
ODEs
Prateek Sharma (prateek@physics.iisc.ernet.in)

Office: D2-08

mailto:prateek@physics.iisc.ernet.in
mailto:prateek@physics.iisc.ernet.in

Reduction to 1st order
ODEs

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x)− q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

701

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x)− q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

701

new variables introduced s.t.
equations are well-behaved

generic set of N coupled first-order ODEs:

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Chapter 16. Integration of Ordinary
Differential Equations

16.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be
reduced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
+ q(x)

dy

dx
= r(x) (16.0.1)

can be rewritten as two first-order equations

dy

dx
= z(x)

dz

dx
= r(x)− q(x)z(x)

(16.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other (and
of the original variable). Occasionally, it is useful to incorporate into their definition
some other factors in the equation, or some powers of the independent variable,
for the purpose of mitigating singular behavior that could result in overflows or
increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set of N coupled first-order differential equations for the functions
yi, i = 1, 2, . . . , N , having the general form

dyi(x)

dx
= fi(x, y1, . . . , yN), i = 1, . . . , N (16.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of
the problem’s boundary conditions. Boundary conditions are algebraic conditions

701

BVPs & IVPs
Boundary conditions are algebraic conditions on the values of the
functions yi at the boundaries. They can be satisfied at discrete specified
points. Two broad categories:

 initial value problems all the yi are given at some starting
value xs, and it is desired to find the yi’s at some final point xf,
or at some discrete list of points. e.g., planetary orbits with
given initial conditions

two-point boundary value problems boundary conditions are specified at
more than one x; some of the conditions will be specified at xs and the
remainder at xf; e.g., stellar structure: core density, temperature at inner
boundary and radius, luminosity at outer boundary. in general more
difficult.

lets consider IVPs for now

Forward Euler

x

y

xn xn+1

yn

yn+1

modified eq. 1st order accurate

numerically unstable for large Δx! e.g., dy/dx=-ay, y(0)=1 => y=e-ax

FE: yn+1 = (1-ah)n+1y0

|1-ah|<1 for stability!

Backward Euler

also 1st order accurate; this is an implicit eq.
to be solved, e.g., via Newton-Raphson

unconditionally stable!
x

y

xn xn+1

yn

yn+1

Runge-Kutta Schemes

704 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

CITED REFERENCES AND FURTHER READING:
Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall).
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America), Chapter 5.
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

Chapter 7.
Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).
Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New

York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn to xn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
�
xn + 1

2h, yn + 1
2k1

�

yn+1 = yn + k2 +O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kuttamethod. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic

Euler is only 1st order accurate!
center the derivative at n+1/2: mid-point/RK2

16.1 Runge-Kutta Method 705
Sam

ple page from
 NUM

ERICAL RECIPES IN FO
RTRAN 77: THE ART O

F SCIENTIFIC CO
M

PUTING
 (ISBN 0-521-43064-X)

Copyright (C) 1986-1992 by Cam
bridge University Press. Program

s Copyright (C) 1986-1992 by Num
erical Recipes Software.

Perm
ission is granted for internet users to m

ake one paper copy for their own personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order Num

erical Recipes books, diskettes, or CDRO
M

s
visit website http://www.nr.com

 or call 1-800-872-7423 (North Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside North Am
erica).

y(x)

1

2

x1 x2 x3 x

Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpointmethod
(16.1.2) if at least twice as large a step is possiblewith (16.1.3) for the same accuracy.
Is that so? The answer is: often, perhaps even usually, but surely not always! This
takes us back to a central theme, namely that high order does not always mean
high accuracy. The statement “fourth-order Runge-Kutta is generally superior to
second-order” is a true one, but you should recognize it as a statement about the

2nd order accurate!

Can be easily shown via Taylor series

RK4

16.1 Runge-Kutta Method 705

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

y(x)

1

2

x1 x2 x3 x

Figure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain sleekness of organization about it:

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (16.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpointmethod
(16.1.2) if at least twice as large a step is possiblewith (16.1.3) for the same accuracy.
Is that so? The answer is: often, perhaps even usually, but surely not always! This
takes us back to a central theme, namely that high order does not always mean
high accuracy. The statement “fourth-order Runge-Kutta is generally superior to
second-order” is a true one, but you should recognize it as a statement about the

706 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

1

2

3

4

yn + 1

yn

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
That is, it reflects the nature of the problems that contemporary scientists like to solve.

For many scientific users, fourth-order Runge-Kutta is not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse’s last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
a modern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in [3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for this first value? The answer
will become clear only in the next section, but in brief is this: This call may not
be your only one with these starting conditions. You may have taken a previous
step with too large a stepsize, and this is your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs)

INTEGER n,NMAX

REAL h,x,dydx(n),y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAX=50) Set to the maximum number of functions.
Given values for the variables y(1:n) and their derivatives dydx(1:n) known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout(1:n), which need not be a distinct array from y. The
user supplies the subroutine derivs(x,y,dydx), which returns derivatives dydx at x.

INTEGER i

REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX)

hh=h*0.5

h6=h/6.

xh=x+hh

4th order accurate!

most common ODE solver; while more accurate, also
requires twice the number of function evaluations

Leap-frog Method
Newton’s 2nd law: e.g., planetary orbits, molecular dynamics, etc.

time-reversible, conservative,
Hamiltonian system

LF/Verlet very useful where we want to conserve energy,
prevent secular errors, not just the formal one-step error
RK, etc. lead to non-conservation of energy; energy drifts!

Cons: dt must be the same for time-reversibility, etc. lower
order; RK, etc. fine for short-term evolution

RK, LF are explicit schemes and thus require dt<1/ω0 for stability

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0.2

0.4

0.6

0.8

1

1.2

2 orbits

to
ta

l e
ne

rg
y

2nd order leap frog

4th order RK4

Adaptive step-size
stepsize (h) is chosen to achieve some pre-specified accuracy; algorithm

should give an estimate of truncation error 16.2 Adaptive Stepsize Control for Runge-Kutta 709

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two
steps. Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the
stepsize on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from x to x+ 2h by y(x + 2h)
and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ+ O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ+ O(h6) + . . .
(16.2.1)

where, to order h5, the value φ remains constant over the step. [Taylor series
expansion tells us the φ is a number whose order of magnitude is y(5)(x)/5!.] The
first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expression involves 2(h5) since the error on each step is h5φ. The difference
between the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆

15
+ O(h6) (16.2.3)

This estimate is accurate tofifth order, one order higher than the originalRunge-Kutta
steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function

16.2 Adaptive Stepsize Control for Runge-Kutta 709

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).
two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two
steps. Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the
stepsize on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from x to x+ 2h by y(x + 2h)
and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ+ O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ+ O(h6) + . . .
(16.2.1)

where, to order h5, the value φ remains constant over the step. [Taylor series
expansion tells us the φ is a number whose order of magnitude is y(5)(x)/5!.] The
first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expression involves 2(h5) since the error on each step is h5φ. The difference
between the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆

15
+ O(h6) (16.2.3)

This estimate is accurate tofifth order, one order higher than the originalRunge-Kutta
steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function

Taylor expansion:

16.2 Adaptive Stepsize Control for Runge-Kutta 709

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

two small steps

big step

x

Figure 16.2.1. Step-doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta.
Points where the derivative is evaluated are shown as filled circles. The open circle represents the same
derivatives as the filled circle immediately above it, so the total number of evaluations is 11 per two
steps. Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the
stepsize on the next step, or for rejecting the current step as inaccurate.

Let us denote the exact solution for an advance from x to x+ 2h by y(x + 2h)
and the two approximate solutions by y1 (one step 2h) and y2 (2 steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y(x + 2h) = y1 + (2h)5φ+ O(h6) + . . .

y(x + 2h) = y2 + 2(h5)φ+ O(h6) + . . .
(16.2.1)

where, to order h5, the value φ remains constant over the step. [Taylor series
expansion tells us the φ is a number whose order of magnitude is y(5)(x)/5!.] The
first expression in (16.2.1) involves (2h)5 since the stepsize is 2h, while the second
expression involves 2(h5) since the error on each step is h5φ. The difference
between the two numerical estimates is a convenient indicator of truncation error

∆ ≡ y2 − y1 (16.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h6 and higher, we can
solve the two equations in (16.2.1) to improve our numerical estimate of the true
solution y(x + 2h), namely,

y(x + 2h) = y2 +
∆

15
+ O(h6) (16.2.3)

This estimate is accurate tofifth order, one order higher than the originalRunge-Kutta
steps. However, we can’t have our cake and eat it: (16.2.3) may be fifth-order
accurate, but we have no way of monitoring its truncation error. Higher order is
not always higher accuracy! Use of (16.2.3) rarely does harm, but we have no
way of directly knowing whether it is doing any good. Therefore we should use
∆ as the error estimate and take as “gravy” any additional accuracy gain derived
from (16.2.3). In the technical literature, use of a procedure like (16.2.3) is called
“local extrapolation.”

An alternative stepsize adjustment algorithm is based on the embedded Runge-
Kutta formulas, originally invented by Fehlberg. An interesting fact about Runge-
Kutta formulas is that for orders M higher than four, more than M function

a good measure of truncation error

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

(16.2.4)

The embedded fourth-order formula is

y
∗
n+1 = yn + c

∗
1k1 + c

∗
2k2 + c

∗
3k3 + c

∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y
∗
n+1 =

6�

i=1

(ci − c
∗
i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

����
∆0

∆1

����
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is

desired accuracy must use an adaptive stepsize

Embedded RK

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

(16.2.4)

The embedded fourth-order formula is

y
∗
n+1 = yn + c

∗
1k1 + c

∗
2k2 + c

∗
3k3 + c

∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y
∗
n+1 =

6�

i=1

(ci − c
∗
i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

����
∆0

∆1

����
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

(16.2.4)

The embedded fourth-order formula is

y
∗
n+1 = yn + c

∗
1k1 + c

∗
2k2 + c

∗
3k3 + c

∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y
∗
n+1 =

6�

i=1

(ci − c
∗
i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

����
∆0

∆1

����
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

(16.2.4)

The embedded fourth-order formula is

y
∗
n+1 = yn + c

∗
1k1 + c

∗
2k2 + c

∗
3k3 + c

∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y
∗
n+1 =

6�

i=1

(ci − c
∗
i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

����
∆0

∆1

����
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

evaluations (though never more than M + 2) are required. This accounts for the
popularity of the classical fourth-order method: It seems to give the most bang
for the buck. However, Fehlberg discovered a fifth-order method with six function
evaluations where another combination of the six functions gives a fourth-order
method. The difference between the two estimates of y(x + h) can then be used as
an estimate of the truncation error to adjust the stepsize. Since Fehlberg’s original
formula, several other embedded Runge-Kutta formulas have been found.

Many practitioners were at one time wary of the robustness of Runge-Kutta-
Fehlberg methods. The feeling was that using the same evaluation points to advance
the function and to estimate the error was riskier than step-doubling, where the
error estimate is based on independent function evaluations. However, experience
has shown that this concern is not a problem in practice. Accordingly, embedded
Runge-Kutta formulas, which are roughly a factor of two more efficient, have
superseded algorithms based on step-doubling.

The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

· · ·

k6 = hf(xn + a6h, yn + b61k1 + · · · + b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

(16.2.4)

The embedded fourth-order formula is

y
∗
n+1 = yn + c

∗
1k1 + c

∗
2k2 + c

∗
3k3 + c

∗
4k4 + c

∗
5k5 + c

∗
6k6 + O(h5) (16.2.5)

and so the error estimate is

∆ ≡ yn+1 − y
∗
n+1 =

6�

i=1

(ci − c
∗
i)ki (16.2.6)

The particular values of the various constants that we favor are those found by Cash
and Karp [2], and given in the accompanying table. These give a more efficient
method than Fehlberg’s original values, with somewhat better error properties.

Now that we know, at least approximately, what our error is, we need to
consider how to keep it within desired bounds. What is the relation between ∆
and h? According to (16.2.4) – (16.2.5), ∆ scales as h5. If we take a step h1

and produce an error ∆1, therefore, the step h0 that would have given some other
value ∆0 is readily estimated as

h0 = h1

����
∆0

∆1

����
0.2

(16.2.7)

Henceforth we will let ∆0 denote the desired accuracy. Then equation (16.2.7) is
used in two ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how
much to decrease the stepsize when we retry the present (failed) step. If ∆1 is

1/2 the no. of fn. evals.!
recall truncation error, ∆0 can’t be too small

16.2 Adaptive Stepsize Control for Runge-Kutta 711

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Cash-Karp Parameters for Embedded Runga-Kutta Method

i ai bij ci c∗i

1 37
378

2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 −11
54

5
2 −70

27
35
27 0 277

14336

6 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

j = 1 2 3 4 5

smaller than ∆0, on the other hand, then the equation tells how much we can safely
increase the stepsize for the next step. Local extrapolation consists in accepting
the fifth order value yn+1, even though the error estimate actually applies to the
fourth order value y∗n+1.

Our notation hides the fact that ∆0 is actually a vector of desired accuracies,
one for each equation in the set of ODEs. In general, our accuracy requirement will
be that all equations are within their respective allowed errors. In other words, we
will rescale the stepsize according to the needs of the “worst-offender” equation.

How is∆0, the desired accuracy, related to some looser prescription like “get a
solution good to one part in 106”? That can be a subtle question, and it depends on
exactly what your application is! You may be dealing with a set of equations whose
dependent variables differ enormously in magnitude. In that case, you probably
want to use fractional errors,∆0 = �y, where � is the number like 10−6 or whatever.
On the other hand, you may have oscillatory functions that pass through zero but
are bounded by some maximum values. In that case you probably want to set ∆0

equal to � times those maximum values.
A convenient way to fold these considerations into a generally useful stepper

routine is this: One of the arguments of the routine will of course be the vector of
dependent variables at the beginning of a proposed step. Call that y(1:n). Let us
require the user to specify for each step another, corresponding, vector argument
yscal(1:n), and also an overall tolerance level eps. Then the desired accuracy
for the ith equation will be taken to be

∆0 = eps× yscal(i) (16.2.8)

If you desire constant fractional errors, plug y into the yscal calling slot (no need to
copy the values into a different array). If you desire constant absolute errors relative
to some maximum values, set the elements of yscal equal to those maximum
values. A useful “trick” for getting constant fractional errors except “very” near
zero crossings is to set yscal(i) equal to |y(i)| + |h× dydx(i)|. (The routine
odeint, below, does this.)

Here is a more technical point. We have to consider one additional possibility
for yscal. The error criteria mentioned thus far are “local,” in that they bound the
error of each step individually. In some applications you may be unusually sensitive

Modified Midpoint

716 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

CITED REFERENCES AND FURTHER READING:
Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall). [1]
Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201–

222. [2]
Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:

Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n− 1

y(x +H) ≈ yn ≡
1

2
[zn + zn−1 + hf(x +H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpointmethod is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpointmethod to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns

716 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

CITED REFERENCES AND FURTHER READING:
Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall). [1]
Cash, J.R., and Karp, A.H. 1990, ACM Transactions on Mathematical Software, vol. 16, pp. 201–

222. [2]
Shampine, L.F., and Watts, H.A. 1977, in Mathematical Software III, J.R. Rice, ed. (New York:

Academic Press), pp. 257–275; 1979, Applied Mathematics and Computation, vol. 5,
pp. 93–121.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall).

16.3 Modified Midpoint Method

This section discusses the modified midpoint method, which advances a vector
of dependent variables y(x) from a point x to a point x + H by a sequence of n
substeps each of size h,

h = H/n (16.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique, treated in §16.4. You can therefore
consider this section as a preamble to §16.4.

The number of right-hand side evaluations required by the modified midpoint
method is n + 1. The formulas for the method are

z0 ≡ y(x)

z1 = z0 + hf(x, z0)

zm+1 = zm−1 + 2hf(x + mh, zm) for m = 1, 2, . . . , n− 1

y(x +H) ≈ yn ≡
1

2
[zn + zn−1 + hf(x +H, zn)]

(16.3.2)

Here the z’s are intermediate approximations which march along in steps of h, while
yn is the final approximation to y(x + H). The method is basically a “centered
difference” or “midpoint” method (compare equation 16.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpointmethod is a second-order method, like (16.1.2), but with
the advantage of requiring (asymptotically for largen) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta. Perhaps there
are applications where the simplicity of (16.3.2), easily coded in-line in some other
program, recommends it. In general, however, use of the modified midpoint method
by itself will be dominated by the embedded Runge-Kutta method with adaptive
stepsize control, as implemented in the preceding section.

The usefulness of the modified midpointmethod to the Bulirsch-Stoer technique
(§16.4) derives from a “deep” result about equations (16.3.2), due to Gragg. It turns

H

second order, with 1 derivative evaluation per h

16.3 Modified Midpoint Method 717

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x+ H) =
∞�

i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x +H) ≈
4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)

INTEGER nstep,nvar,NMAX

REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)

EXTERNAL derivs

PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n

REAL h,h2,swap,x,ym(NMAX),yn(NMAX)

h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)

yn(i)=y(i)+h*dydx(i) First step.
enddo 11

x=xs+h

call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h

do 13 n=2,nstep General step.
do 12 i=1,nvar

swap=ym(i)+h2*yout(i)

ym(i)=yn(i)

yn(i)=swap

enddo 12

x=x+h

call derivs(x,yn,yout)

16.3 Modified Midpoint Method 717

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x+ H) =
∞�

i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x +H) ≈
4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)

INTEGER nstep,nvar,NMAX

REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)

EXTERNAL derivs

PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n

REAL h,h2,swap,x,ym(NMAX),yn(NMAX)

h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)

yn(i)=y(i)+h*dydx(i) First step.
enddo 11

x=xs+h

call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h

do 13 n=2,nstep General step.
do 12 i=1,nvar

swap=ym(i)+h2*yout(i)

ym(i)=yn(i)

yn(i)=swap

enddo 12

x=x+h

call derivs(x,yn,yout)

4th order accurate,
only 1.5 fn. evaluations!

apply only for ODEs containing smooth functions

Bulirsch-Stoer
16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 719

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

6 steps

2 steps 4 steps !

extrapolation
to " steps

x x + H

y

Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large intervalH is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer
that is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations
are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

plane. Rational function fits can remain good approximations to analytic functions
even after the various terms in powers of h all have comparable magnitudes. In
other words, h can be so large as to make the whole notion of the “order” of the
method meaningless — and the method can still work superbly. Nevertheless, more
recent experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation. We will
accordingly adopt polynomial extrapolation as the default, but the routine bsstep
below allows easy substitution of one kind of extrapolation for the other. You
might wish at this point to review §3.1–§3.2, where polynomial and rational function
extrapolation were already discussed.

The third idea was discussed in the section before this one, namely to use
a method whose error function is strictly even, allowing the rational function or
polynomial approximation to be in terms of the variable h2 instead of just h.

Put these ideas together and you have the Bulirsch-Stoer method [1]. A single
Bulirsch-Stoer step takes us from x to x+H , whereH is supposed to be quite a large
— not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of modified midpoint method, which
are then extrapolated to zero stepsize.

The sequence of separate attempts to cross the interval H is made with
increasing values of n, the number of substeps. Bulirsch and Stoer originally
proposed the sequence

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . , [nj = 2nj−2], . . . (16.4.1)

More recent work by Deuflhard [2,3] suggests that the sequence

n = 2, 4, 6, 8, 10, 12, 14, . . ., [nj = 2j], . . . (16.4.2)

is usually more efficient. For each step, we do not know in advance how far up this
sequence we will go. After each successive n is tried, a polynomial extrapolation is

apply only for ODEs containing smooth functions
for very high accuracy

RK4 w. adaptive stepsize for non-smooth fns.

Richardson extrapolation using different h

rational vs. polynomial extrapolation of error

16.3 Modified Midpoint Method 717

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

out that the error of (16.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn − y(x+ H) =
∞�

i=1

αih
2i (16.3.3)

where H is held constant, but h changes by varying n in (16.3.1). The importance
of this even power series is that, if we play our usual tricks of combining steps to
knock out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn/2 denote the result of applying
(16.3.1) and (16.3.2) with half as many steps, n → n/2. Then the estimate

y(x +H) ≈
4yn − yn/2

3
(16.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s 4 evaluations.
Don’t be too anxious to implement (16.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in §4.2, and
especially to compare equation (4.2.4) with equation (16.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of §4.3, is exactly analogous to the transition in going from
this section to the next one.

Here is the routine that implements the modified midpoint method, which will
be used below.

SUBROUTINE mmid(y,dydx,nvar,xs,htot,nstep,yout,derivs)

INTEGER nstep,nvar,NMAX

REAL htot,xs,dydx(nvar),y(nvar),yout(nvar)

EXTERNAL derivs

PARAMETER (NMAX=50)

Modified midpoint step. Dependent variable vector y(1:nvar) and its derivative vector
dydx(1:nvar) are input at xs. Also input is htot, the total step to be made, and nstep,
the number of substeps to be used. The output is returned as yout(1:nvar), which need
not be a distinct array from y; if it is distinct, however, then y and dydx are returned
undamaged.

INTEGER i,n

REAL h,h2,swap,x,ym(NMAX),yn(NMAX)

h=htot/nstep Stepsize this trip.
do 11 i=1,nvar

ym(i)=y(i)

yn(i)=y(i)+h*dydx(i) First step.
enddo 11

x=xs+h

call derivs(x,yn,yout) Will use yout for temporary storage of derivatives.
h2=2.*h

do 13 n=2,nstep General step.
do 12 i=1,nvar

swap=ym(i)+h2*yout(i)

ym(i)=yn(i)

yn(i)=swap

enddo 12

x=x+h

call derivs(x,yn,yout)

use a method with even terms in error

16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 719

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

6 steps

2 steps 4 steps !

extrapolation
to " steps

x x + H

y

Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large intervalH is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer
that is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations
are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

plane. Rational function fits can remain good approximations to analytic functions
even after the various terms in powers of h all have comparable magnitudes. In
other words, h can be so large as to make the whole notion of the “order” of the
method meaningless — and the method can still work superbly. Nevertheless, more
recent experience suggests that for smooth problems straightforward polynomial
extrapolation is slightly more efficient than rational function extrapolation. We will
accordingly adopt polynomial extrapolation as the default, but the routine bsstep
below allows easy substitution of one kind of extrapolation for the other. You
might wish at this point to review §3.1–§3.2, where polynomial and rational function
extrapolation were already discussed.

The third idea was discussed in the section before this one, namely to use
a method whose error function is strictly even, allowing the rational function or
polynomial approximation to be in terms of the variable h2 instead of just h.

Put these ideas together and you have the Bulirsch-Stoer method [1]. A single
Bulirsch-Stoer step takes us from x to x+H , whereH is supposed to be quite a large
— not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of modified midpoint method, which
are then extrapolated to zero stepsize.

The sequence of separate attempts to cross the interval H is made with
increasing values of n, the number of substeps. Bulirsch and Stoer originally
proposed the sequence

n = 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, . . . , [nj = 2nj−2], . . . (16.4.1)

More recent work by Deuflhard [2,3] suggests that the sequence

n = 2, 4, 6, 8, 10, 12, 14, . . ., [nj = 2j], . . . (16.4.2)

is usually more efficient. For each step, we do not know in advance how far up this
sequence we will go. After each successive n is tried, a polynomial extrapolation is

sub-intervals; for each n obtain
approximation & error estimate

go to higher n if error large

720 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

attempted. That extrapolation returns both extrapolated values and error estimates.
If the errors are not satisfactory, we go higher in n. If they are satisfactory, we go
on to the next step and begin anew with n = 2.

Of course there must be some upper limit, beyond which we conclude that there
is some obstacle in our path in the intervalH , so that we must reduceH rather than
just subdivide it more finely. In the implementations below, the maximum number
of n’s to be tried is called KMAXX. For reasons described below we usually take this
equal to 8; the 8th value of the sequence (16.4.2) is 16, so this is the maximum
number of subdivisions of H that we allow.

We enforce error control, as in the Runge-Kutta method, by monitoring internal
consistency, and adapting stepsize tomatch a prescribed bound on the local truncation
error. Each new result from the sequence of modified midpoint integrations allows a
tableau like that in §3.1 to be extended by one additional set of diagonals. The size of
the new correction added at each stage is taken as the (conservative) error estimate.
How should we use this error estimate to adjust the stepsize? The best strategy now
known is due to Deuflhard [2,3]. For completeness we describe it here:

Suppose the absolute value of the error estimate returned from the kth column (and hence
the k + 1st row) of the extrapolation tableau is �k+1,k. Error control is enforced by requiring

�k+1,k < � (16.4.3)

as the criterion for accepting the current step, where � is the required tolerance. For the even
sequence (16.4.2) the order of the method is 2k + 1:

�k+1,k ∼ H
2k+1 (16.4.4)

Thus a simple estimate of a new stepsizeHk to obtain convergence in afixed columnkwould be

Hk = H

�
�

�k+1,k

�1/(2k+1)

(16.4.5)

Which column k should we aim to achieve convergence in? Let’s compare the work
required for different k. SupposeAk is the work to obtain row k of the extrapolation tableau,
so Ak+1 is the work to obtain column k. We will assume the work is dominated by the cost
of evaluating the functions defining the right-hand sides of the differential equations. For nk
subdivisions in H , the number of function evaluations can be found from the recurrence

A1 = n1 + 1

Ak+1 = Ak + nk+1
(16.4.6)

The work per unit step to get column k is Ak+1/Hk, which we nondimensionalize with a
factor of H and write as

Wk =
Ak+1

Hk
H (16.4.7)

= Ak+1

� �k+1,k

�

�1/(2k+1)
(16.4.8)

The quantities Wk can be calculated during the integration. The optimal column index q
is then defined by

Wq = min
k=1,...,kf

Wk (16.4.9)

where kf is the final column, in which the error criterion (16.4.3) was satisfied. The q
determined from (16.4.9) defines the stepsizeHq to be used as the next basic stepsize, so that
we can expect to get convergence in the optimal column q.

Two important refinements have to be made to the strategy outlined so far:

big stepsize should be small enough, s.t.,
kth column error is smaller than specified

Stiff Equations

16.6 Stiff Sets of Equations 727

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

ytemp(i)=y(i)+ytemp(n)
enddo 11

x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do 13 nn=2,nstep General step.

do 12 i=1,neqns
n=neqns+i
ytemp(n)=ytemp(n)+h2*yout(i)
ytemp(i)=ytemp(i)+ytemp(n)

enddo 12

x=x+h
call derivs(x,ytemp,yout)

enddo 13

do 14 i=1,neqns Last step.
n=neqns+i
yout(n)=ytemp(n)/h+halfh*yout(i)
yout(i)=ytemp(i)

enddo 14

return
END

Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while the first derivatives are stored in the secondn elements. The right-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n = 1, 2, 3, 4, 5, . . . (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505–535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of equations [1]:

u� = 998u+ 1998v

v� = −999u− 1999v
(16.6.1)

with boundary conditions

u(0) = 1 v(0) = 0 (16.6.2)

if there are widely separated
timescales in the problem

728 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

x

y

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

By means of the transformation

u = 2y − z v = −y + z (16.6.3)

we find the solution

u = 2e−x − e−1000x

v = −e−x + e−1000x
(16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e−1000x term would require a stepsize h� 1/1000 for
the method to be stable (the reason for this is explained below). This is so even
though the e−1000x term is completely negligible in determining the values of u and
v as soon as one is away from the origin (see Figure 16.6.1).

This is the generic disease of stiff equations: we are required to follow the
variation in the solution on the shortest length scale to maintain stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y� = −cy (16.6.5)

where c > 0 is a constant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

yn+1 = yn + hy�n = (1− ch)yn (16.6.6)

The method is called explicit because the new value yn+1 is given explicitly in
terms of the old value yn. Clearly the method is unstable if h > 2/c, for then
|yn| → ∞ as n → ∞.

vanishingly small, yet determines h!

implicit is the way to go

16.6 Stiff Sets of Equations 729

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

yn+1 = yn + hy�n+1 (16.6.7)
or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y� = −C · y (16.6.9)

where C is a positive definite matrix. Explicit differencing gives

yn+1 = (1− Ch) · yn (16.6.10)

Now a matrix An tends to zero as n → ∞ only if the largest eigenvalue of A
has magnitude less than unity. Thus yn is bounded as n → ∞ only if the largest
eigenvalue of 1 − Ch is less than 1, or in other words

h <
2

λmax
(16.6.11)

where λmax is the largest eigenvalue of C.
On the other hand, implicit differencing gives

yn+1 = yn + hy�n+1 (16.6.12)
or

yn+1 = (1+ Ch)−1 · yn (16.6.13)

If the eigenvalues of C are λ, then the eigenvalues of (1+ Ch)−1 are (1 + λh)−1,
which has magnitude less than one for all h. (Recall that all the eigenvalues
of a positive definite matrix are nonnegative.) Thus the method is stable for all
stepsizes h. The penalty we pay for this stability is that we are required to invert
a matrix at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y� = f(y) (16.6.14)

implicit differencing gives

yn+1 = yn + hf(yn+1) (16.6.15)

16.6 Stiff Sets of Equations 729

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

yn+1 = yn + hy�n+1 (16.6.7)
or

yn+1 =
yn

1 + ch
(16.6.8)

The method is absolutely stable: even as h → ∞, yn+1 → 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only
for linear systems, but even in the general case implicit methods give better stability.
Of course, we give up accuracy in following the evolution towards equilibrium if
we use large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y� = −C · y (16.6.9)

where C is a positive definite matrix. Explicit differencing gives

yn+1 = (1− Ch) · yn (16.6.10)

Now a matrix An tends to zero as n → ∞ only if the largest eigenvalue of A
has magnitude less than unity. Thus yn is bounded as n → ∞ only if the largest
eigenvalue of 1 − Ch is less than 1, or in other words

h <
2

λmax
(16.6.11)

where λmax is the largest eigenvalue of C.
On the other hand, implicit differencing gives

yn+1 = yn + hy�n+1 (16.6.12)
or

yn+1 = (1+ Ch)−1 · yn (16.6.13)

If the eigenvalues of C are λ, then the eigenvalues of (1+ Ch)−1 are (1 + λh)−1,
which has magnitude less than one for all h. (Recall that all the eigenvalues
of a positive definite matrix are nonnegative.) Thus the method is stable for all
stepsizes h. The penalty we pay for this stability is that we are required to invert
a matrix at each step.

Not all equations are linear with constant coefficients, unfortunately! For
the system

y� = f(y) (16.6.14)

implicit differencing gives

yn+1 = yn + hf(yn+1) (16.6.15)

730 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

�
f(yn) +

∂f
∂y

����y
n

· (yn+1 − yn)
�

(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

�
1− h

∂f
∂y

�−1

· f(yn) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1− h
∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoermethod, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is

�
y
x

��
=

�
f
1

�
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector yscal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values

semi-implicit linearized eq.

730 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

�
f(yn) +

∂f
∂y

����y
n

· (yn+1 − yn)
�

(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

�
1− h

∂f
∂y

�−1

· f(yn) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1− h
∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoermethod, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is

�
y
x

��
=

�
f
1

�
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector yscal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values

only first order accurate!

Higher order implicit
methods

Rosenbrock Methods

Outline

Introduction

Stability

Order conditions

Computational results

End

Inspiration

special cases

We start with a diagonally IRK method

kn
i = hf (yn +

i−1�

j=1

αijk
n
j + αiiki), i = 1, · · · , s

yn+1 = yn +
s�

j=1

bjkj

applied to the autonomous differential equation

y � = f (y).

Linearizing the first formula yields

kn
i = hf (yn +

i−1�

j=1

αijk
n
j)+ hf �(yn +

i−1�

j=1

αijk
n
j)αiik

n
i , i = 1, · · · , s.

Yue Yu Rosenbrock Methods

730 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

�
f(yn) +

∂f
∂y

����y
n

· (yn+1 − yn)
�

(16.6.16)

Here ∂f/∂y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (16.6.16) into the form

yn+1 = yn + h

�
1− h

∂f
∂y

�−1

· f(yn) (16.6.17)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (16.6.15) using equation (16.6.17). In other words, at each step
we have to invert the matrix

1− h
∂f
∂y

(16.6.18)

to find yn+1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (16.6.17) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of
a constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful
are the Rosenbrock methods. The first practical implementation of these
ideas was by Kaps and Rentrop, and so these methods are also called
Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoermethod, in particular a semi-implicit
extrapolation method due to Bader and Deuflhard.

• Predictor-corrector methods, most of which are descendants of Gear’s
backward differentiation method.

We shall give implementations of the first two methods. Note that systems where
the right-hand side depends explicitly on x, f(y, x), can be handled by adding x to
the list of dependent variables so that the system to be solved is

�
y
x

��
=

�
f
1

�
(16.6.19)

In both the routines to be given in this section, we have explicitly carried out this
replacement for you, so the routines can handle right-hand sides of the form f(y, x)
without any special effort on your part.

We now mention an important point: It is absolutely crucial to scale your vari-
ables properly when integrating stiff problems with automatic stepsize adjustment.
As in our nonstiff routines, you will be asked to supply a vector yscal with which
the error is to be scaled. For example, to get constant fractional errors, simply set
yscal = |y|. You can get constant absolute errors relative to some maximum values

16.6 Stiff Sets of Equations 731

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods
These methods have the advantage of being relatively simple to understand and imple-

ment. For moderate accuracies (� <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s�

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1− γhf �) · ki = hf

�
y0 +

i−1�

j=1

αijkj

�
+ hf � ·

i−1�

j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f �. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y
and a lower-order estimate �y with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the
ki are the same. The difference between y and �y leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showed that the smallest
value of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =
i−1�

j=1

γijkj + γki (16.6.23)

The equations then take the form
(1/γh− f �) · g1 = f(y0)

(1/γh− f �) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f �) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f �) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h
(16.6.24)

16.6 Stiff Sets of Equations 731

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods
These methods have the advantage of being relatively simple to understand and imple-

ment. For moderate accuracies (� <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s�

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1− γhf �) · ki = hf

�
y0 +

i−1�

j=1

αijkj

�
+ hf � ·

i−1�

j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f �. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y
and a lower-order estimate �y with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the
ki are the same. The difference between y and �y leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showed that the smallest
value of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =
i−1�

j=1

γijkj + γki (16.6.23)

The equations then take the form
(1/γh− f �) · g1 = f(y0)

(1/γh− f �) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f �) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f �) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h
(16.6.24)

linearized semi-implicit eq.; generalization of embedded RK

we won’t go through details, see NR

16.6 Stiff Sets of Equations 731

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods
These methods have the advantage of being relatively simple to understand and imple-

ment. For moderate accuracies (� <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s�

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1− γhf �) · ki = hf

�
y0 +

i−1�

j=1

αijkj

�
+ hf � ·

i−1�

j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f �. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y
and a lower-order estimate �y with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the
ki are the same. The difference between y and �y leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showed that the smallest
value of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =
i−1�

j=1

γijkj + γki (16.6.23)

The equations then take the form
(1/γh− f �) · g1 = f(y0)

(1/γh− f �) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f �) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f �) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h
(16.6.24)

16.6 Stiff Sets of Equations 731

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

by setting yscal equal to those maximum values. In stiff problems, there are often
strongly decreasing pieces of the solution which you are not particularly interested
in following once they are small. You can control the relative error above some
threshold C and the absolute error below the threshold by setting

yscal = max(C, |y|) (16.6.20)

If you are using appropriate nondimensional units, then each component of C should
be of order unity. If you are not sure what values to take for C, simply try
setting each component equal to unity. We strongly advocate the choice (16.6.20)
for stiff problems.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Be alert for situations where double precision is necessary.

Rosenbrock Methods
These methods have the advantage of being relatively simple to understand and imple-

ment. For moderate accuracies (� <∼ 10−4 – 10−5 in the error criterion) and moderate-sized
systems (N <∼ 10), they are competitive with the more complicated algorithms. For more
stringent parameters, Rosenbrock methods remain reliable; they merely become less efficient
than competitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y(x0 + h) = y0 +
s�

i=1

ciki (16.6.21)

where the corrections ki are found by solving s linear equations that generalize the structure
in (16.6.17):

(1− γhf �) · ki = hf

�
y0 +

i−1�

j=1

αijkj

�
+ hf � ·

i−1�

j=1

γijkj , i = 1, . . . , s (16.6.22)

Here we denote the Jacobian matrix by f �. The coefficients γ, ci, αij , and γij are fixed
constants independent of the problem. If γ = γij = 0, this is simply a Runge-Kutta scheme.
Equations (16.6.22) can be solved successively for k1, k2,

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [2] discovered an embedded or Runge-Kutta-Fehlberg method
as described in §16.2: Two estimates of the form (16.6.21) are computed, the “real” one y
and a lower-order estimate �y with different coefficients ĉi, i = 1, . . . , ŝ, where ŝ < s but the
ki are the same. The difference between y and �y leads to an estimate of the local truncation
error, which can then be used for stepsize control. Kaps and Rentrop showed that the smallest
value of s for which embedding is possible is s = 4, ŝ = 3, leading to a fourth-order method.

To minimize the matrix-vector multiplications on the right-hand side of (16.6.22), we
rewrite the equations in terms of quantities

gi =
i−1�

j=1

γijkj + γki (16.6.23)

The equations then take the form
(1/γh− f �) · g1 = f(y0)

(1/γh− f �) · g2 = f(y0 + a21g1) + c21g1/h

(1/γh− f �) · g3 = f(y0 + a31g1 + a32g2) + (c31g1 + c32g2)/h

(1/γh− f �) · g4 = f(y0 + a41g1 + a42g2 + a43g3) + (c41g1 + c42g2 + c43g3)/h
(16.6.24)

solve via LU decomp.

Semi-implicit
extrapolation

16.6 Stiff Sets of Equations 735

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

dfdy(1,1)=-.013-1000.*y(3)

dfdy(1,2)=0.

dfdy(1,3)=-1000.*y(1)

dfdy(2,1)=0.

dfdy(2,2)=-2500.*y(3)

dfdy(2,3)=-2500.*y(2)

dfdy(3,1)=-.013-1000.*y(3)

dfdy(3,2)=-2500.*y(3)

dfdy(3,3)=-1000.*y(1)-2500.*y(2)

return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(*),dydx(*)

dydx(1)=-.013*y(1)-1000.*y(1)*y(3)

dydx(2)=-2500.*y(2)*y(3)

dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)

return

END

Semi-implicit Extrapolation Method

TheBulirsch-Stoermethod, which discretizes the differential equationusing themodified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
�yn+1 + yn−1

2

�
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

�
1− h

∂f
∂y

�
· yn+1 =

�
1 + h

∂f
∂y

�
· yn−1 + 2h

�
f(yn) − ∂f

∂y
· yn

�
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡
1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

�
1− h

∂f
∂y

�−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

�
1− h

∂f
∂y

�−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

implicit generalization of Bulirsch-Stoer

16.6 Stiff Sets of Equations 735

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

dfdy(1,1)=-.013-1000.*y(3)

dfdy(1,2)=0.

dfdy(1,3)=-1000.*y(1)

dfdy(2,1)=0.

dfdy(2,2)=-2500.*y(3)

dfdy(2,3)=-2500.*y(2)

dfdy(3,1)=-.013-1000.*y(3)

dfdy(3,2)=-2500.*y(3)

dfdy(3,3)=-1000.*y(1)-2500.*y(2)

return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(*),dydx(*)

dydx(1)=-.013*y(1)-1000.*y(1)*y(3)

dydx(2)=-2500.*y(2)*y(3)

dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)

return

END

Semi-implicit Extrapolation Method

TheBulirsch-Stoermethod, which discretizes the differential equationusing themodified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
�yn+1 + yn−1

2

�
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

�
1− h

∂f
∂y

�
· yn+1 =

�
1 + h

∂f
∂y

�
· yn−1 + 2h

�
f(yn) − ∂f

∂y
· yn

�
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡
1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

�
1− h

∂f
∂y

�−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

�
1− h

∂f
∂y

�−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

implicit mid-pt

16.6 Stiff Sets of Equations 735

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

dfdy(1,1)=-.013-1000.*y(3)

dfdy(1,2)=0.

dfdy(1,3)=-1000.*y(1)

dfdy(2,1)=0.

dfdy(2,2)=-2500.*y(3)

dfdy(2,3)=-2500.*y(2)

dfdy(3,1)=-.013-1000.*y(3)

dfdy(3,2)=-2500.*y(3)

dfdy(3,3)=-1000.*y(1)-2500.*y(2)

return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(*),dydx(*)

dydx(1)=-.013*y(1)-1000.*y(1)*y(3)

dydx(2)=-2500.*y(2)*y(3)

dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)

return

END

Semi-implicit Extrapolation Method

TheBulirsch-Stoermethod, which discretizes the differential equationusing themodified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
�yn+1 + yn−1

2

�
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

�
1− h

∂f
∂y

�
· yn+1 =

�
1 + h

∂f
∂y

�
· yn−1 + 2h

�
f(yn) − ∂f

∂y
· yn

�
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡
1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

�
1− h

∂f
∂y

�−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

�
1− h

∂f
∂y

�−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

16.6 Stiff Sets of Equations 735

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

dfdy(1,1)=-.013-1000.*y(3)

dfdy(1,2)=0.

dfdy(1,3)=-1000.*y(1)

dfdy(2,1)=0.

dfdy(2,2)=-2500.*y(3)

dfdy(2,3)=-2500.*y(2)

dfdy(3,1)=-.013-1000.*y(3)

dfdy(3,2)=-2500.*y(3)

dfdy(3,3)=-1000.*y(1)-2500.*y(2)

return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(*),dydx(*)

dydx(1)=-.013*y(1)-1000.*y(1)*y(3)

dydx(2)=-2500.*y(2)*y(3)

dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)

return

END

Semi-implicit Extrapolation Method

TheBulirsch-Stoermethod, which discretizes the differential equationusing themodified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
�yn+1 + yn−1

2

�
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

�
1− h

∂f
∂y

�
· yn+1 =

�
1 + h

∂f
∂y

�
· yn−1 + 2h

�
f(yn) − ∂f

∂y
· yn

�
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡
1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

�
1− h

∂f
∂y

�−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

�
1− h

∂f
∂y

�−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

16.6 Stiff Sets of Equations 735

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

dfdy(1,1)=-.013-1000.*y(3)

dfdy(1,2)=0.

dfdy(1,3)=-1000.*y(1)

dfdy(2,1)=0.

dfdy(2,2)=-2500.*y(3)

dfdy(2,3)=-2500.*y(2)

dfdy(3,1)=-.013-1000.*y(3)

dfdy(3,2)=-2500.*y(3)

dfdy(3,3)=-1000.*y(1)-2500.*y(2)

return

END

SUBROUTINE derivs(x,y,dydx)

REAL x,y(*),dydx(*)

dydx(1)=-.013*y(1)-1000.*y(1)*y(3)

dydx(2)=-2500.*y(2)*y(3)

dydx(3)=-.013*y(1)-1000.*y(1)*y(3)-2500.*y(2)*y(3)

return

END

Semi-implicit Extrapolation Method

TheBulirsch-Stoermethod, which discretizes the differential equationusing themodified
midpoint rule, does not work for stiff problems. Bader and Deuflhard [5] discovered a semi-
implicit discretization that works very well and that lends itself to extrapolation exactly as
in the original Bulirsch-Stoer method.

The starting point is an implicit form of the midpoint rule:

yn+1 − yn−1 = 2hf
�yn+1 + yn−1

2

�
(16.6.29)

Convert this equation into semi-implicit form by linearizing the right-hand side about f(yn).
The result is the semi-implicit midpoint rule:

�
1− h

∂f
∂y

�
· yn+1 =

�
1 + h

∂f
∂y

�
· yn−1 + 2h

�
f(yn) − ∂f

∂y
· yn

�
(16.6.30)

It is used with a special first step, the semi-implicit Euler step (16.6.17), and a special
“smoothing” last step in which the last yn is replaced by

yn ≡
1
2 (yn+1 + yn−1) (16.6.31)

Bader and Deuflhard showed that the error series for this method once again involves only
even powers of h.

For practical implementation, it is better to rewrite the equations using∆k ≡ yk+1−yk.
With h = H/m, start by calculating

∆0 =

�
1− h

∂f
∂y

�−1

· hf(y0)

y1 = y0 + ∆0

(16.6.32)

Then for k = 1, . . . ,m − 1, set

∆k = ∆k−1 + 2

�
1− h

∂f
∂y

�−1

· [hf(yk)−∆k−1]

yk+1 = yk + ∆k

(16.6.33)

736 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Finally compute

∆m =

�
1− h

∂f
∂y

�−1

· [hf(ym)−∆m−1]

ym = ym + ∆m

(16.6.34)

It is easy to incorporate the replacement (16.6.19) in the above formulas. The additional
terms in the Jacobian that come from ∂f/∂x all cancel out of the semi-implicit midpoint rule
(16.6.30). In the special first step (16.6.17), and in the corresponding equation (16.6.32), the
term hf becomes hf + h2∂f/∂x. The remaining equations are all unchanged.

This algorithm is implemented in the routine simpr:

SUBROUTINE simpr(y,dydx,dfdx,dfdy,nmax,n,xs,htot,nstep,yout,

* derivs)

INTEGER n,nmax,nstep,NMAXX

REAL htot,xs,dfdx(n),dfdy(nmax,nmax),dydx(n),y(n),yout(n)

EXTERNAL derivs

PARAMETER (NMAXX=50) Maximum expected value of n.
C USES derivs,lubksb,ludcmp

Performs one step of semi-implicit midpoint rule. Input are the dependent variable y(1:n),
its derivative dydx(1:n), the derivative of the right-hand side with respect to x, dfdx(1:n),
and the Jacobian dfdy(1:nmax,1:nmax) at xs. Also input are htot, the total step
to be taken, and nstep, the number of substeps to be used. The output is returned as
yout(1:n). derivs is the user-supplied subroutine that calculates dydx.

INTEGER i,j,nn,indx(NMAXX)

REAL d,h,x,a(NMAXX,NMAXX),del(NMAXX),ytemp(NMAXX)

h=htot/nstep Stepsize this trip.
do 12 i=1,n Set up the matrix 1 − hf�.

do 11 j=1,n

a(i,j)=-h*dfdy(i,j)

enddo 11

a(i,i)=a(i,i)+1.

enddo 12

call ludcmp(a,n,NMAXX,indx,d) LU decomposition of the matrix.
do 13 i=1,n Set up right-hand side for first step. Use yout for

temporary storage.yout(i)=h*(dydx(i)+h*dfdx(i))

enddo 13

call lubksb(a,n,NMAXX,indx,yout)

do 14 i=1,n First step.
del(i)=yout(i)

ytemp(i)=y(i)+del(i)

enddo 14

x=xs+h

call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
do 17 nn=2,nstep General step.

do 15 i=1,n Set up right-hand side for general step.
yout(i)=h*yout(i)-del(i)

enddo 15

call lubksb(a,n,NMAXX,indx,yout)

do 16 i=1,n

del(i)=del(i)+2.*yout(i)

ytemp(i)=ytemp(i)+del(i)

enddo 16

x=x+h

call derivs(x,ytemp,yout)

enddo 17

do 18 i=1,n Set up right-hand side for last step.
yout(i)=h*yout(i)-del(i)

enddo 18

call lubksb(a,n,NMAXX,indx,yout)

do 19 i=1,n Take last step.
yout(i)=ytemp(i)+yout(i)

even order terms in error => can
apply Richardson extrapolation

many more methods, predictor-corrector, etc.

Two-point BVPs

BVP

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Chapter 17. Two Point Boundary
Value Problems

17.0 Introduction

When ordinary differential equations are required to satisfy boundary conditions
at more than one value of the independent variable, the resulting problem is called a
two point boundary value problem. As the terminology indicates, the most common
case by far is where boundary conditions are supposed to be satisfied at two points—
usually the starting and ending values of the integration. However, the phrase “two
point boundary value problem” is also used loosely to include more complicated
cases, e.g., where some conditions are specified at endpoints, others at interior
(usually singular) points.

The crucial distinction between initial value problems (Chapter 16) and two
point boundary value problems (this chapter) is that in the former case we are able
to start an acceptable solution at its beginning (initial values) and just march it along
by numerical integration to its end (final values); while in the present case, the
boundary conditions at the starting point do not determine a unique solution to start
with — and a “random” choice among the solutions that satisfy these (incomplete)
starting boundary conditions is almost certain not to satisfy the boundary conditions
at the other specified point(s).

It should not surprise you that iteration is in general required to meld these
spatially scattered boundary conditions into a single global solution of the differential
equations. For this reason, two point boundary value problems require considerably
more effort to solve than do initial value problems. You have to integrate your dif-
ferential equations over the interval of interest, or perform an analogous “relaxation”
procedure (see below), at least several, and sometimes very many, times. Only in
the special case of linear differential equations can you say in advance just how
many such iterations will be required.

The “standard” two point boundary value problem has the following form: We
desire the solution to a set of N coupled first-order ordinary differential equations,
satisfying n1 boundary conditions at the starting point x1, and a remaining set of
n2 = N − n1 boundary conditions at the final point x2. (Recall that all differential
equations of order higher than first can be written as coupled sets of first-order
equations, cf. §16.0.)

The differential equations are

dyi(x)

dx
= gi(x, y1, y2, . . . , yN) i = 1, 2, . . . , N (17.0.1)

745

746 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

required
boundary
value

desired
boundary
value

1
3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In the shooting method (§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions for that boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate theODEsby initial valuemethods, arriving at theother boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in §9.6 and §9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a commonmidpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methods use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of

746 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

required
boundary
value

desired
boundary
value

1
3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In the shooting method (§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions for that boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate theODEsby initial valuemethods, arriving at theother boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in §9.6 and §9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a commonmidpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methods use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of

n1+n2=N

Shooting Method746 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

required
boundary
value

desired
boundary
value

1
3

2

y

x

Figure 17.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

At x1, the solution is supposed to satisfy

B1j(x1, y1, y2, . . . , yN) = 0 j = 1, . . . , n1 (17.0.2)

while at x2, it is supposed to satisfy

B2k(x2, y1, y2, . . . , yN) = 0 k = 1, . . . , n2 (17.0.3)

There are two distinct classes of numerical methods for solving two point
boundary value problems. In the shooting method (§17.1) we choose values for all
of the dependent variables at one boundary. These values must be consistent with
any boundary conditions for that boundary, but otherwise are arranged to depend
on arbitrary free parameters whose values we initially “randomly” guess. We then
integrate theODEsby initial valuemethods, arriving at theother boundary (and/or any
interior points with boundary conditions specified). In general, we find discrepancies
from the desired boundary values there. Now we have a multidimensional root-
finding problem, as was treated in §9.6 and §9.7: Find the adjustment of the free
parameters at the starting point that zeros the discrepancies at the other boundary
point(s). If we liken integrating the differential equations to following the trajectory
of a shot from gun to target, then picking the initial conditions corresponds to aiming
(see Figure 17.0.1). The shooting method provides a systematic approach to taking
a set of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (§17.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a commonmidpoint,
and seek to adjust the guessed parameters so that the solution joins “smoothly” at
the fitting point. In all shooting methods, trial solutions satisfy the differential
equations “exactly” (or as exactly as we care to make our numerical integration),
but the trial solutions come to satisfy the required boundary conditions only after
the iterations are finished.

Relaxation methods use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of

17.1 The Shooting Method 749

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero n2 functions
of n2 variables. The functions are obtained by integratingN differential equations
from x1 to x2. Let us see how this works:

At the starting point x1 there are N starting values yi to be specified, but
subject to n1 conditions. Therefore there are n2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vector V that lives in a vector space of dimension n2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting values y, satisfying the boundary conditions
at x1, from an arbitrary vector value ofV in which there are no restrictions on the n2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be called load.
Notice that the components of V might be exactly the values of certain “free”

components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the yi, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of yi’s. It makes no difference
which way you go, as long as your vector space of V’s generates (through 17.1.1)
all allowed starting vectors y.

Given a particularV, a particular y(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 16’s odeint). Now, at x2, let us define a discrepancy vector F, also of
dimension n2, whose components measure how far we are from satisfying the n2

boundary conditions at x2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written subroutine scorewhich uses (17.0.3) to convert anN -vector of ending
values y(x2) into an n2-vector of discrepancies F.

n2 = N − n1 freely specifiable starting values

solve for y(x2)

discrepancy vector F

17.1 The Shooting Method 749

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

17.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration. In
the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (§9.7). It seeks to zero n2 functions
of n2 variables. The functions are obtained by integratingN differential equations
from x1 to x2. Let us see how this works:

At the starting point x1 there are N starting values yi to be specified, but
subject to n1 conditions. Therefore there are n2 = N −n1 freely specifiable starting
values. Let us imagine that these freely specifiable values are the components of a
vector V that lives in a vector space of dimension n2. Then you, the user, knowing
the functional form of the boundary conditions (17.0.2), can write a subroutine that
generates a complete set of N starting values y, satisfying the boundary conditions
at x1, from an arbitrary vector value ofV in which there are no restrictions on the n2

component values. In other words, (17.0.2) converts to a prescription

yi(x1) = yi(x1; V1, . . . , Vn2) i = 1, . . . , N (17.1.1)

Below, the subroutine that implements (17.1.1) will be called load.
Notice that the components of V might be exactly the values of certain “free”

components of y, with the other components of y determined by the boundary
conditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the yi, rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of yi’s. It makes no difference
which way you go, as long as your vector space of V’s generates (through 17.1.1)
all allowed starting vectors y.

Given a particularV, a particular y(x1) is thus generated. It can then be turned
into a y(x2) by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 16’s odeint). Now, at x2, let us define a discrepancy vector F, also of
dimension n2, whose components measure how far we are from satisfying the n2

boundary conditions at x2 (17.0.3). Simplest of all is just to use the right-hand
sides of (17.0.3),

Fk = B2k(x2, y) k = 1, . . . , n2 (17.1.2)

As in the case of V, however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written subroutine scorewhich uses (17.0.3) to convert anN -vector of ending
values y(x2) into an n2-vector of discrepancies F.

components of F=0 only for the desired solution

we want to solve multi-dim. roots of F(V1,.,Vn2)=0; use Newton-Raphson

750 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj, . . .)− Fi(V1, . . . , Vj, . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routine fdjac that comes with newt. The
only input to newt that you have to provide is the routine funcv that calculates F
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount,KMAXX,NMAX

REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled

ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated

from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine

integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize

h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to

evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions

at x2. The functions f are returned on output. newt uses a globally convergent Newton’s

method to adjust the values of v until the functions f are zero. The user-supplied subroutine

derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter

16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility

with odeint.
INTEGER nbad,nok

REAL h1,hmin,y(NMAX)

EXTERNAL derivs,rkqs

kmax=0

h1=(x2-x1)/100.

hmin=0.

call load(x1,v,y)

call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

750 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj, . . .)− Fi(V1, . . . , Vj, . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routine fdjac that comes with newt. The
only input to newt that you have to provide is the routine funcv that calculates F
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount,KMAXX,NMAX

REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled

ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated

from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine

integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize

h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to

evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions

at x2. The functions f are returned on output. newt uses a globally convergent Newton’s

method to adjust the values of v until the functions f are zero. The user-supplied subroutine

derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter

16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility

with odeint.
INTEGER nbad,nok

REAL h1,hmin,y(NMAX)

EXTERNAL derivs,rkqs

kmax=0

h1=(x2-x1)/100.

hmin=0.

call load(x1,v,y)

call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

750 Chapter 17. Two Point Boundary Value Problems
Sam

ple page from
 NUM

ERICAL RECIPES IN FO
RTRAN 77: THE ART O

F SCIENTIFIC CO
M

PUTING
 (ISBN 0-521-43064-X)

Copyright (C) 1986-1992 by Cam
bridge University Press. Program

s Copyright (C) 1986-1992 by Num
erical Recipes Software.

Perm
ission is granted for internet users to m

ake one paper copy for their own personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order Num

erical Recipes books, diskettes, or CDRO
M

s
visit website http://www.nr.com

 or call 1-800-872-7423 (North Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside North Am
erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj, . . .)− Fi(V1, . . . , Vj, . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routine fdjac that comes with newt. The
only input to newt that you have to provide is the routine funcv that calculates F
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount,KMAXX,NMAX

REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled

ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated

from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine

integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize

h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to

evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions

at x2. The functions f are returned on output. newt uses a globally convergent Newton’s

method to adjust the values of v until the functions f are zero. The user-supplied subroutine

derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter

16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility

with odeint.
INTEGER nbad,nok

REAL h1,hmin,y(NMAX)

EXTERNAL derivs,rkqs

kmax=0

h1=(x2-x1)/100.

hmin=0.

call load(x1,v,y)

call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

750 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F. We do this
by invoking the globally convergent Newton’s method implemented in the routine
newt of §9.7. Recall that the heart of Newton’s method involves solving the set
of n2 linear equations

J · δV = −F (17.1.3)

and then adding the correction back,

Vnew = Vold + δV (17.1.4)

In (17.1.3), the Jacobian matrix J has components given by

Jij =
∂Fi

∂Vj
(17.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each
requires a separate integration of the N ODEs, followed by the evaluation of

∂Fi

∂Vj
≈ Fi(V1, . . . , Vj + ∆Vj, . . .)− Fi(V1, . . . , Vj, . . .)

∆Vj
(17.1.6)

This is done automatically for you in the routine fdjac that comes with newt. The
only input to newt that you have to provide is the routine funcv that calculates F
by integrating the ODEs. Here is the appropriate routine:

C SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n2,v,f)

INTEGER n2,nvar,kmax,kount,KMAXX,NMAX

REAL f(n2),v(n2),x1,x2,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX coupled ODEs.

COMMON /caller/ x1,x2,nvar

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar coupled

ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated

from the n2 input coefficients v(1:n2), using the user-supplied routine load. The routine

integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, initial stepsize

h1, and minimum stepsize hmin. At x2 it calls the user-supplied subroutine score to

evaluate the n2 functions f(1:n2) that ought to be zero to satisfy the boundary conditions

at x2. The functions f are returned on output. newt uses a globally convergent Newton’s

method to adjust the values of v until the functions f are zero. The user-supplied subroutine

derivs(x,y,dydx) supplies derivative information to the ODE integrator (see Chapter

16). The common block caller receives its values from the main program so that funcv
can have the syntax required by newt. The common block path is included for compatibility

with odeint.
INTEGER nbad,nok

REAL h1,hmin,y(NMAX)

EXTERNAL derivs,rkqs

kmax=0

h1=(x2-x1)/100.

hmin=0.

call load(x1,v,y)

call odeint(y,nvar,x1,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)

call score(x2,y,f)

return

END

Figure 1: The schematic behaviour of the solutions ψ(ξ) of Eq. (1) for different

parameters ψ0 = ψ(r0) (all other parameters are assumed to be constant).

The schematic behaviour of the solutions ψ(ξ) for different parameters ψ0 =

ψ(r0) is shown in Figure 1 (all other parameters assumed to be constant, i.e. M ,

r0, T0 (→ λ), γ). Clearly, in the case of a stellar wind only solutions of type (1)

and (3) make sense, with a velocity increasing from low values at the stellar surface

to higher velocities further out. In our case we are only interested in the singular

solution (3), called wind solution, which represents a transition from a sub-sonic to

a supersonic outflow with a non-zero velocity at large distance from the star.

This wind solution can be calculated iteratively by varying the parameter ψ0

for a given r0 (located inside the critical point where (3) and (4) intersect), and

other physical parameters fixed. If ψ0 is too high for the given combination of

physical parameters the solution is of type (5), i.e. has two values for a given radius

point (practically this will mean that the numerical determination of ψ(ξ) will not

converge). If ψ0 is too low, the velocity will reach some maximum and than decline

again. Setting the lower and upper limits for ψ0 of the wind solution iteratively by

using these criteria, one can usually get close enough to the true value.

Figure 2 shows a sequence of solutions of type (1) which were obtained by such

an iteration of ψ0. They approach the wind solution closer and closer. The ‘final’

solution (largest value of ψ0 giving a converging solution) actually is a close enough

approximation to the wind solution. In this example the transition through the

critical point happened automatically by using the value of ψ at a given point as a

starting value for the iteration of Eq. (1) at the next grid point (going from lower

r values to higher ones). If this starting value is somewhat too low points outside

the critical point may end up on solution (4), making it necessary to extrapolate

through the critical point.

Once the run of ψ(ξ) for the wind solution is known the structure of the velocity

2

Shooting to fitting point

752 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at
x1 and n1 freely specifiable starting values at x2. (If you are confused by this, go
back to §17.1.) We can therefore define an n2-vector V(1) of starting parameters
at x1, and a prescription load1(x1,v1,y) for mapping V(1) into a y that satisfies
the boundary conditions at x1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2) i = 1, . . . , N (17.2.1)

Likewise we can define an n1-vector V(2) of starting parameters at x2, and a
prescription load2(x2,v2,y) for mapping V(2) into a y that satisfies the boundary
conditions at x2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1) i = 1, . . . , N (17.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V(1) and V(2). The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi(xf ;V(1)) = yi(xf ;V(2)) i = 1, . . . , N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on theN components yi. In those cases, (17.2.3) is replaced by

Fi[y(xf ;V(1))] = Fi[y(xf ;V(2))] i = 1, . . . , N (17.2.4)

In the programbelow, the user-supplied subroutinescore(xf,y,f) is supposed
to map an input N -vector y into an output N -vector F. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in §17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both load1 and load2. Also, in the
calling program you must supply initial guesses for v1(1:n2) and v2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in §17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)

INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX

REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.

COMMON /caller/ x1,x2,xf,nvar,nn2

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-

pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

752 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at
x1 and n1 freely specifiable starting values at x2. (If you are confused by this, go
back to §17.1.) We can therefore define an n2-vector V(1) of starting parameters
at x1, and a prescription load1(x1,v1,y) for mapping V(1) into a y that satisfies
the boundary conditions at x1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2) i = 1, . . . , N (17.2.1)

Likewise we can define an n1-vector V(2) of starting parameters at x2, and a
prescription load2(x2,v2,y) for mapping V(2) into a y that satisfies the boundary
conditions at x2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1) i = 1, . . . , N (17.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V(1) and V(2). The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi(xf ;V(1)) = yi(xf ;V(2)) i = 1, . . . , N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on theN components yi. In those cases, (17.2.3) is replaced by

Fi[y(xf ;V(1))] = Fi[y(xf ;V(2))] i = 1, . . . , N (17.2.4)

In the programbelow, the user-supplied subroutinescore(xf,y,f) is supposed
to map an input N -vector y into an output N -vector F. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in §17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both load1 and load2. Also, in the
calling program you must supply initial guesses for v1(1:n2) and v2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in §17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)

INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX

REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.

COMMON /caller/ x1,x2,xf,nvar,nn2

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-

pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

752 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at
x1 and n1 freely specifiable starting values at x2. (If you are confused by this, go
back to §17.1.) We can therefore define an n2-vector V(1) of starting parameters
at x1, and a prescription load1(x1,v1,y) for mapping V(1) into a y that satisfies
the boundary conditions at x1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2) i = 1, . . . , N (17.2.1)

Likewise we can define an n1-vector V(2) of starting parameters at x2, and a
prescription load2(x2,v2,y) for mapping V(2) into a y that satisfies the boundary
conditions at x2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1) i = 1, . . . , N (17.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V(1) and V(2). The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi(xf ;V(1)) = yi(xf ;V(2)) i = 1, . . . , N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on theN components yi. In those cases, (17.2.3) is replaced by

Fi[y(xf ;V(1))] = Fi[y(xf ;V(2))] i = 1, . . . , N (17.2.4)

In the programbelow, the user-supplied subroutinescore(xf,y,f) is supposed
to map an input N -vector y into an output N -vector F. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in §17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both load1 and load2. Also, in the
calling program you must supply initial guesses for v1(1:n2) and v2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in §17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)

INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX

REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.

COMMON /caller/ x1,x2,xf,nvar,nn2

COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-

pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

useful if singularities, e.g., sonic point

match solution at appropriate fitting point

Relaxation Methods

17.3 Relaxation Methods 753

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-

supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-

gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form

(v1(1),v(1)),(v2(1),v(n2+1)). The input parameter n = n1+n2 = nvar. The rou-

tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial

stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are

returned on output. newt uses a globally convergent Newton’s method to adjust the val-

ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block

caller receives its values from the main program so that funcv can have the syntax

required by newt. Set nn2 = n2 in the main program. The common block path is for

compatibility with odeint.
INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America).
Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:

Blaisdell).
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy
dx

= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
�

1
2 (xk + xk−1), 1

2 (yk + yk−1)
�

= 0 (17.3.2)

17.3 Relaxation Methods 753

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-

supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-

gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form

(v1(1),v(1)),(v2(1),v(n2+1)). The input parameter n = n1+n2 = nvar. The rou-

tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial

stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are

returned on output. newt uses a globally convergent Newton’s method to adjust the val-

ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block

caller receives its values from the main program so that funcv can have the syntax

required by newt. Set nn2 = n2 in the main program. The common block path is for

compatibility with odeint.
INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America).
Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:

Blaisdell).
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy
dx

= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
�

1
2 (xk + xk−1), 1

2 (yk + yk−1)
�

= 0 (17.3.2)

754 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form
0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There areM − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for theMN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have
0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary
0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N�

n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N�

n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�

n=1

Sj,n∆yn,k−1 +
2N�

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

FDE

N(M-1) eqs. at interior pts.

754 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form
0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There areM − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for theMN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have
0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary
0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N�

n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N�

n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�

n=1

Sj,n∆yn,k−1 +
2N�

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

754 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form
0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There areM − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for theMN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have
0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary
0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N�

n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N�

n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�

n=1

Sj,n∆yn,k−1 +
2N�

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

n1 BCs at x1 n2 BCs at xM, n1+n2=N

NM nonlinear eqs. for NM unknowns yjk ; j=1..N; k=1..M: can be solved via multi-D Newton-Raphson

754 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form
0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There areM − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for theMN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have
0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary
0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N�

n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N�

n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�

n=1

Sj,n∆yn,k−1 +
2N�

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

Taylor series expansion at interior points; k=2..M:

754 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involvesN coupled first-order ODEs
represented by FDEs on a mesh ofM points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N ×M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) × (MN). Since MN can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples at most pairs of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs. The
ODE problem is exactly identical to that expressed in equations (17.0.1)–(17.0.3) where we
hadN coupledfirst-order equations that satisfyn1 boundary conditions atx1 andn2 = N−n1

boundary conditions at x2. We first define a mesh or grid by a set of k = 1, 2, ...,M points
at which we supply values for the independent variable xk. In particular, x1 is the initial
boundary, and xM is the final boundary. We use the notation yk to refer to the entire set of
dependent variables y1, y2, . . . , yN at point xk. At an arbitrary point k in the middle of the
mesh, we approximate the set ofN first-order ODEs by algebraic relations of the form
0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1, yk, yk−1), k = 2, 3, . . . ,M (17.3.3)

The notation signifies that gk can be evaluated using information from both points k, k − 1.
The FDEs labeled by Ek provide N equations coupling 2N variables at points k, k − 1.
There areM − 1 points, k = 2, 3, . . . ,M , at which difference equations of the form (17.3.3)
apply. Thus the FDEs provide a total of (M − 1)N equations for theMN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have
0 = E1 ≡ B(x1, y1) (17.3.4)

while at the second boundary
0 = EM+1 ≡ C(xM , yM) (17.3.5)

The vectors E1 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, Ej,1 �= 0 only for j = n2 + 1, n2 + 2, . . . , N . At
the other boundary, only the first n2 components of EM+1 and C are nonzero: Ej,M+1 �= 0
only for j = 1, 2, . . . , n2.

The “solution” of the FDE problem in (17.3.3)–(17.3.5) consists of a set of variables
yj,k, the values of the N variables yj at the M points xk. The algorithm we describe
below requires an initial guess for the yj,k. We then determine increments ∆yj,k such that
yj,k + ∆yj,k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes∆yk. At an interior point, k = 2, 3, . . . ,M this gives:

Ek(yk + ∆yk, yk−1 + ∆yk−1) ≈ Ek(yk, yk−1)

+
N�

n=1

∂Ek
∂yn,k−1

∆yn,k−1 +
N�

n=1

∂Ek
∂yn,k

∆yn,k
(17.3.6)

For a solution we want the updated valueE(y+∆y) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�

n=1

Sj,n∆yn,k−1 +
2N�

n=N+1

Sj,n∆yn−N,k = −Ej,k , j = 1, 2, . . . , N (17.3.7)

17.3 Relaxation Methods 755

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

where

Sj,n =
∂Ej,k
∂yn,k−1

, Sj,n+N =
∂Ej,k
∂yn,k

, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block ofN equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N�

n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1
∂yn,1

, n = 1, 2, . . . , N (17.3.10)

At the second boundary,
N�

n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reducedMN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first

17.3 Relaxation Methods 755

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

where

Sj,n =
∂Ej,k
∂yn,k−1

, Sj,n+N =
∂Ej,k
∂yn,k

, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block ofN equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N�

n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1
∂yn,1

, n = 1, 2, . . . , N (17.3.10)

At the second boundary,
N�

n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reducedMN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first

17.3 Relaxation Methods 755

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

where

Sj,n =
∂Ej,k
∂yn,k−1

, Sj,n+N =
∂Ej,k
∂yn,k

, n = 1, 2, . . . , N (17.3.8)

The quantity Sj,n is an N × 2N matrix at each point k. Each interior point thus supplies a
block ofN equations coupling 2N corrections to the solution variables at the points k, k − 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E1 depends only on y1, we
find at the first boundary:

N�

n=1

Sj,n∆yn,1 = −Ej,1, j = n2 + 1, n2 + 2, . . . , N (17.3.9)

where

Sj,n =
∂Ej,1
∂yn,1

, n = 1, 2, . . . , N (17.3.10)

At the second boundary,
N�

n=1

Sj,n∆yn,M = −Ej,M+1, j = 1, 2, . . . , n2 (17.3.11)

where

Sj,n =
∂Ej,M+1

∂yn,M
, n = 1, 2, . . . , N (17.3.12)

We thus have in equations (17.3.7)–(17.3.12) a set of linear equations to be solved for
the corrections ∆y, iterating until the corrections are sufficiently small. The equations have
a special structure, because each Sj,n couples only points k, k − 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 × 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,n at point k = 1. The next three 5 × 10 blocks are the Sj,n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)–(17.3.12) for the increments ∆y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reducedMN ×MN matrix elements needs to be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for use in later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial boundary
conditions. We have n1 equations for N unknown corrections. We wish to transform the first

inner boundary outer boundary

start with initial guess y0; add ∆y in every iteration till desired accuracy
756 Chapter 17. Two Point Boundary Value Problems

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Figure 17.3.1. Matrix structure of a set of linear finite-difference equations (FDEs) with boundary
conditions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a
component of the unknown solution vector, and B is a component of the known right-hand side. Empty
spaces represent zeros. The matrix equation is to be solved by a special form of Gaussian elimination.
(See text for details.)

1
1

1

X
X
X
1

X
X
X

1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

1

1

1

X
X
X
X
X
1

1

1

1

X
X
X
X
X
1

X
X
X
X
X

1

V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X
X
X
X
X

1

Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.

matrix-eq. for n=1..5 (5 dependent vars.), k=1..4 (4 grid pts.), 3/2 eqs. at inner/outer bdry

V:unknown increments
B: known Ej,k

X: known coupling coefficients S
block-diagonal matrix

Gaussian-Elimination inexpensive

see NR for details

