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Iterative Methods

1. Introduction

When I decided to learn the Conjugate GradientMethod (henceforth, CG), I read four different descriptions,
which I shall politely not identify. I understood none of them. Most of them simply wrote down the method,
then proved its properties without any intuitive explanation or hint of how anybody might have invented CG
in the first place. This article was born of my frustration, with the wish that future students of CG will learn
a rich and elegant algorithm, rather than a confusing mass of equations.

CG is the most popular iterative method for solving large systems of linear equations. CG is effective
for systems of the form

(1)

where is an unknown vector, is a known vector, and is a known, square, symmetric, positive-definite
(or positive-indefinite) matrix. (Don’t worry if you’ve forgotten what “positive-definite” means; we shall
review it.) These systems arise in many important settings, such as finite difference and finite element
methods for solving partial differential equations, structural analysis, circuit analysis, and math homework.

Iterative methods like CG are suited for use with sparse matrices. If is dense, your best course of
action is probably to factor and solve the equation by backsubstitution. The time spent factoring a dense
is roughly equivalent to the time spent solving the system iteratively; and once is factored, the system

can be backsolved quickly for multiple values of . Compare this dense matrix with a sparse matrix of
larger size that fills the same amount of memory. The triangular factors of a sparse usually have many
more nonzero elements than itself. Factoring may be impossible due to limited memory, and will be
time-consuming as well; even the backsolving step may be slower than iterative solution. On the other
hand, most iterative methods are memory-efficient and run quickly with sparse matrices.

I assume that you have taken a first course in linear algebra, and that you have a solid understanding
of matrix multiplication and linear independence, although you probably don’t remember what those
eigenthingies were all about. From this foundation, I shall build the edifice of CG as clearly as I can.

2. Notation

Let us begin with a few definitions and notes on notation.

With a few exceptions, I shall use capital letters to denote matrices, lower case letters to denote vectors,
and Greek letters to denote scalars. is an matrix, and and are vectors — that is, 1 matrices.
Written out fully, Equation 1 is

11 12 1

21 22 2
... . . . ...
1 2

1

2
...

1

2
...

The inner product of two vectors is written , and represents the scalar sum 1 . Note that
. If and are orthogonal, then 0. In general, expressions that reduce to 1 1 matrices,

such as and , are treated as scalar values.

huge/important topic of iterative solution: 
very useful for sparse, well-behaved, physical matrices.

e.g., Jacobi relaxation; A=D(diagonal matrix)+E(0 diagonal elements)

Thinking with Eigenvectors and Eigenvalues 11
5.2. Jacobi iterations

Of course, a procedure that always converges to zero isn’t going to help you attract friends. Consider a more
useful procedure: the Jacobi Method for solving . The matrix is split into two parts: , whose
diagonal elements are identical to those of , and whose off-diagonal elements are zero; and , whose
diagonal elements are zero, and whose off-diagonal elements are identical to those of . Thus, .
We derive the Jacobi Method:

1 1

where 1 1 (14)

Because is diagonal, it is easy to invert. This identity can be converted into an iterative method by
forming the recurrence

1 (15)

Given a starting vector 0 , this formula generates a sequence of vectors. Our hope is that each successive
vector will be closer to the solution than the last. is called a stationary point of Equation 15, because if

, then 1 will also equal .

Now, this derivation may seem quite arbitrary to you, and you’re right. We could have formed any
number of identities for instead of Equation 14. In fact, simply by splitting differently — that is,
by choosing a different and — we could have derived the Gauss-Seidel method, or the method of
Successive Over-Relaxation (SOR). Our hope is that we have chosen a splitting for which has a small
spectral radius. Here, I chose the Jacobi splitting arbitrarily for simplicity.

Suppose we start with some arbitrary vector 0 . For each iteration, we apply to this vector, then add
to the result. What does each iteration do?

Again, apply the principle of thinking of a vector as a sum of other, well-understood vectors. Express
each iterate as the sum of the exact solution and the error term . Then, Equation 15 becomes

1

(by Equation 14)

1 (16)

Each iteration does not affect the “correct part” of (because is a stationary point); but each iteration
does affect the error term. It is apparent from Equation 16 that if 1, then the error term will
converge to zero as approaches infinity. Hence, the initial vector 0 has no effect on the inevitable
outcome!

Of course, the choice of 0 does affect the number of iterations required to converge to within
a given tolerance. However, its effect is less important than that of the spectral radius , which
determines the speed of convergence. Suppose that is the eigenvector of with the largest eigenvalue
(so that ). If the initial error 0 , expressed as a linear combination of eigenvectors, includes a
component in the direction of , this component will be the slowest to converge.

iterative method:
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4. The Method of Steepest Descent

In the method of Steepest Descent, we start at an arbitrary point 0 and slide down to the bottom of the
paraboloid. We take a series of steps 1 2 until we are satisfied that we are close enough to the
solution .

When we take a step, we choose the direction in which decreases most quickly, which is the direction
opposite . According to Equation 7, this direction is .

Allow me to introduce a few definitions, which you should memorize. The error is a
vector that indicates how far we are from the solution. The residual indicates how far we
are from the correct value of . It is easy to see that , and you should think of the residual as
being the error transformed by into the same space as . More importantly, , and you
should also think of the residual as the direction of steepest descent. For nonlinear problems, discussed in
Section 14, only the latter definition applies. So remember, whenever you read “residual”, think “direction
of steepest descent.”

Suppose we start at 0 2 2 . Our first step, along the direction of steepest descent, will fall
somewhere on the solid line in Figure 6(a). In other words, we will choose a point

1 0 0 (9)

The question is, how big a step should we take?

A line search is a procedure that chooses to minimize along a line. Figure 6(b) illustrates this task:
we are restricted to choosing a point on the intersection of the vertical plane and the paraboloid. Figure 6(c)
is the parabola defined by the intersection of these surfaces. What is the value of at the base of the
parabola?

From basic calculus, minimizes when the directional derivative 1 is equal to zero. By the
chain rule, 1 1 1 1 0 . Setting this expression to zero, we find that
should be chosen so that 0 and 1 are orthogonal (see Figure 6(d)).

There is an intuitive reason why we should expect these vectors to be orthogonal at the minimum.
Figure 7 shows the gradient vectors at various points along the search line. The slope of the parabola
(Figure 6(c)) at any point is equal to the magnitude of the projection of the gradient onto the line (Figure 7,
dotted arrows). These projections represent the rate of increase of as one traverses the search line. is
minimized where the projection is zero — where the gradient is orthogonal to the search line.

To determine , note that 1 1 , and we have

1 0 0

1 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0
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converges if largest eigenvalue 
(spectral radius ρB<1)

matrix-vector product is fast to evaluate for sparse matrices



An Example 
Poisson equation

Φ/h2 = f

can be solved exactly in O(N) via tridiagonal

in 2D: several bands separated by N-1 zeros
no fast method to solve it!

Jacobi is as good as in 1-D

N

N



Steepest Descent
N linear equations => fn. minimization in N-dimensional space
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Figure 1: Sample two-dimensional linear system. The solution lies at the intersection of the lines.

A matrix is positive-definite if, for every nonzero vector ,

0 (2)

This may mean little to you, but don’t feel bad; it’s not a very intuitive idea, and it’s hard to imagine how
a matrix that is positive-definite might look differently from one that isn’t. We will get a feeling for what
positive-definiteness is about when we see how it affects the shape of quadratic forms.

Finally, don’t forget the important basic identities and 1 1 1.

3. The Quadratic Form

A quadratic form is simply a scalar, quadratic function of a vector with the form

1
2

(3)

where is a matrix, and are vectors, and is a scalar constant. I shall show shortly that if is symmetric
and positive-definite, is minimized by the solution to .

Throughout this paper, I will demonstrate ideas with the simple sample problem

3 2
2 6

2
8 0 (4)

The system is illustrated in Figure 1. In general, the solution lies at the intersection point
of hyperplanes, each having dimension 1. For this problem, the solution is 2 2 . The
corresponding quadratic form appears in Figure 2. A contour plot of is illustrated in Figure 3.

positive definite for every x; positive eigenvalues

-only reference A via multiplication to a vector (don’t need A explicitly);  Av fast for  sparse matrices
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quadratic form:
minimized at root x
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class of general methods: step some in search directions till convergence
for symmetric, positive definite A (a lot of physics eqs. are of this class)
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Figure 2: Graph of a quadratic form . The minimum point of this surface is the solution to .
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Figure 3: Contours of the quadratic form. Each ellipsoidal curve has constant .
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solution via intersection 
of hyperplanes

contourplot of quadratic form

surface plot of quadratic form
v1 eigenvector w. λ1 , larger e.v.

v2
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Figure 4: Gradient of the quadratic form. For every , the gradient points in the direction of steepest
increase of , and is orthogonal to the contour lines.

Because is positive-definite, the surface defined by is shaped like a paraboloid bowl. (I’ll have more
to say about this in a moment.)

The gradient of a quadratic form is defined to be

1

2 ...
(5)

The gradient is a vector field that, for a given point , points in the direction of greatest increase of .
Figure 4 illustrates the gradient vectors for Equation 3 with the constants given in Equation 4. At the bottom
of the paraboloid bowl, the gradient is zero. One can minimize by setting equal to zero.

With a little bit of tedious math, one can apply Equation 5 to Equation 3, and derive

1
2

1
2

(6)

If is symmetric, this equation reduces to

(7)

Setting the gradient to zero, we obtain Equation 1, the linear system we wish to solve. Therefore, the
solution to is a critical point of . If is positive-definite as well as symmetric, then this
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A is symmetric
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Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of , so can be solved by finding an that minimizes . (If is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . Note that
1
2 is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between
at some arbitrary point and at the solution point 1 . FromEquation 3 one can show (AppendixC1)

that if is symmetric (be it positive-definite or not),

1
2

(8)

If is positive-definite as well, then by Inequality 2, the latter term is positive for all . It follows that
is a global minimum of .

The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
If is not positive-definite, there are several other possibilities. could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down). might be singular, in which
case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for . If
is none of the above, then is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of and determine where the minimum point of the
paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.

=> x (root) is minimum of f

Properties of QF

f’ is along the direction of steepest ascent of f(x)
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4. The Method of Steepest Descent

In the method of Steepest Descent, we start at an arbitrary point 0 and slide down to the bottom of the
paraboloid. We take a series of steps 1 2 until we are satisfied that we are close enough to the
solution .

When we take a step, we choose the direction in which decreases most quickly, which is the direction
opposite . According to Equation 7, this direction is .

Allow me to introduce a few definitions, which you should memorize. The error is a
vector that indicates how far we are from the solution. The residual indicates how far we
are from the correct value of . It is easy to see that , and you should think of the residual as
being the error transformed by into the same space as . More importantly, , and you
should also think of the residual as the direction of steepest descent. For nonlinear problems, discussed in
Section 14, only the latter definition applies. So remember, whenever you read “residual”, think “direction
of steepest descent.”

Suppose we start at 0 2 2 . Our first step, along the direction of steepest descent, will fall
somewhere on the solid line in Figure 6(a). In other words, we will choose a point

1 0 0 (9)

The question is, how big a step should we take?

A line search is a procedure that chooses to minimize along a line. Figure 6(b) illustrates this task:
we are restricted to choosing a point on the intersection of the vertical plane and the paraboloid. Figure 6(c)
is the parabola defined by the intersection of these surfaces. What is the value of at the base of the
parabola?

From basic calculus, minimizes when the directional derivative 1 is equal to zero. By the
chain rule, 1 1 1 1 0 . Setting this expression to zero, we find that
should be chosen so that 0 and 1 are orthogonal (see Figure 6(d)).

There is an intuitive reason why we should expect these vectors to be orthogonal at the minimum.
Figure 7 shows the gradient vectors at various points along the search line. The slope of the parabola
(Figure 6(c)) at any point is equal to the magnitude of the projection of the gradient onto the line (Figure 7,
dotted arrows). These projections represent the rate of increase of as one traverses the search line. is
minimized where the projection is zero — where the gradient is orthogonal to the search line.

To determine , note that 1 1 , and we have

1 0 0

1 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 0
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Figure 22: These pairs of vectors are -orthogonal because these pairs of vectors are orthogonal.

Steepest Descent. To see this, set the directional derivative to zero:

1 0

1 1 0

1 0

1 0

Following the derivation of Equation 30, here is the expression for when the search directions are
-orthogonal:

(31)

(32)

Unlike Equation 30, we can calculate this expression. Note that if the search vector were the residual, this
formula would be identical to the formula used by Steepest Descent.

for general SD
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Figure 6: The method of Steepest Descent. (a) Starting at 2 2 , take a step in the direction of steepest
descent of . (b) Find the point on the intersection of these two surfaces that minimizes . (c) This parabola
is the intersection of surfaces. The bottommost point is our target. (d) The gradient at the bottommost point
is orthogonal to the gradient of the previous step.
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Figure 7: The gradient is shown at several locations along the search line (solid arrows). Each gradient’s
projection onto the line is also shown (dotted arrows). The gradient vectors represent the direction of
steepest increase of , and the projections represent the rate of increase as one traverses the search line.
On the search line, is minimized where the gradient is orthogonal to the search line.

SD

α is where f achieves minimum along SD

dTiri+1=0; next residue is orthogonal to SD
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Figure 8: Here, the method of Steepest Descent starts at 2 2 and converges at 2 2 .

Putting it all together, the method of Steepest Descent is:

(10)

(11)

1 (12)

The example is run until it converges in Figure 8. Note the zigzag path, which appears because each
gradient is orthogonal to the previous gradient.

The algorithm, as written above, requires two matrix-vector multiplications per iteration. The computa-
tional cost of Steepest Descent is dominated by matrix-vector products; fortunately, one can be eliminated.
By premultiplying both sides of Equation 12 by and adding , we have

1 (13)

Although Equation 10 is still needed to compute 0 , Equation 13 can be used for every iteration thereafter.
The product , which occurs in both Equations 11 and 13, need only be computed once. The disadvantage
of using this recurrence is that the sequence defined by Equation 13 is generated without any feedback from
the value of , so that accumulation of floating point roundoff error may cause to converge to some
point near . This effect can be avoided by periodically using Equation 10 to recompute the correct residual.

Before analyzing the convergence of Steepest Descent, I must digress to ensure that you have a solid
understanding of eigenvectors.
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Figure 14: Steepest Descent converges to the exact solution on the first iteration if the error term is an
eigenvector.

symmetric, there exists a set of orthogonal eigenvectors of . As we can scale eigenvectors arbitrarily,
let us choose so that each eigenvector is of unit length. This choice gives us the useful property that

1
0 (17)

Express the error term as a linear combination of eigenvectors

1
(18)

where is the length of each component of . FromEquations 17 and 18we have the following identities:

(19)

2 2 (20)

2 (21)

2 2 2 (22)

2 3 (23)
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Figure 15: Steepest Descent converges to the exact solution on the first iteration if the eigenvalues are all
equal.

Equation 19 shows that too can be expressed as a sum of eigenvector components, and the length of
these components are . Equations 20 and 22 are just Pythagoras’ Law.

Now we can proceed with the analysis. Equation 12 gives

1

2 2

2 3 (24)

We saw in the last example that, if has only one eigenvector component, then convergence is
achieved in one step by choosing 1. Now let’s examine the case where is arbitrary, but all the
eigenvectors have a common eigenvalue . Equation 24 becomes

1

2 2

3 2

0

Figure 15 demonstrates why, once again, there is instant convergence. Because all the eigenvalues are
equal, the ellipsoid is spherical; hence, no matter what point we start at, the residual must point to the center
of the sphere. As before, choose 1.

error expanded as LC of independent eigenvectors
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minimizing . With this norm, we have
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The analysis depends on finding an upper bound for . To demonstrate how the weights and eigenvalues
affect convergence, I shall derive a result for 2. Assume that 1 2. The spectral condition number
of is defined to be 1 2 1. The slope of (relative to the coordinate system defined by the
eigenvectors), which depends on the starting point, is denoted 2 1. We have
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The value of , which determines the rate of convergence of Steepest Descent, is graphed as a function
of and in Figure 17. The graph confirms my two examples. If 0 is an eigenvector, then the slope
is zero (or infinite); we see from the graph that is zero, so convergence is instant. If the eigenvalues are
equal, then the condition number is one; again, we see that is zero.

Figure 18 illustrates examples from near each of the four corners of Figure 17. These quadratic forms
are graphed in the coordinate system defined by their eigenvectors. Figures 18(a) and 18(b) are examples
with a large condition number. Steepest Descent can converge quickly if a fortunate starting point is chosen
(Figure 18(a)), but is usually at its worst when is large (Figure 18(b)). The latter figure gives us our best
intuition for why a large condition number can be bad: forms a trough, and Steepest Descent bounces
back and forth between the sides of the trough while making little progress along its length. In Figures 18(c)
and 18(d), the condition number is small, so the quadratic form is nearly spherical, and convergence is quick
regardless of the starting point.

Holding constant (because is fixed), a little basic calculus reveals that Equation 26 is maximized
when . In Figure 17, one can see a faint ridge defined by this line. Figure 19 plots worst-case
starting points for our sample matrix . These starting points fall on the lines defined by 2 1 . An
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The analysis depends on finding an upper bound for . To demonstrate how the weights and eigenvalues
affect convergence, I shall derive a result for 2. Assume that 1 2. The spectral condition number
of is defined to be 1 2 1. The slope of (relative to the coordinate system defined by the
eigenvectors), which depends on the starting point, is denoted 2 1. We have
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The value of , which determines the rate of convergence of Steepest Descent, is graphed as a function
of and in Figure 17. The graph confirms my two examples. If 0 is an eigenvector, then the slope
is zero (or infinite); we see from the graph that is zero, so convergence is instant. If the eigenvalues are
equal, then the condition number is one; again, we see that is zero.

Figure 18 illustrates examples from near each of the four corners of Figure 17. These quadratic forms
are graphed in the coordinate system defined by their eigenvectors. Figures 18(a) and 18(b) are examples
with a large condition number. Steepest Descent can converge quickly if a fortunate starting point is chosen
(Figure 18(a)), but is usually at its worst when is large (Figure 18(b)). The latter figure gives us our best
intuition for why a large condition number can be bad: forms a trough, and Steepest Descent bounces
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and 18(d), the condition number is small, so the quadratic form is nearly spherical, and convergence is quick
regardless of the starting point.

Holding constant (because is fixed), a little basic calculus reveals that Equation 26 is maximized
when . In Figure 17, one can see a faint ridge defined by this line. Figure 19 plots worst-case
starting points for our sample matrix . These starting points fall on the lines defined by 2 1 . An

amplification factor max when μ=κ

20 Jonathan Richard Shewchuk

-4 -2 2 4 6

-6

-4

-2

2

4

1

2

0

Figure 19: Solid lines represent the starting points that give the worst convergence for Steepest Descent.
Dashed lines represent steps toward convergence. If the first iteration starts from a worst-case point, so do
all succeeding iterations. Each step taken intersects the paraboloid axes (gray arrows) at precisely a 45
angle. Here, 3 5.

upper bound for (corresponding to the worst-case starting points) is found by setting 2 2:
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Inequality 27 is plotted in Figure 20. The more ill-conditioned the matrix (that is, the larger its condition
number ), the slower the convergence of Steepest Descent. In Section 9.2, it is proven that Equation 27 is
also valid for 2, if the condition number of a symmetric, positive-definite matrix is defined to be

the ratio of the largest to smallest eigenvalue. The convergence results for Steepest Descent are

1
1 0 and (28)
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Figure 20: Convergence of Steepest Descent (per iteration) worsens as the condition number of the matrix
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7. The Method of Conjugate Directions

7.1. Conjugacy

Steepest Descent often finds itself taking steps in the same direction as earlier steps (see Figure 8). Wouldn’t
it be better if, every time we took a step, we got it right the first time? Here’s an idea: let’s pick a set of
orthogonal search directions 0 1 1 . In each search direction, we’ll take exactly one step,
and that step will be just the right length to line up evenly with . After steps, we’ll be done.

Figure 21 illustrates this idea, using the coordinate axes as search directions. The first (horizontal) step
leads to the correct 1-coordinate; the second (vertical) step will hit home. Notice that 1 is orthogonal to
0 . In general, for each step we choose a point

1 (29)

To find the value of , use the fact that 1 should be orthogonal to , so that we need never step in

condition number
determines rate of conv.
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viewed as a process of cutting down the error term component by component (see Figure 23(b)).
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After iterations, every component is cut away, and 0; the proof is complete.

7.2. Gram-Schmidt Conjugation

All that is needed now is a set of -orthogonal search directions . Fortunately, there is a simple way
to generate them, called a conjugate Gram-Schmidt process.

Suppose we have a set of linearly independent vectors 0 1 1. The coordinate axes will
do in a pinch, although more intelligent choices are possible. To construct , take and subtract out
any components that are not -orthogonal to the previous vectors (see Figure 24). In other words, set
0 0, and for 0, set

1

0
(36)

where the are defined for . To find their values, use the same trick used to find :
1

0

0 (by -orthogonality of vectors)

(37)

The difficulty with using Gram-Schmidt conjugation in the method of Conjugate Directions is that all
the old search vectors must be kept in memory to construct each new one, and furthermore 3 operations
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Figure 24: Gram-Schmidt conjugation of two vectors. Begin with two linearly independent vectors 0 and
1. Set 0 0. The vector 1 is composed of two components: , which is -orthogonal (or conjugate)
to 0 , and , which is parallel to 0 . After conjugation, only the -orthogonal portion remains, and
1 .

construct A-orthogonal vectors (di) from a set of LI vectors (ui), for i=0,..,n-1 
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Figure 25: The method of Conjugate Directions using the axial unit vectors, also known as Gaussian
elimination.

are required to generate the full set. In fact, if the search vectors are constructed by conjugation of the axial
unit vectors, Conjugate Directions becomes equivalent to performing Gaussian elimination (see Figure 25).
As a result, the method of Conjugate Directions enjoyed little use until the discovery of CG — which is a
method of Conjugate Directions — cured these disadvantages.

An important key to understanding the method of Conjugate Directions (and also CG) is to notice
that Figure 25 is just a stretched copy of Figure 21! Remember that when one is performing the method
of Conjugate Directions (including CG), one is simultaneously performing the method of Orthogonal
Directions in a stretched (scaled) space.

7.3. Optimality of the Error Term

Conjugate Directions has an interesting property: it finds at every step the best solution within the bounds
of where it’s been allowed to explore. Where has it been allowed to explore? Let be the -dimensional
subspace span 0 1 1 ; the value is chosen from 0 . What do I mean by “best
solution”? I mean that Conjugate Directions chooses the value from 0 that minimizes (see
Figure 26). In fact, some authors derive CG by trying to minimize within 0 .

In the same way that the error term can be expressed as a linear combination of search directions

with A-orthogonal SDs convergence is 
guaranteed in n steps, unlike SD

these directions are orthogonal if eigenvector directions are 
normalized by eigenvalues of A
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CG is method of conjugate directions where LI vectors to be conjugated to form 

SDs are {r0, r1, ..., rn-1}  
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.

To conclude this section, I note that as with the method of Steepest Descent, the number of matrix-vector
products per iteration can be reduced to one by using a recurrence to find the residual:

1 1

(43)

8. The Method of Conjugate Gradients

It may seem odd that an article about CG doesn’t describe CG until page 30, but all the machinery is now in
place. In fact, CG is simply the method of Conjugate Directions where the search directions are constructed
by conjugation of the residuals (that is, by setting ).

This choice makes sense for many reasons. First, the residuals worked for Steepest Descent, so why not
for Conjugate Directions? Second, the residual has the nice property that it’s orthogonal to the previous
search directions (Equation 39), so it’s guaranteed always to produce a new, linearly independent search
direction unless the residual is zero, in which case the problem is already solved. As we shall see, there is
an even better reason to choose the residual.

Let’s consider the implications of this choice. Because the search vectors are built from the residuals, the
subspace span 0 1 1 is equal to . As each residual is orthogonal to the previous search
directions, it is also orthogonal to the previous residuals (see Figure 29); Equation 41 becomes

0 (44)

Interestingly, Equation 43 shows that each new residual is just a linear combination of the previous
residual and 1 . Recalling that 1 , this fact implies that each new subspace 1 is formed
from the union of the previous subspace and the subspace . Hence,
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.
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orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.
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Figure 25: The method of Conjugate Directions using the axial unit vectors, also known as Gaussian
elimination.

are required to generate the full set. In fact, if the search vectors are constructed by conjugation of the axial
unit vectors, Conjugate Directions becomes equivalent to performing Gaussian elimination (see Figure 25).
As a result, the method of Conjugate Directions enjoyed little use until the discovery of CG — which is a
method of Conjugate Directions — cured these disadvantages.

An important key to understanding the method of Conjugate Directions (and also CG) is to notice
that Figure 25 is just a stretched copy of Figure 21! Remember that when one is performing the method
of Conjugate Directions (including CG), one is simultaneously performing the method of Orthogonal
Directions in a stretched (scaled) space.

7.3. Optimality of the Error Term

Conjugate Directions has an interesting property: it finds at every step the best solution within the bounds
of where it’s been allowed to explore. Where has it been allowed to explore? Let be the -dimensional
subspace span 0 1 1 ; the value is chosen from 0 . What do I mean by “best
solution”? I mean that Conjugate Directions chooses the value from 0 that minimizes (see
Figure 26). In fact, some authors derive CG by trying to minimize within 0 .

In the same way that the error term can be expressed as a linear combination of search directions
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Figure 25: The method of Conjugate Directions using the axial unit vectors, also known as Gaussian
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are required to generate the full set. In fact, if the search vectors are constructed by conjugation of the axial
unit vectors, Conjugate Directions becomes equivalent to performing Gaussian elimination (see Figure 25).
As a result, the method of Conjugate Directions enjoyed little use until the discovery of CG — which is a
method of Conjugate Directions — cured these disadvantages.

An important key to understanding the method of Conjugate Directions (and also CG) is to notice
that Figure 25 is just a stretched copy of Figure 21! Remember that when one is performing the method
of Conjugate Directions (including CG), one is simultaneously performing the method of Orthogonal
Directions in a stretched (scaled) space.

7.3. Optimality of the Error Term

Conjugate Directions has an interesting property: it finds at every step the best solution within the bounds
of where it’s been allowed to explore. Where has it been allowed to explore? Let be the -dimensional
subspace span 0 1 1 ; the value is chosen from 0 . What do I mean by “best
solution”? I mean that Conjugate Directions chooses the value from 0 that minimizes (see
Figure 26). In fact, some authors derive CG by trying to minimize within 0 .

In the same way that the error term can be expressed as a linear combination of search directions
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.

To conclude this section, I note that as with the method of Steepest Descent, the number of matrix-vector
products per iteration can be reduced to one by using a recurrence to find the residual:
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for Conjugate Directions? Second, the residual has the nice property that it’s orthogonal to the previous
search directions (Equation 39), so it’s guaranteed always to produce a new, linearly independent search
direction unless the residual is zero, in which case the problem is already solved. As we shall see, there is
an even better reason to choose the residual.
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.
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products per iteration can be reduced to one by using a recurrence to find the residual:
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Figure 28: Because the search directions 0 1 are constructed from the vectors 0 1, they span the
same subspace 2 (the gray-colored plane). The error term 2 is -orthogonal to 2, the residual 2 is
orthogonal to 2, and a new search direction 2 is constructed (from 2) to be -orthogonal to 2. The
endpoints of 2 and 2 lie on a plane parallel to 2, because 2 is constructed from 2 by Gram-Schmidt
conjugation.
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by conjugation of the residuals (that is, by setting ).

This choice makes sense for many reasons. First, the residuals worked for Steepest Descent, so why not
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subspace span 0 1 1 is equal to . As each residual is orthogonal to the previous search
directions, it is also orthogonal to the previous residuals (see Figure 29); Equation 41 becomes

0 (44)

Interestingly, Equation 43 shows that each new residual is just a linear combination of the previous
residual and 1 . Recalling that 1 , this fact implies that each new subspace 1 is formed
from the union of the previous subspace and the subspace . Hence,
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Figure 29: In the method of Conjugate Gradients, each new residual is orthogonal to all the previous
residuals and search directions; and each new search direction is constructed (from the residual) to be
-orthogonal to all the previous residuals and search directions. The endpoints of 2 and 2 lie on a

plane parallel to 2 (the shaded subspace). In CG, 2 is a linear combination of 2 and 1 .

This subspace is called a Krylov subspace, a subspace created by repeatedly applying a matrix to a
vector. It has a pleasing property: because is included in 1, the fact that the next residual 1
is orthogonal to 1 (Equation 39) implies that 1 is -orthogonal to . Gram-Schmidt conjugation
becomes easy, because 1 is already -orthogonal to all of the previous search directions except !

Recall from Equation 37 that the Gram-Schmidt constants are ; let us
simplify this expression. Taking the inner product of and Equation 43,
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1
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1
1

1
0 otherwise

(By Equation 44.)

1
1 1 1

1

0 1
(By Equation 37.)

As if by magic, most of the terms have disappeared. It is no longer necessary to store old search vectors
to ensure the -orthogonality of new search vectors. This major advance is what makes CG as important
an algorithm as it is, because both the space complexity and time complexity per iteration are reduced from

2 to , where is the number of nonzero entries of . Henceforth, I shall use the abbreviation
1. Simplifying further:

1 1
(by Equation 32)

1 1
(by Equation 42)

only ri, ri-1 needed to construct di; 
constructing conjugate basis cheap! 
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viewed as a process of cutting down the error term component by component (see Figure 23(b)).
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0

1

0
1

(35)

After iterations, every component is cut away, and 0; the proof is complete.

7.2. Gram-Schmidt Conjugation

All that is needed now is a set of -orthogonal search directions . Fortunately, there is a simple way
to generate them, called a conjugate Gram-Schmidt process.

Suppose we have a set of linearly independent vectors 0 1 1. The coordinate axes will
do in a pinch, although more intelligent choices are possible. To construct , take and subtract out
any components that are not -orthogonal to the previous vectors (see Figure 24). In other words, set
0 0, and for 0, set

1

0
(36)

where the are defined for . To find their values, use the same trick used to find :
1

0

0 (by -orthogonality of vectors)

(37)

The difficulty with using Gram-Schmidt conjugation in the method of Conjugate Directions is that all
the old search vectors must be kept in memory to construct each new one, and furthermore 3 operations
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u
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Figure 24: Gram-Schmidt conjugation of two vectors. Begin with two linearly independent vectors 0 and
1. Set 0 0. The vector 1 is composed of two components: , which is -orthogonal (or conjugate)
to 0 , and , which is parallel to 0 . After conjugation, only the -orthogonal portion remains, and
1 .
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In Figure 27(b), 0 and 1 appear perpendicular because they are -orthogonal. It is clear that 1

must point to the solution , because 0 is tangent at 1 to a circle whose center is . However, a
three-dimensional example is more revealing. Figures 27(c) and 27(d) each show two concentric ellipsoids.
The point 1 lies on the outer ellipsoid, and 2 lies on the inner ellipsoid. Look carefully at these figures:
the plane 0 2 slices through the larger ellipsoid, and is tangent to the smaller ellipsoid at 2 . The
point is at the center of the ellipsoids, underneath the plane.

Looking at Figure 27(c), we can rephrase our question. Suppose you and I are standing at 1 , and
want to walk to the point that minimizes on 0 2; but we are constrained to walk along the search
direction 1 . If 1 points to the minimum point, we will succeed. Is there any reason to expect that 1
will point the right way?

Figure 27(d) supplies an answer. Because 1 is -orthogonal to 0 , they are perpendicular in this
diagram. Now, suppose you were staring down at the plane 0 2 as if it were a sheet of paper; the
sight you’d see would be identical to Figure 27(b). The point 2 would be at the center of the paper,
and the point would lie underneath the paper, directly under the point 2 . Because 0 and 1 are
perpendicular, 1 points directly to 2 , which is the point in 0 2 closest to . The plane 0 2
is tangent to the sphere on which 2 lies. If you took a third step, it would be straight down from 2 to
, in a direction -orthogonal to 2.

Another way to understand what is happening in Figure 27(d) is to imagine yourself standing at the
solution point , pulling a string connected to a bead that is constrained to lie in 0 . Each time the
expanding subspace is enlarged by a dimension, the bead becomes free to move a little closer to you.
Now if you stretch the space so it looks like Figure 27(c), you have the Method of Conjugate Directions.

Another important property of Conjugate Directions is visible in these illustrations. We have seen that,
at each step, the hyperplane 0 is tangent to the ellipsoid on which lies. Recall from Section 4
that the residual at any point is orthogonal to the ellipsoidal surface at that point. It follows that is
orthogonal to as well. To show this fact mathematically, premultiply Equation 35 by :

1
(38)

0 (by -orthogonality of -vectors). (39)

We could have derived this identity by another tack. Recall that once we take a step in a search direction,
we need never step in that direction again; the error term is evermore -orthogonal to all the old search
directions. Because , the residual is evermore orthogonal to all the old search directions.

Because the search directions are constructed from the vectors, the subspace spanned by 0 1
is , and the residual is orthogonal to these previous vectors as well (see Figure 28). This is proven
by taking the inner product of Equation 36 and :

1

0
(40)

0 (by Equation 39) (41)

There is one more identity we will use later. From Equation 40 (and Figure 28),

(42)since
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Figure 30: The method of Conjugate Gradients.

Let’s put it all together into one piece now. The method of Conjugate Gradients is:

0 0 0 (45)

(by Equations 32 and 42) (46)

1

1 (47)

1
1 1

(48)

1 1 1 (49)

The performance of CG on our sample problem is demonstrated in Figure 30. The name “Conjugate
Gradients” is a bit of a misnomer, because the gradients are not conjugate, and the conjugate directions are
not all gradients. “Conjugated Gradients” would be more accurate.

9. Convergence Analysis of Conjugate Gradients

CG is complete after iterations, so why should we care about convergence analysis? In practice,
accumulated floating point roundoff error causes the residual to gradually lose accuracy, and cancellation
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Figure 33: The polynomial 2 that minimizes Equation 50 for 2 and 7 in the general case.
This curve is a scaled version of the Chebyshev polynomial of degree 2. The energy norm of the error term
after two iterations is no greater than 0.183 times its initial value. Compare with Figure 31(c), where it is
known that there are only two eigenvalues.

It is shown in Appendix C3 that Equation 50 is minimized by choosing

2

This polynomial has the oscillating properties of Chebyshev polynomials on the domain
(see Figure 33). The denominator enforces our requirement that 0 1. The numerator has a maximum
value of one on the interval between and , so from Equation 50 we have
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0

1
1

1

0

2
1
1

1
1

1

0 (51)

The second addend inside the square brackets converges to zero as grows, so it is more common to express
the convergence of CG with the weaker inequality

2
1
1 0 (52)faster conv. than SD
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Figure 34: Convergence of Conjugate Gradients (per iteration) as a function of condition number. Compare
with Figure 20.

The first step of CG is identical to a step of Steepest Descent. Setting 1 in Equation 51, we obtain
Equation 28, the convergence result for Steepest Descent. This is just the linear polynomial case illustrated
in Figure 31(b).

Figure 34 charts the convergence per iteration of CG, ignoring the lost factor of 2. In practice, CG
usually converges faster than Equation 52 would suggest, because of good eigenvalue distributions or good
starting points. Comparing Equations 52 and 28, it is clear that the convergence of CG is much quicker
than that of Steepest Descent (see Figure 35). However, it is not necessarily true that every iteration of CG
enjoys faster convergence; for example, the first iteration of CG is an iteration of Steepest Descent. The
factor of 2 in Equation 52 allows CG a little slack for these poor iterations.

10. Complexity

The dominating operations during an iteration of either Steepest Descent or CG are matrix-vector products.
In general, matrix-vector multiplication requires operations, where is the number of non-zero
entries in the matrix. For many problems, including those listed in the introduction, is sparse and

.

Suppose we wish to perform enough iterations to reduce the norm of the error by a factor of ; that is,
0 . Equation 28 can be used to show that the maximum number of iterations required to

achieve this bound using Steepest Descent is

1
2
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1

whereas Equation 52 suggests that the maximum number of iterations CG requires is
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Figure 35: Number of iterations of Steepest Descent required to match one iteration of CG.

I conclude that Steepest Descent has a time complexity of , whereas CG has a time complexity of
. Both algorithms have a space complexity of .

Finite difference and finite element approximations of second-order elliptic boundary value problems
posed on -dimensional domains often have 2 . Thus, Steepest Descent has a time complexity of

2 for two-dimensional problems, versus 3 2 for CG; and Steepest Descent has a time complexity
of 5 3 for three-dimensional problems, versus 4 3 for CG.

11. Starting and Stopping

In the preceding presentation of the Steepest Descent and Conjugate Gradient algorithms, several details
have been omitted; particularly, how to choose a starting point, and when to stop.

11.1. Starting

There’s not much to say about starting. If you have a rough estimate of the value of , use it as the starting
value 0 . If not, set 0 0; either Steepest Descent or CG will eventually converge when used to solve
linear systems. Nonlinear minimization (coming up in Section 14) is trickier, though, because there may
be several local minima, and the choice of starting point will determine which minimum the procedure
converges to, or whether it will converge at all.

11.2. Stopping

When Steepest Descent or CG reaches the minimum point, the residual becomes zero, and if Equation 11
or 48 is evaluated an iteration later, a division by zero will result. It seems, then, that one must stop
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