivoting: just rearranging rows of A and b (almost always fine)

Full pivoting: rearranging columns of A and rows of x
w.o. pivoting GJ and other methods are numerically unstable!

simply picking the largest (in magnitude) available element as the pivot is a very good choice
largest after normalizing the biggest coefficient to 1: implicit pivoting

1/100 1 1/4 : 1 1

:"/10 0 1/5 n nZfoePcllieir:ncz ;fatrix :'/10 0 1/5
‘ 11| P 1/100 1 1/4

Row vs. Column Ops.

row-operations column operations

A-x=Db
A-C;-

(-'R3-Ra-Ri-A)-x=--Rs-R2-Ry -b A-C-Ca-Cyt

(1)-x=---R3-R2-Ry -b
x=---R3-Ry-R;-b

(A-C;-C2-C3---)---C3"-C;"-

- X

interchange of rows (columns) 2 and 4 via X=0C1-C2-C3---b

left (right) multiplication of following

_ - need to store column ops. at
1 0 0 O each step to get the solution!

row operations are much simpler

0 0 1
0 1 0
0 0 0

Gaussian Elimination

Ay iy
reduce the matrix to an upper-triangular
form via row ops. & PP

|/3 as expensive as G

/ /
o3 Ugy

/ /
33 A3y

O CLZL4 _

Backsubstitution:

g /
L4 = b4/a44

L-U Decomposition

A-x=(L-U)-x=L-(U-x)=Db
P11 I

0
0
0

0
22
32
Q42

0
0

33

0
0
0

Q44 |

forward substitution

Y1 =

o

B12

B22
0

0

B13
B23

B33
0

B14
B24
B34
Baa

a1l
a1
a3i
a41

backward substitution

LU algorithm

xii= |; N2 unknown and N? egs.

1 <] ;1015 + o202,
L= 047;1513' e Oéz'252j

L >] 1015 + a2,

Crout’s algorithm:

Qi=1, | = 1,...,N
For each | =1,2,3,...,N
fori=1,2,...,]

. . " k:1
fori=j+1,+2,...,N

n - Oéz'fzﬁz'j — U4y
- 3 Oéiiﬁjj — Qg5

ot @if = agg

B2, b1z P47
Baz| B2z Boa
aza| 033 B34

\ 4
0y g3 (44 -

recommended: as same LU decomp.
can be applied to diff RHS

N
det = H ﬁjj
=1

Banded Matrices

already met tridiagonal systems: O(N); no need of pivoting bi| > |a;| + |c;]

GE & LU decomp. less expensive for banded matrices, e.g., Thomas algorithm for tridiagonal matrices

stored as
—>

do not want to store zeros and waste memory

Iterative Improvement

A-x=Db

numerical soln. not exact

A-(x+6x)=b-+6b

A-6x = 06b

A-ox=A-(x+6x)—Db

apply the correction: O(N2) matrix-vector
multiplication & since LU decomp. already available
NR recommends this highly

LAPACK

a F90 library of linear algebra routines (http://www.netlib.org/lapack/)

you can download it and install on your computer

plus dependencies

prec double
for Solves a general system of linear equations AX=B.
gams d2al

file dsgesv.f dsgesv.f plus dependencies
prec double / single
for Solves a general system of linear equations AX=B using iterativement refinement.

file dgbsv.f dgbsv.f plus dependencies

prec double

for Solves a general banded system of linear equations AX=B.
gams d2a2

file dgtsv.f dgtsv.f plus dependencies

prec double

for Solves a general tridiagonal system of linear equations AX=B.
gams d2ala

a list of libraries:

http://en.wikipedia.org/wiki/List of numerical libraries

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/double/dgesv.f
http://www.netlib.org/lapack/double/dgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgesv.f
http://www.netlib.org/lapack/double/dsgesv.f
http://www.netlib.org/lapack/double/dsgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dsgesv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dsgesv.f
http://www.netlib.org/lapack/double/dgbsv.f
http://www.netlib.org/lapack/double/dgbsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgbsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgbsv.f
http://www.netlib.org/lapack/double/dgtsv.f
http://www.netlib.org/lapack/double/dgtsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgtsv.f
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/double/dgtsv.f
http://en.wikipedia.org/wiki/List_of_numerical_libraries
http://en.wikipedia.org/wiki/List_of_numerical_libraries
http://en.wikipedia.org/wiki/List_of_numerical_libraries

Example

SUBROUTINE DGTSV(N, NRHS, DL, D, DU, B, LDB, INFO)
Purpose

*

*

DGTSV solves the equation
A*X = B,
where A is an n by n tridiagonal matrix, by Gaussian elimination with

partial pivoting. . < o .
Arquments be careful & read the routine description;
some of the input matrices are overwritten!

* % X F %k

*

(input) INTEGER
The order of the matrix A. N >= 0.

(input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

(input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, DL must contain the (n-1) sub-diagonal elements of
A.

On exit, DL is overwritten by the (n-2) elements of the
second super-diagonal of the upper triangular matrix U from

the LU factorization of A, in DL(1l), ..., DL(n-2).

(input/output) DOUBLE PRECISION array, dimension (N)
On entry, D must contain the diagonal elements of A.

On exit, D is overwritten by the n diagonal elements of U.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

once LAPACK libraries are installed, you can just call the routines

#object file
OBJ = modules.o fullimp_cons_reg.o ini_setup.o output.o update.o
#macro definitions
FC = ifort
OPTS = -¢ -02
LAPACKHOME = /sw/src/lapack-3.2.1/
#targets
compile:
${FC} ${OPTS} modules.f90
${FC} ${0PTS} fullimp_cons_req.f90 ini_setup.f90 output.f90 update.f90

${FC} -0 run.exe ${0BJ} -L${LAPACKHOME} -1lapack -lblas
c lean:

rm -f %x.0 fort.x *x.mod run.exe

d(0) = 1.0; d(in+1) = 1.0; du(@) = 1.0; dl(in+1) = 1.0; b(0) = 0.0 blinF) =00
dl=d; dl1=dl; dul-=du

CALL dgtsv(in+2, 1, dl(1:in+1), d(@:in+1), du(@:in), b(@:in+1), in+2, info)

u=0.0; u(0)=1.0; u(in+1) = 1.0; bu=u
vt=0.0; vt(1)=-1.0; vt(in)=-1.0

! must remember that the values of dl, etc. are changed after the subroutine!

CALL dgtsv(in+2, 1, dl1(1:in+1), d1(@:in+1), dul(@:in), bu(@:in+1)5 in+2, info)

do 1=0, in+l
f(i) = b(i) + bu(i)=(b(1)+b(in))/(1.0-bu(1l)-bu(in))
enddo

