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Types of PDEs
hyperbolic, parabolic, and elliptic depending on their characteristics, or 
curves of information propagation; examples:
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Chapter 19. Partial Differential
Equations

19.0 Introduction

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipes dealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)

In most mathematics books, partial differential equations (PDEs) are classified
into the three categories, hyperbolic, parabolic, and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical example of
a hyperbolic equation is the one-dimensional wave equation

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.0.1)

where v = constant is the velocity of wave propagation. The prototypical parabolic
equation is the diffusion equation

∂u

∂t
=

∂

∂x

�
D
∂u

∂x

�
(19.0.2)

where D is the diffusion coefficient. The prototypical elliptic equation is the
Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y) (19.0.3)

where the source term ρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (19.0.1) and (19.0.2) both define initial value or Cauchy
problems: If information on u (perhaps including time derivative information) is
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Parabolic diffusion equation
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subject. Partial differential equations are at the heart of many, if not most,
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electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipes dealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)
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Elliptic Poisson equation

IVPs, Cauchy problems; start at t=0 and evolve the solution

boundary value problem; no evolution! find the solution which satisfies PDE and boundary conditions

simple prototypes are very instructive and guide the solution of more complicated problems
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Figure 19.0.1. Initial value problem (a) and boundary value problem (b) are contrasted. In (a) initial
values are given on one “time slice,” and it is desired to advance the solution in time, computing
successive rows of open dots in the direction shown by the arrows. Boundary conditions at the left and
right edges of each row (⊗) must also be supplied, but only one row at a time. Only one, or a few,
previous rows need be maintained in memory. In (b), boundary values are specified around the edge of
a grid, and an iterative process is employed to find the values of all the internal points (open circles).
All grid points must be maintained in memory.

given at some initial time t0 for all x, then the equations describe how u(x, t)
propagates itself forward in time. In other words, equations (19.0.1) and (19.0.2)
describe time evolution. The goal of a numerical code should be to track that time
evolution with some desired accuracy.

By contrast, equation (19.0.3) directs us to find a single “static” function u(x, y)
which satisfies the equation within some (x, y) region of interest, and which — one
must also specify — has some desired behavior on the boundary of the region of
interest. These problems are called boundary value problems. In general it is not

x

t needed! specified in 
a physical way

dependent variables to be propagated forward in time f

evolution equation, e.g., advection eq. 

prefer to have        on LHS

boundary conditions: Dirichlet BCs (specify boundary values of f at all times), Neumann (specify derivatives 
at boundary); & combinations specified in physically plausible way

main concern is stability 
accuracy while being fast

remember CFL condition!
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values are given on one “time slice,” and it is desired to advance the solution in time, computing
successive rows of open dots in the direction shown by the arrows. Boundary conditions at the left and
right edges of each row (⊗) must also be supplied, but only one row at a time. Only one, or a few,
previous rows need be maintained in memory. In (b), boundary values are specified around the edge of
a grid, and an iterative process is employed to find the values of all the internal points (open circles).
All grid points must be maintained in memory.

given at some initial time t0 for all x, then the equations describe how u(x, t)
propagates itself forward in time. In other words, equations (19.0.1) and (19.0.2)
describe time evolution. The goal of a numerical code should be to track that time
evolution with some desired accuracy.

By contrast, equation (19.0.3) directs us to find a single “static” function u(x, y)
which satisfies the equation within some (x, y) region of interest, and which — one
must also specify — has some desired behavior on the boundary of the region of
interest. These problems are called boundary value problems. In general it is not

• What are the variables (dependent & independent)? 

• What equations are satisfied in the interior of the region of interest?
 
• What equations are satisfied by points on the boundary of the region of
interest? (Here Dirichlet and Neumann conditions are possible choices for elliptic second-order 
equations, but more complicated boundary conditions can also be encountered.)
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Chapter 19. Partial Differential
Equations

19.0 Introduction

The numerical treatment of partial differential equations is, by itself, a vast
subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipes dealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)

In most mathematics books, partial differential equations (PDEs) are classified
into the three categories, hyperbolic, parabolic, and elliptic, on the basis of their
characteristics, or curves of information propagation. The prototypical example of
a hyperbolic equation is the one-dimensional wave equation

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.0.1)

where v = constant is the velocity of wave propagation. The prototypical parabolic
equation is the diffusion equation

∂u

∂t
=

∂

∂x

�
D
∂u

∂x

�
(19.0.2)

where D is the diffusion coefficient. The prototypical elliptic equation is the
Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y) (19.0.3)

where the source term ρ is given. If the source term is equal to zero, the equation
is Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (19.0.1) and (19.0.2) both define initial value or Cauchy
problems: If information on u (perhaps including time derivative information) is
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FD reduces to: Ax=b

main concern: efficiency of algorithms
methods generally stable
recall Jacobi relaxation, conjugate-
gradient, steepest descent

recall: importance of spectral radius, 
condition number!

all conditions on BVP must be satisfied “simultaneously,”
boil down to solution of large numbers of simultaneous algebraic equations. When such equations are 
nonlinear, they are usually solved by linearization and iteration; 
solution of special, large linear sets of equations (thus matrix methods are important for BVPs!)
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19.1 Flux-Conservative Initial Value Problems 825

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

engineering; these methods allow considerable freedom in putting computational
elements where youwant them, importantwhen dealingwith highly irregular geome-
tries. Spectral methods [13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf. §19.4), but
they do not work well for problems with discontinuities.

CITED REFERENCES AND FURTHER READING:
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19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)
∂x

(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.1.2)

a lot of PDEs in physics are conservation laws of this form

flux-conservative equation

conserved flux

826 Chapter 19. Partial Differential Equations
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can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =

�
0 −v
−v 0

�
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

����
j,n

=
u
n+1
j − un

j

∆t
+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate

826 Chapter 19. Partial Differential Equations
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(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,
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with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set
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=
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+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate

our old friend: advection equation

FTCS is unstable! recall VNSA, linear stability analysis by expanding in Fourier modes (WKB limit)
can apply even for nonlinear eq. by linearizing; not rigorous but  practically useful

Lax/Lax-Friedrichs Method in FTCS in time derivative term

828 Chapter 19. Partial Differential Equations
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t or n

x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1− i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is> 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. We accordingly
adopt it exclusively. (See, for example, [1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term unj in the time derivative term by its average (Figure 19.1.2):

unj →
1

2

�
unj+1 + unj−1

�
(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

�
unj+1 + unj−1

�
− v∆t

2∆x

�
unj+1 − unj−1

�
(19.1.15)
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x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1− i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is> 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. We accordingly
adopt it exclusively. (See, for example, [1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term unj in the time derivative term by its average (Figure 19.1.2):

unj →
1

2

�
unj+1 + unj−1

�
(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

�
unj+1 + unj−1

�
− v∆t

2∆x

�
unj+1 − unj−1

�
(19.1.15)

19.1 Flux-Conservative Initial Value Problems 829

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

t or n

!t
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

stable if CFL condition
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)modified equation:

stabilizing diffusion term
numerical dissipation, or 
numerical viscosity



Lax Method
for resolved modes k∆x<<1, amplification factor agrees with analytic result

small scale modes not accurately captured but: 
unstable for FTCS & stable/damped for Lax => while Lax is fine can’t use FTCS

recall that stability concerns are supreme for IVPs

Lax method in 2 variables, e.g., 
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engineering; these methods allow considerable freedom in putting computational
elements where youwant them, importantwhen dealingwith highly irregular geome-
tries. Spectral methods [13-15] are preferred for very regular geometries and smooth
functions; they converge more rapidly than finite-difference methods (cf. §19.4), but
they do not work well for problems with discontinuities.
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19.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

∂u
∂t

= −∂F(u)
∂x

(19.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v

∂2u

∂t2
= v2 ∂

2u

∂x2
(19.1.2)

826 Chapter 19. Partial Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =

�
0 −v
−v 0

�
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

����
j,n

=
u
n+1
j − un

j

∆t
+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate
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can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =

�
0 −v
−v 0

�
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

����
j,n

=
u
n+1
j − un

j

∆t
+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate
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where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

�
r
s

�
=

∂

∂x

�
vs
vr

�
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

�
rnj
snj

�
= ξneikj∆x

�
r0

s0

�
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation




(cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ



 ·




r0

s0



 =




0

0



 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).
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where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

�
r
s

�
=

∂

∂x

�
vs
vr

�
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

�
rnj
snj

�
= ξneikj∆x

�
r0

s0

�
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation




(cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ



 ·




r0

s0



 =




0

0



 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).

Lax in 2D
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where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

�
r
s

�
=

∂

∂x

�
vs
vr

�
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

�
rnj
snj

�
= ξneikj∆x

�
r0

s0

�
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation




(cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ



 ·




r0

s0



 =




0

0



 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).

VNSA in 2 
variables:
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where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

�
r
s

�
=

∂

∂x

�
vs
vr

�
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

�
rnj
snj

�
= ξneikj∆x

�
r0

s0

�
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation




(cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ



 ·




r0

s0



 =




0

0



 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).
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where∇2 = ∂2/∂x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless |v|∆t
is exactly equal to∆x, |ξ|< 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k∆x � 1. (The spatial wave number k is defined by equation 19.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k∆x ∼ 1, which we
are not interested in, will blow up and swamp the interesting part of the solution.
Much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.

When the independent variable u is a vector, then the von Neumann analysis
is slightly more complicated. For example, we can consider equation (19.1.3),
rewritten as

∂

∂t

�
r
s

�
=

∂

∂x

�
vs
vr

�
(19.1.20)

The Lax method for this equation is

rn+1
j =

1

2
(rnj+1 + rnj−1) +

v∆t

2∆x
(snj+1 − snj−1)

sn+1
j =

1

2
(snj+1 + snj−1) +

v∆t

2∆x
(rnj+1 − rnj−1)

(19.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form,

�
rnj
snj

�
= ξneikj∆x

�
r0

s0

�
(19.1.22)

Here the vector on the right-hand side is a constant (both in space and in time)
eigenvector, and ξ is a complex number, as before. Substituting (19.1.22) into
(19.1.21), and dividing by the power ξn, gives the homogeneous vector equation




(cos k∆x)− ξ i

v∆t

∆x
sin k∆x

i
v∆t

∆x
sin k∆x (cos k∆x)− ξ



 ·




r0

s0



 =




0

0



 (19.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots ξ

ξ = cos k∆x± i
v∆t

∆x
sin k∆x (19.1.24)

The stability condition is that both roots satisfy |ξ| ≤ 1. This again turns out to be
simply the Courant condition (19.1.17).
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

multiple eigenvalues instead 
of single amplification factor
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t or n

x or j

FTCS

Figure 19.1.1. Representation of the Forward Time Centered Space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired; filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives; the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

quantities at timestep n + 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:

∂u

∂x

����
j,n

=
unj+1 − unj−1

2∆x
+ O(∆x

2) (19.1.10)

The resulting finite-difference approximation to equation (19.1.6) is called the FTCS
representation (Forward Time Centered Space),

u
n+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
(19.1.11)

which can easily be rearranged to be a formula for un+1
j in terms of the other

quantities. The FTCS scheme is illustrated in Figure 19.1.1. It’s a fine example of
an algorithm that is easy to derive, takes little storage, and executes quickly. Too
bad it doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that un+1
j for each

j can be calculated explicitly from the quantities that are already known. Later we
shall meet implicit schemes, which require us to solve implicit equations coupling
the u

n+1
j for various j. (Explicit and implicit methods for ordinary differential

equations were discussed in §16.6.) The FTCS algorithm is also an example of
a single-level scheme, since only values at time level n have to be stored to find
values at time level n + 1.

von Neumann Stability Analysis

Unfortunately, equation (19.1.11) is of very limited usefulness. It is an unstable
method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
must introduce the von Neumann stability analysis.

The von Neumann analysis is local: We imagine that the coefficients of the
difference equations are so slowly varying as to be considered constant in space
and time. In that case, the independent solutions, or eigenmodes, of the difference
equations are all of the form

u
n
j = ξneikj∆x (19.1.12)
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t or n

x or j

Lax

Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1− i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is> 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. We accordingly
adopt it exclusively. (See, for example, [1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term unj in the time derivative term by its average (Figure 19.1.2):

unj →
1

2

�
unj+1 + unj−1

�
(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

�
unj+1 + unj−1

�
− v∆t

2∆x

�
unj+1 − unj−1

�
(19.1.15)
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

CFL condition in x-t diagram

shaded: finite domain  of dependence for hyperbolic eqs.
CFL condition: characteristics should not cross more than a grid cell

information beyond nearest
points needed=>instability
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Figure 19.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

where k is a real spatial wave number (which can have any value) and ξ = ξ(k) is
a complex number that depends on k. The key fact is that the time dependence of
a single eigenmode is nothing more than successive integer powers of the complex
number ξ. Therefore, the difference equations are unstable (have exponentially
growing modes) if |ξ(k)| > 1 for some k. The number ξ is called the amplification
factor at a given wave number k.

To find ξ(k), we simply substitute (19.1.12) back into (19.1.11). Dividing
by ξn, we get

ξ(k) = 1− i
v∆t

∆x
sin k∆x (19.1.13)

whose modulus is> 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(19.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the
case of strictly constant v, the von Neumann analysis does not rigorously treat the
end effects at j = 0 and j = N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u = u0 + δu, expanding to linear
order in δu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of δu.

Despite its lack of rigor, the von Neumann method generally gives valid
answers and is much easier to apply than more careful methods. We accordingly
adopt it exclusively. (See, for example, [1] for a discussion of other methods of
stability analysis.)

Lax Method

The instability in the FTCS method can be cured by a simple change due to Lax.
One replaces the term unj in the time derivative term by its average (Figure 19.1.2):

unj →
1

2

�
unj+1 + unj−1

�
(19.1.14)

This turns (19.1.11) into

un+1
j =

1

2

�
unj+1 + unj−1

�
− v∆t

2∆x

�
unj+1 − unj−1

�
(19.1.15)Lax Method
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Figure 19.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constant v is negative, as shown; the lower scheme is stable when the advection constant v is
positive, also as shown. The Courant condition must, of course, also be satisfied.

The simplest way to model the transport properties “better” is to use upwind
differencing (see Figure 19.1.4):

un+1
j − unj

∆t
= −vnj






unj − unj−1

∆x
, vnj > 0

unj+1 − unj
∆x

, vnj < 0
(19.1.27)

Note that this scheme is only first-order, not second-order, accurate in the
calculation of the spatial derivatives. How can it be “better”? The answer is
one that annoys the mathematicians: The goal of numerical simulations is not
always “accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the
underlying physics in a sense that is looser and more pragmatic. In such contexts,
some kinds of error are much more tolerable than others. Upwind differencing
generally adds fidelity to problems where the advected variables are liable to undergo
sudden changes of state, e.g., as they pass through shocks or other discontinuities.
You will have to be guided by the specific nature of your own problem.

For the differencing scheme (19.1.27), the amplification factor (for constant v) is

ξ = 1−
����
v∆t

∆x

���� (1− cos k∆x)− i
v∆t

∆x
sin k∆x (19.1.28)

|ξ|2 = 1− 2

����
v∆t

∆x

����

�
1−

����
v∆t

∆x

����

�
(1− cos k∆x) (19.1.29)

So the stability criterion |ξ|2 ≤ 1 is (again) simply the Courant condition (19.1.17).
There are various ways of improving the accuracy of first-order upwind

differencing. In the continuum equation, material originally a distance v∆t away
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can be rewritten as a set of two first-order equations

∂r

∂t
= v

∂s

∂x
∂s

∂t
= v

∂r

∂x
(19.1.3)

where

r ≡ v
∂u

∂x

s ≡ ∂u

∂t
(19.1.4)

In this case r and s become the two components of u, and the flux is given by
the linear matrix relation

F(u) =

�
0 −v
−v 0

�
· u (19.1.5)

(The physicist-reader may recognize equations (19.1.3) as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (19.1.1), namely the equation for a scalar u,

∂u

∂t
= −v∂u

∂x
(19.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u = f(x − vt) (19.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (19.1.1). In
some contexts, equation (19.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (19.1.6) (or, analogously,
19.1.1)? The straightforward approach is to choose equally spaced points along both
the t- and x-axes. Thus denote

xj = x0 + j∆x, j = 0, 1, . . . , J

tn = t0 + n∆t, n = 0, 1, . . ., N
(19.1.8)

Let un
j denote u(tn, xj). We have several choices for representing the time

derivative term. The obvious way is to set

∂u

∂t

����
j,n

=
u
n+1
j − un

j

∆t
+ O(∆t) (19.1.9)

This is called forward Euler differencing (cf. equation 16.1.1). While forward Euler
is only first-order accurate in ∆t, it has the advantage that one is able to calculate

solution should only be affected by points in upwind direction

symmetric w.r.t. +/- direction, unlike advection eq.; leading order 
error: O(∆t, ∆x2/∆t)
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Figure 19.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constant v is negative, as shown; the lower scheme is stable when the advection constant v is
positive, also as shown. The Courant condition must, of course, also be satisfied.

The simplest way to model the transport properties “better” is to use upwind
differencing (see Figure 19.1.4):

un+1
j − unj

∆t
= −vnj






unj − unj−1

∆x
, vnj > 0

unj+1 − unj
∆x

, vnj < 0
(19.1.27)

Note that this scheme is only first-order, not second-order, accurate in the
calculation of the spatial derivatives. How can it be “better”? The answer is
one that annoys the mathematicians: The goal of numerical simulations is not
always “accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the
underlying physics in a sense that is looser and more pragmatic. In such contexts,
some kinds of error are much more tolerable than others. Upwind differencing
generally adds fidelity to problems where the advected variables are liable to undergo
sudden changes of state, e.g., as they pass through shocks or other discontinuities.
You will have to be guided by the specific nature of your own problem.

For the differencing scheme (19.1.27), the amplification factor (for constant v) is

ξ = 1−
����
v∆t

∆x

���� (1− cos k∆x)− i
v∆t

∆x
sin k∆x (19.1.28)

|ξ|2 = 1− 2

����
v∆t

∆x

����

�
1−

����
v∆t

∆x

����

�
(1− cos k∆x) (19.1.29)

So the stability criterion |ξ|2 ≤ 1 is (again) simply the Courant condition (19.1.17).
There are various ways of improving the accuracy of first-order upwind

differencing. In the continuum equation, material originally a distance v∆t away

Upwind Scheme

better than Lax, even if first order accurate in space! 
since inherits the upwind property of original equations

stability again governed by CFL condition: 
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

∆x accuracy improved by using a larger 
stencil in upwind direction:



 O(∆t2)  accuracy in time
if method is O(∆t) but O(∆x2) ∆t << v∆x must be chosen for accuracy

better to have same order of accuracy in space and time

staggered leapfrog method
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x or j

Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note that information
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval ∆t. In the first-order method, the
material always arrives from ∆x away. If v∆t� ∆x (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolate u between j − 1
and j before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in [2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to take v∆t significantly smaller than ∆x to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values of un at time tn,
compute the fluxes F n

j . Then compute new values un+1 using the time-centered
values of the fluxes:

un+1
j − un−1

j = −∆t

∆x
(F n

j+1 − F n
j−1) (19.1.30)

The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that un−1 and un be stored to compute un+1.

For our simple model equation (19.1.6), staggered leapfrog takes the form

un+1
j − un−1

j = −v∆t

∆x
(unj+1 − unj−1) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation for ξ, rather than
a linear one, because of the occurrence of three consecutive powers of ξ when the
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Figure 19.1.5. Representation of the staggered leapfrog differencing scheme. Note that information
from two previous time slices is used in obtaining the desired point. This scheme is second-order
accurate in both space and time.

arrives at a given point after a time interval ∆t. In the first-order method, the
material always arrives from ∆x away. If v∆t� ∆x (to insure accuracy), this can
cause a large error. One way of reducing this error is to interpolate u between j − 1
and j before transporting it. This gives effectively a second-order method. Various
schemes for second-order upwind differencing are discussed and compared in [2-3].

Second-Order Accuracy in Time

When using a method that is first-order accurate in time but second-order
accurate in space, one generally has to take v∆t significantly smaller than ∆x to
achieve desired accuracy, say, by at least a factor of 5. Thus the Courant condition
is not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(19.1.1) is defined as follows (Figure 19.1.5): Using the values of un at time tn,
compute the fluxes F n

j . Then compute new values un+1 using the time-centered
values of the fluxes:

un+1
j − un−1

j = −∆t

∆x
(F n

j+1 − F n
j−1) (19.1.30)

The name comes from the fact that the time levels in the time derivative term
“leapfrog” over the time levels in the space derivative term. The method requires
that un−1 and un be stored to compute un+1.

For our simple model equation (19.1.6), staggered leapfrog takes the form

un+1
j − un−1

j = −v∆t

∆x
(unj+1 − unj−1) (19.1.31)

The von Neumann stability analysis now gives a quadratic equation for ξ, rather than
a linear one, because of the occurrence of three consecutive powers of ξ when the
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form (19.1.12) for an eigenmode is substituted into equation (19.1.31),

ξ2 − 1 = −2iξ
v∆t

∆x
sin k∆x (19.1.32)

whose solution is

ξ = −iv∆t

∆x
sin k∆x±

�

1−
�
v∆t

∆x
sink∆x

�2

(19.1.33)

Thus the Courant condition is again required for stability. In fact, in equation
(19.1.33), |ξ|2 = 1 for any v∆t ≤ ∆x. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (19.1.20) is most transparent
if the variables are centered on appropriate half-mesh points:

rnj+1/2 ≡ v
∂u

∂x

����
n

j+1/2

= v
unj+1 − unj

∆x

sn+1/2
j ≡

∂u

∂t

����
n+1/2

j

=
un+1
j − unj

∆t

(19.1.34)

This is purely a notational convenience: we can think of the mesh on which r and
s are defined as being twice as fine as the mesh on which the original variable u is
defined. The leapfrog differencing of equation (19.1.20) is

rn+1
j+1/2 − rnj+1/2

∆t
=

sn+1/2
j+1 − sn+1/2

j

∆x

sn+1/2
j − sn−1/2

j

∆t
= v

rnj+1/2 − rnj−1/2

∆x

(19.1.35)

If you substitute equation (19.1.22) in equation (19.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (19.1.34) in equation (19.1.35), we find that equation
(19.1.35) is equivalent to

un+1
j − 2unj + un−1

j

(∆t)2
= v2

unj+1 − 2unj + unj−1

(∆x)2
(19.1.36)

This is just the “usual” second-order differencing of the wave equation (19.1.2). We
see that it is a two-level scheme, requiring both un and un−1 to obtain un+1. In
equation (19.1.35) this shows up as both sn−1/2 and rn being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown

amplification factor; |r| = 1 for 
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Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

unstable for steep gradients!

cured by adding small diffusion coefficient
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Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (� 1) times unj+1 − 2unj + unj−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].

The Two-Step Lax-Wendroff scheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
values uj+1/2 at the half timesteps tn+1/2 and the half mesh points xj+1/2. These
are calculated by the Lax scheme:

un+1/2
j+1/2 =

1

2
(unj+1 + unj ) − ∆t

2∆x
(F n

j+1 − F n
j ) (19.1.37)

Using these variables, one calculates the fluxes F n+1/2
j+1/2 . Then the updated values

un+1
j are calculated by the properly centered expression

un+1
j = unj −

∆t

∆x

�
F n+1/2
j+1/2 − F n+1/2

j−1/2

�
(19.1.38)

The provisional values un+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F = vu. Substitute (19.1.37) in (19.1.38) to get

un+1
j = unj − α

�
1

2
(unj+1 + unj ) − 1

2
α(unj+1 − unj )

−1

2
(unj + unj−1) +

1

2
α(unj − unj−1)

� (19.1.39)

x

t
chess-board coupling
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Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (� 1) times unj+1 − 2unj + unj−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].
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avoids large numerical dissipation and mesh drifting. One defines intermediate
values uj+1/2 at the half timesteps tn+1/2 and the half mesh points xj+1/2. These
are calculated by the Lax scheme:
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The provisional values un+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F = vu. Substitute (19.1.37) in (19.1.38) to get
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Figure 19.1.6. Origin of mesh-drift instabilities in a staggered leapfrog scheme. If the mesh points
are imagined to lie in the squares of a chess board, then white squares couple to themselves, black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

in Figure 19.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (19.1.31) a small
coefficient (� 1) times unj+1 − 2unj + unj−1. For more on stabilizing difference
schemes by adding numerical dissipation, see, e.g., [4].

The Two-Step Lax-Wendroff scheme is a second-order in time method that
avoids large numerical dissipation and mesh drifting. One defines intermediate
values uj+1/2 at the half timesteps tn+1/2 and the half mesh points xj+1/2. These
are calculated by the Lax scheme:

un+1/2
j+1/2 =

1

2
(unj+1 + unj ) − ∆t

2∆x
(F n

j+1 − F n
j ) (19.1.37)

Using these variables, one calculates the fluxes F n+1/2
j+1/2 . Then the updated values

un+1
j are calculated by the properly centered expression

un+1
j = unj −

∆t
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F n+1/2
j+1/2 − F n+1/2
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�
(19.1.38)

The provisional values un+1/2
j+1/2 are now discarded. (See Figure 19.1.7.)

Let us investigate the stability of this method for our model advective equation,
where F = vu. Substitute (19.1.37) in (19.1.38) to get

un+1
j = unj − α
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1
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(unj+1 + unj ) − 1
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α(unj+1 − unj )
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(unj + unj−1) +
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Lax step:

second order differencing in x,t 
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t or n

x or j

halfstep points

two-step Lax Wendroff

Figure 19.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Two halfstep points
(⊗) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Halfstep points are used only temporarily and do not require storage allocation on the
grid. This scheme is second-order accurate in both space and time.

where

α ≡ v∆t

∆x
(19.1.40)

Then

ξ = 1− iα sin k∆x− α2(1 − cos k∆x) (19.1.41)
so

|ξ|2 = 1− α2(1− α2)(1− cos k∆x)2 (19.1.42)

The stability criterion |ξ|2 ≤ 1 is therefore α2 ≤ 1, or v∆t ≤ ∆x as usual.
Incidentally, you should not think that the Courant condition is the only stability
requirement that ever turns up in PDEs. It keeps doing so in our model examples
just because those examples are so simple in form. The method of analysis is,
however, general.

Except when α = 1, |ξ|2 < 1 in (19.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size ∆x. If we expand (19.1.42) for small k∆x, we find

|ξ|2 = 1− α2(1− α2)
(k∆x)4

4
+ . . . (19.1.43)

The departure from unity occurs only at fourth order in k. This should be contrasted
with equation (19.1.16) for the Lax method, which shows that

|ξ|2 = 1− (1 − α2)(k∆x)2 + . . . (19.1.44)

for small k∆x.
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t or n

!t

x or j

!t

!x!x

unstablestable

(a) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Substituting equation (19.1.12), we find for the amplification factor

ξ = cos k∆x− i
v∆t

∆x
sin k∆x (19.1.16)

The stability condition |ξ|2 ≤ 1 leads to the requirement

|v|∆t

∆x
≤ 1 (19.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often
called simply the Courant condition. Intuitively, the stability condition can be
understood as follows (Figure 19.1.3): The quantity un+1

j in equation (19.1.15) is
computed from information at points j − 1 and j + 1 at time n. In other words,
xj−1 and xj+1 are the boundaries of the spatial region that is allowed to communicate
information to un+1

j . Now recall that in the continuum wave equation, information
actually propagates with a maximum velocity v. If the point un+1

j is outside of
the shaded region in Figure 19.1.3, then it requires information from points more
distant than the differencing scheme allows. Lack of that information gives rise to
an instability. Therefore, ∆t cannot be made too large.

The surprising result, that the simple replacement (19.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the
FTCS and Lax schemes by rewriting equation (19.1.15) so that it is in the form of
equation (19.1.11) with a remainder term:

un+1
j − unj

∆t
= −v

�
unj+1 − unj−1

2∆x

�
+

1

2

�
unj+1 − 2unj + unj−1

∆t

�
(19.1.18)

But this is exactly the FTCS representation of the equation

∂u

∂t
= −v∂u

∂x
+

(∆x)2

2∆t
∇2u (19.1.19)

stable for                   as seen in HW2



shock-capturing
many eqs. Euler eqs., Burger’s eq., etc. admit discontinuous solutions (a.k.a. shocks)

integral (weak) form of eqs. is suited for numerical solution
numerical methods should be able to capture shocks without Gibbs oscillations

artificial viscosity: numerical methods should be able to capture shocks without Gibbs oscillations

Burger’s equation
wave steepening

can’t be multi-valued!

19
92
Ap
JS
..
.8
0.
.7
53
S

von Neumann Richtmyer artificial viscosity active only at shocks, l (2∆x): length over which shock is smoothened

monotonicity preserving/TVD, higher-order schemes; slope/flux limiters on transport terms

Godunov finite-volume schemes: solution described in terms of volume averaged quantities in cells 
discontinuities at cell boundaries resolved into shocks/rarefactions and the Riemann problem solved 

exactly/approximately; huge area!
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19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

�
D
∂u

∂x

�
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D∂u

∂x
(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problemwhose underlyingPDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − unj

∆t
= D

�
unj+1 − 2unj + unj−1

(∆x)2

�
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1− 4D∆t

(∆x)2
sin2

�
k∆x

2

�
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)
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the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problemwhose underlyingPDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − unj

∆t
= D

�
unj+1 − 2unj + unj−1

(∆x)2

�
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1− 4D∆t

(∆x)2
sin2

�
k∆x

2

�
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)

D>0 for being well-posed

explicit FTCS for D=constant:
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This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
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The requirement |ξ| ≤ 1 leads to the stability criterion
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the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
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Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
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that numerical viscosity and artificial viscosity can introduce diffusive pieces like
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Consider first the case when D is a constant. Then the equation
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This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1− 4D∆t

(∆x)2
sin2

�
k∆x

2

�
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)
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Roache, P.J. 1976, Computational Fluid Dynamics (Albuquerque: Hermosa). [7]
Woodward, P., and Colella, P. 1984, Journal of Computational Physics, vol. 54, pp. 115–173. [8]
Rizzi, A., and Engquist, B. 1987, Journal of Computational Physics, vol. 72, pp. 1–69. [9]

19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

�
D
∂u

∂x

�
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D∂u

∂x
(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problemwhose underlyingPDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − unj

∆t
= D

�
unj+1 − 2unj + unj−1

(∆x)2

�
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The
FTCS scheme was unstable for the hyperbolic equation; however, a quick calculation
shows that the amplification factor for equation (19.2.4) is

ξ = 1− 4D∆t

(∆x)2
sin2

�
k∆x

2

�
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)stability criterion: time-step ~ diffusion timescale across a cell 
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The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼
λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generallymakes the best physical sense; but, as wewill see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicholson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − unj

∆t
= D

�
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2

�
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n + 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problembecause
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = unj , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t

(∆x)2
(19.2.10)

diffusion time-step:
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The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼
λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generallymakes the best physical sense; but, as wewill see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicholson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − unj

∆t
= D

�
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2

�
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n + 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problembecause
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = unj , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t

(∆x)2
(19.2.10)

timesteps before anything happens at scales of interest

implicit/semi-implicit:
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The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼
λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generallymakes the best physical sense; but, as wewill see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicholson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − unj

∆t
= D

�
un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2

�
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n + 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problembecause
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = unj , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t

(∆x)2
(19.2.10)

fully implicit, unconditionally stable; HW2
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Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→∞ (∆t→∞). Dividing by α, we see that
the difference equations are just the finite-difference formof the equilibriumequation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

�
k∆x

2

� (19.2.12)

Clearly |ξ| < 1 for any stepsize∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicitmethod with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − unj

∆t
=

D

2

�
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (unj+1 − 2unj + unj−1)

(∆x)2

�

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =

1− 2α sin2

�
k∆x

2

�

1 + 2α sin2

�
k∆x

2

� (19.2.14)

so the method is stable for any size∆t. This scheme is called the Crank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

�
dx

D(x)
(19.2.15)

equilibrium solution as ∆t➝∞ but only 1st order accurate in time



Crank-Nicholson scheme: centered in space & time O(∆t2,∆x2)
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Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→∞ (∆t→∞). Dividing by α, we see that
the difference equations are just the finite-difference formof the equilibriumequation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

�
k∆x

2

� (19.2.12)

Clearly |ξ| < 1 for any stepsize∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicitmethod with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − unj

∆t
=

D

2

�
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (unj+1 − 2unj + unj−1)

(∆x)2

�

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =

1− 2α sin2

�
k∆x

2

�

1 + 2α sin2

�
k∆x

2

� (19.2.14)

so the method is stable for any size∆t. This scheme is called the Crank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

�
dx

D(x)
(19.2.15)

840 Chapter 19. Partial Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→∞ (∆t→∞). Dividing by α, we see that
the difference equations are just the finite-difference formof the equilibriumequation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

�
k∆x

2

� (19.2.12)

Clearly |ξ| < 1 for any stepsize∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicitmethod with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − unj

∆t
=

D

2

�
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (unj+1 − 2unj + unj−1)

(∆x)2

�

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =

1− 2α sin2

�
k∆x

2

�

1 + 2α sin2

�
k∆x

2

� (19.2.14)

so the method is stable for any size∆t. This scheme is called the Crank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

�
dx

D(x)
(19.2.15)

unconditionally stable, but as ∆t➝∞  

=> initial disturbances at small scales are maintained at late times!
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Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→∞ (∆t→∞). Dividing by α, we see that
the difference equations are just the finite-difference formof the equilibriumequation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

�
k∆x

2

� (19.2.12)

Clearly |ξ| < 1 for any stepsize∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicitmethod with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − unj

∆t
=

D

2

�
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (unj+1 − 2unj + unj−1)

(∆x)2

�

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =

1− 2α sin2

�
k∆x

2

�

1 + 2α sin2

�
k∆x

2

� (19.2.14)

so the method is stable for any size∆t. This scheme is called the Crank-Nicholson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =

�
dx

D(x)
(19.2.15)
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t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicholson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps.
(b) Fully Implicit is stable for arbitrarily large timesteps, but is still only first-order accurate. (c)
Crank-Nicholson is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1

D(y)

∂2u

∂y2
(19.2.17)

and we evaluateD at the appropriate yj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

�
(∆y)2

2D−1
j

�
(19.2.18)

Note that constant spacing ∆y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1
j − unj

∆t
=

Dj+1/2(u
n
j+1 − unj ) −Dj−1/2(u

n
j − unj−1)

(∆x)2
(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)
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and the heuristic stability criterion is

∆t ≤ min
j

�
(∆x)2

2Dj+1/2

�
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

�
D(unj+1) +D(unj )

�
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(unj ) + (un+1
j − unj )

∂z

∂u

����
j,n

= z(unj ) + (un+1
j − unj )D(unj )

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary

for stability:
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t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicholson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps.
(b) Fully Implicit is stable for arbitrarily large timesteps, but is still only first-order accurate. (c)
Crank-Nicholson is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1

D(y)

∂2u

∂y2
(19.2.17)

and we evaluateD at the appropriate yj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

�
(∆y)2

2D−1
j

�
(19.2.18)

Note that constant spacing ∆y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1
j − unj

∆t
=

Dj+1/2(u
n
j+1 − unj ) −Dj−1/2(u

n
j − unj−1)

(∆x)2
(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)

842 Chapter 19. Partial Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

and the heuristic stability criterion is

∆t ≤ min
j

�
(∆x)2

2Dj+1/2

�
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

�
D(unj+1) +D(unj )

�
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(unj ) + (un+1
j − unj )

∂z

∂u

����
j,n

= z(unj ) + (un+1
j − unj )D(unj )

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary

nonlinear
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and the heuristic stability criterion is

∆t ≤ min
j

�
(∆x)2

2Dj+1/2

�
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

�
D(unj+1) +D(unj )

�
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(unj ) + (un+1
j − unj )

∂z

∂u

����
j,n

= z(unj ) + (un+1
j − unj )D(unj )

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary

if

842 Chapter 19. Partial Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

and the heuristic stability criterion is

∆t ≤ min
j

�
(∆x)2

2Dj+1/2

�
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

�
D(unj+1) +D(unj )

�
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(unj ) + (un+1
j − unj )

∂z

∂u

����
j,n

= z(unj ) + (un+1
j − unj )D(unj )

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary

RHS=

now linearize
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and the heuristic stability criterion is

∆t ≤ min
j

�
(∆x)2

2Dj+1/2

�
(19.2.21)

The Crank-Nicholson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1

2

�
D(unj+1) +D(unj )

�
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(unj ) + (un+1
j − unj )

∂z

∂u

����
j,n

= z(unj ) + (un+1
j − unj )D(unj )

(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantityψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

�
∂Fx

∂x
+

∂Fy

∂y

�
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1)

− ∆t

2∆
(F n

j+1,l − F n
j−1,l + F n

j,l+1 − F n
j,l−1)

(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of ξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)

where
αx =

vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)

Lax in 2D:
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

�
∂Fx

∂x
+

∂Fy

∂y

�
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1)

− ∆t

2∆
(F n

j+1,l − F n
j−1,l + F n

j,l+1 − F n
j,l−1)

(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of ξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)

where
αx =

vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)
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are using is known to be extremely stable, we do not recommend anything higher
than second-order in time (for sets of first-order equations). For spatial differencing,
we recommend the order of the underlying PDEs, perhaps allowing second-order
spatial differencing for first-order-in-space PDEs. When you increase the order of
a differencing method to greater than the order of the original PDEs, you introduce
spurious solutions to the difference equations. This does not create a problem if they
all happen to decay exponentially; otherwise you are going to see all hell break loose!

Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to two
dimensions for the conservation equation

∂u

∂t
= −∇ · F = −

�
∂Fx

∂x
+

∂Fy

∂y

�
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆
(19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is

un+1
j,l =

1

4
(un

j+1,l + un
j−1,l + un

j,l+1 + un
j,l−1)

− ∆t

2∆
(F n

j+1,l − F n
j−1,l + F n

j,l+1 − F n
j,l−1)

(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 and
Fl−1 refer to Fy.

Let us carry out a stability analysis for the model advective equation (analog
of 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of ξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)

where
αx =

vx∆t

∆
, αy =

vy∆t

∆
(19.3.7)
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Use a spatial grid with
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yl = y0 + l∆ (19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is
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(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 andFl−1 refer to Fy.
Let us carry out a stability analysis for the model advective equation (analogof 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)
This requires an eigenmode with two dimensions in space, though still only a simpledependence on powers of ξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)where
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Lax Method for a Flux-Conservative Equation

As an example, we show how to generalize the Lax method (19.1.15) to twodimensions for the conservation equation

∂u

∂t
= −∇ · F = −

�
∂Fx

∂x
+

∂Fy

∂y

�
(19.3.1)

Use a spatial grid with

xj = x0 + j∆

yl = y0 + l∆ (19.3.2)

We have chosen ∆x = ∆y ≡ ∆ for simplicity. Then the Lax scheme is
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(un
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(19.3.3)

Note that as an abbreviated notation Fj+1 and Fj−1 refer to Fx, while Fl+1 andFl−1 refer to Fy.
Let us carry out a stability analysis for the model advective equation (analogof 19.1.6) with

Fx = vxu, Fy = vyu (19.3.4)
This requires an eigenmode with two dimensions in space, though still only a simpledependence on powers of ξ in time,

un
j,l = ξneikxj∆eikyl∆ (19.3.5)

Substituting in equation (19.3.3), we find

ξ =
1

2
(cos kx∆ + cos ky∆)− iαx sin kx∆− iαy sin ky∆ (19.3.6)where

αx =
vx∆t
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, αy =
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)

�
1

2
− (α2

x + α2
y)

�

− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or
∆t ≤ ∆√

2(v2
x + v2

y)1/2
(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

�
∂2u

∂x2
+

∂2u

∂y2

�
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
�
δ2
xu

n+1
j,l + δ2

xu
n
j,l + δ2

yu
n+1
j,l + δ2

yu
n
j,l

�
(19.3.13)

Here
α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)
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1

2
− (α2

x + α2
y)
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− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or
∆t ≤ ∆√

2(v2
x + v2

y)1/2
(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

�
∂2u

∂x2
+

∂2u

∂y2

�
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
�
δ2
xu

n+1
j,l + δ2

xu
n
j,l + δ2

yu
n+1
j,l + δ2

yu
n
j,l

�
(19.3.13)

Here
α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than

in N dimensions; similarly for L-W

Diffusion Equation in Multidimensions
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)
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1

2
− (α2

x + α2
y)
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− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or
∆t ≤ ∆√

2(v2
x + v2

y)1/2
(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

�
∂2u

∂x2
+

∂2u

∂y2

�
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
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δ2
xu
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j,l + δ2
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Here
α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)
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j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)
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1

2
− (α2

x + α2
y)
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− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or
∆t ≤ ∆√

2(v2
x + v2

y)1/2
(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

�
∂2u

∂x2
+

∂2u

∂y2

�
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
�
δ2
xu

n+1
j,l + δ2

xu
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j,l + δ2
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(19.3.13)

Here
α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than

 Crank-Nicolson in 2D:
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The expression for |ξ|2 can be manipulated into the form

|ξ|2 = 1− (sin2 kx∆ + sin2 ky∆)
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1

2
− (α2

x + α2
y)
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− 1

4
(cos kx∆− cos ky∆)2 − (αy sin kx∆− αx sin ky∆)2

(19.3.8)

The last two terms are negative, and so the stability requirement |ξ|2 ≤ 1 becomes

1

2
− (α2

x + α2
y) ≥ 0 (19.3.9)

or
∆t ≤ ∆√

2(v2
x + v2

y)1/2
(19.3.10)

This is an example of the general result for the N -dimensional Courant
condition: If |v| is the maximum propagation velocity in the problem, then

∆t ≤ ∆√
N |v|

(19.3.11)

is the Courant condition.

Diffusion Equation in Multidimensions

Let us consider the two-dimensional diffusion equation,

∂u

∂t
= D

�
∂2u

∂x2
+

∂2u

∂y2

�
(19.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicholson scheme
in two dimensions. This would give us

un+1
j,l = unj,l +

1

2
α
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δ2
xu
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Here
α ≡ D∆t

∆2
∆ ≡ ∆x = ∆y (19.3.14)

δ2
xu

n
j,l ≡ unj+1,l − 2unj,l + unj−1,l (19.3.15)

and similarly for δ2
yu

n
j,l. This is certainly a viable scheme; the problem arises in

solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see §2.7 and §19.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicholson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than

where
sparse but not easily solvable matrix: 
Jacobi/related relaxation, CG

for explicit methods in N-D
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(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size ∆t/2.
In each substep, a different dimension is treated implicitly:

un+1/2
j,l = unj,l +

1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

�

un+1
j,l = un+1/2

j,l +
1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

� (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively on u,

Lu = L1u + L2u + · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(u
n,∆t)

un+1 = U2(u
n,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(u
n,∆t)

un+(2/m) = U2(u
n+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)

(19.3.20)

results in easily solvable tridiagonal system

Operator Splitting Methods Generally
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(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size ∆t/2.
In each substep, a different dimension is treated implicitly:

un+1/2
j,l = unj,l +

1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

�

un+1
j,l = un+1/2

j,l +
1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

� (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively on u,

Lu = L1u + L2u + · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(u
n,∆t)

un+1 = U2(u
n,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(u
n,∆t)

un+(2/m) = U2(u
n+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)

(19.3.20)
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powerful concept of operator splitting or time splitting, about which we will say
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In each substep, a different dimension is treated implicitly:

un+1/2
j,l = unj,l +

1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n
j,l

�

un+1
j,l = un+1/2

j,l +
1

2
α
�
δ2
xu

n+1/2
j,l + δ2

yu
n+1
j,l

� (19.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively on u,

Lu = L1u + L2u + · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(u
n,∆t)

un+1 = U2(u
n,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(u
n,∆t)

un+(2/m) = U2(u
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(19.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size ∆t/2.
In each substep, a different dimension is treated implicitly:
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The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

Operator Splitting Methods Generally

The basic idea of operator splitting, which is also called time splitting or the
method of fractional steps, is this: Suppose you have an initial value equation of
the form

∂u

∂t
= Lu (19.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum ofm pieces, which act additively on u,

Lu = L1u + L2u + · · ·+ Lmu (19.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep n + 1, valid if that piece
of the operator were the only one on the right-hand side. We will write these
updatings symbolically as

un+1 = U1(u
n,∆t)

un+1 = U2(u
n,∆t)

· · ·

un+1 = Um(un,∆t)

(19.3.19)

Now, one form of operator splitting would be to get from n to n + 1 by the
following sequence of updatings:

un+(1/m) = U1(u
n,∆t)

un+(2/m) = U2(u
n+(1/m),∆t)

· · ·

un+1 = Um(un+(m−1)/m,∆t)
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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(u
n,∆t/m)

un+2/m = U2(u
n+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is nowonly1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable— to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:
Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:

Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

apply L-W for advection step & CN for diffusion

ADI: can think of as operator splitting
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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(u
n,∆t/m)

un+2/m = U2(u
n+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is nowonly1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable— to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:
Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:

Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

very useful because we want to simulate several 
processes simultaneously!
several combinations of splitting: Strang splitting, etc.
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For example, a combined advective-diffusion equation, such as

∂u

∂t
= −v∂u

∂x
+D

∂2u

∂x2
(19.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicholson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a slightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let U1 now denote an updating method that
includes algebraically all the pieces of the total operator L, but which is desirably
stable only for the L1 piece; likewise U2, . . .Um. Then a method of getting from
un to un+1 is

un+1/m = U1(u
n,∆t/m)

un+2/m = U2(u
n+1/m,∆t/m)

· · ·

un+1 = Um(un+(m−1)/m,∆t/m)

(19.3.22)

The timestep for each fractional step in (19.3.22) is nowonly1/m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stableUi’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui’s can be unstable— to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:
Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:

Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A · u = b (19.4.1)

either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

for both linear and nonlinear (need to linearize in this case) problems

Fourier methods when regular boundaries & constant coefficients
2-D Poisson eq.:

w. different BCs

vector form at interior points
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In contrast to initial value problems, stability is relatively easy to achieve
for boundary value problems. Thus, the efficiency of the algorithms, both in
computational load and storage requirements, becomes the principal concern.

Because all the conditions on a boundary value problem must be satisfied
“simultaneously,” these problems usually boil down, at least conceptually, to the
solution of large numbers of simultaneous algebraic equations. When such equations
are nonlinear, they are usually solved by linearization and iteration; so without much
loss of generality we can view the problem as being the solution of special, large
linear sets of equations.

As an example, one which we will refer to in §§19.4–19.6 as our “model
problem,” let us consider the solution of equation (19.0.3) by the finite-difference
method. We represent the function u(x, y) by its values at the discrete set of points

xj = x0 + j∆, j = 0, 1, ..., J

yl = y0 + l∆, l = 0, 1, ..., L
(19.0.4)

where ∆ is the grid spacing. From now on, we will write uj,l for u(xj, yl), and
ρj,l for ρ(xj , yl). For (19.0.3) we substitute a finite-difference representation (see
Figure 19.0.2),

uj+1,l − 2uj,l + uj−1,l

∆2
+

uj,l+1 − 2uj,l + uj,l−1

∆2
= ρj,l (19.0.5)

or equivalently

uj+1,l + uj−1,l + uj,l+1 + uj,l−1 − 4uj,l = ∆2ρj,l (19.0.6)

To write this system of linear equations in matrix form we need to make a
vector out of u. Let us number the two dimensions of grid points in a single
one-dimensional sequence by defining

i ≡ j(L + 1) + l for j = 0, 1, ..., J, l = 0, 1, ..., L (19.0.7)

In other words, i increases most rapidly along the columns representing y values.
Equation (19.0.6) now becomes

ui+L+1 + ui−(L+1) + ui+1 + ui−1 − 4ui = ∆2ρi (19.0.8)

This equation holds only at the interior points j = 1, 2, ..., J − 1; l = 1, 2, ...,
L − 1.

The points where

j = 0

j = J

l = 0

l = L

[i.e., i = 0, ..., L]

[i.e., i = J(L + 1), ..., J(L+ 1) + L]

[i.e., i = 0, L + 1, ..., J(L+ 1)]

[i.e., i = L, L + 1 + L, ..., J(L+ 1) + L]

(19.0.9)
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1�

m=0

L−1�

n=0

�umne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1�

m=0

L−1�

n=0

�ρmne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

�umn

�
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

�
= �ρmn∆2 (19.4.4)

or

�umn =
�ρmn∆2

2

�
cos

2πm

J
+ cos

2πn

L
− 2

� (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute �ρmn as the Fourier transform

�ρmn =
J−1�

j=0

L−1�

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute �umn from equation (19.4.5).
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1�

m=0

L−1�

n=0

�umne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1�

m=0

L−1�

n=0

�ρmne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

�umn

�
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

�
= �ρmn∆2 (19.4.4)

or

�umn =
�ρmn∆2

2

�
cos

2πm

J
+ cos

2πn

L
− 2

� (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute �ρmn as the Fourier transform

�ρmn =
J−1�

j=0

L−1�

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute �umn from equation (19.4.5).

discrete IFT
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1�

m=0

L−1�

n=0

�umne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1�

m=0

L−1�

n=0

�ρmne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

�umn

�
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

�
= �ρmn∆2 (19.4.4)

or

�umn =
�ρmn∆2

2

�
cos

2πm

J
+ cos

2πn

L
− 2

� (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute �ρmn as the Fourier transform

�ρmn =
J−1�

j=0

L−1�

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute �umn from equation (19.4.5).
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1�

m=0

L−1�

n=0

�umne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1�

m=0

L−1�

n=0

�ρmne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

�umn

�
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

�
= �ρmn∆2 (19.4.4)

or

�umn =
�ρmn∆2

2

�
cos

2πm

J
+ cos

2πn

L
− 2

� (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute �ρmn as the Fourier transform

�ρmn =
J−1�

j=0

L−1�

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute �umn from equation (19.4.5).
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Two important techniques lead to “rapid” solution of equation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both x and y is

ujl =
1

JL

J−1�

m=0

L−1�

n=0

�umne
−2πijm/Je−2πiln/L (19.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of §12.4 or the routine rlft3 of §12.5. Similarly,

ρjl =
1

JL

J−1�

m=0

L−1�

n=0

�ρmne
−2πijm/Je−2πiln/L (19.4.3)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

�umn

�
e2πim/J + e−2πim/J + e2πin/L + e−2πin/L − 4

�
= �ρmn∆2 (19.4.4)

or

�umn =
�ρmn∆2

2

�
cos

2πm

J
+ cos

2πn

L
− 2

� (19.4.5)

Thus the strategy for solving equation (19.0.6) by FFT techniques is:
• Compute �ρmn as the Fourier transform

�ρmn =
J−1�

j=0

L−1�

l=0

ρjl e
2πimj/Je2πinl/L (19.4.6)

• Compute �umn from equation (19.4.5).

discrete DFT
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

compute ujl by IFT

for periodic BCs
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

: use sin transforms which vanish at boundaries
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

850 Chapter 19. Partial Differential Equations
Sam

ple page from
 NUM

ERICAL RECIPES IN FO
RTRAN 77: THE ART O

F SCIENTIFIC CO
M

PUTING
 (ISBN 0-521-43064-X)

Copyright (C) 1986-1992 by Cam
bridge University Press. Program

s Copyright (C) 1986-1992 by Num
erical Recipes Software. 

Perm
ission is granted for internet users to m

ake one paper copy for their own personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order Num

erical Recipes books, diskettes, or CDRO
M

s
visit website http://www.nr.com

 or call 1-800-872-7423 (North Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside North Am
erica).

• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

inhomogeneous BCs: for example u = 0 on all boundaries except u = f(y) on the boundary x = J∆ 

uH of the homogeneous equation
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)

that satisfies the BC
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• Compute ujl by the inverse Fourier transform (19.4.2).
The above procedure is valid for periodic boundary conditions. In other words,

the solution satisfies

ujl = uj+J,l = uj,l+L (19.4.7)

Next consider aDirichlet boundary conditionu = 0 on the rectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves:

ujl =
2

J

2

L

J−1�

m=1

L−1�

n=1

�umn sin
πjm

J
sin

πln

L
(19.4.8)

This satisfies the boundary conditions that u = 0 at j = 0, J and at l = 0, L. If we
substitute this expansion and the analogous one for ρjl into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

• Compute �ρmn by the sine transform

�ρmn =
J−1�

j=1

L−1�

l=1

ρjl sin
πjm

J
sin

πln

L
(19.4.9)

(A fast sine transform algorithm was given in §12.3.)
• Compute �umn from the expression analogous to (19.4.5),

�umn =
∆2�ρmn

2
�
cos

πm

J
+ cos

πn

L
− 2
� (19.4.10)

• Compute ujl by the inverse sine transform (19.4.8).
If we have inhomogeneous boundary conditions, for example u = 0 on all

boundaries except u = f(y) on the boundary x = J∆, we have to add to the above
solution a solution uH of the homogeneous equation

∂2u

∂x2
+

∂2u

∂y2
= 0 (19.4.11)

that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

uH =
�

n

An sinh
nπx

J∆
sin

nπy

L∆
(19.4.12)

where An would be found by requiring that u = f(y) at x = J∆. In the discrete
case, we have

uH
jl

=
2

L

L−1�

n=1

An sinh
πnj

J
sin

πnl

L
(19.4.13)where
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If f(y = l∆) ≡ fl, then we get An from the inverse formula

An =
1

sinh πn

L−1�

l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uH
jl

(19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore ρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u� + uB (19.4.16)

where u� = 0 on the boundary, while uB vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of uB would be

uB
J,l

= fl (19.4.17)

The model equation (19.0.3) becomes

∇2u� = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u�
j+1,l + u�

j−1,l + u�
j,l+1 + u�

j,l−1 − 4u�
j,l

=

− (uB
j+1,l + uB

j−1,l + uB
j,l+1 + uB

j,l−1 − 4uB
j,l

) + ∆2ρj,l
(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u�
J,l

+ u�
J−2,l + u�

J−1,l+1 + u�
J−1,l−1 − 4u�

J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions ∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2

J

2

L

J���

m=0

L���

n=0

�umn cos
πjm

J
cos

πln

L
(19.4.22)
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If f(y = l∆) ≡ fl, then we get An from the inverse formula

An =
1

sinh πn

L−1�

l=1

fl sin
πnl

L
(19.4.14)

The complete solution to the problem is

u = ujl + uH
jl

(19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore ρjl plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u = u� + uB (19.4.16)

where u� = 0 on the boundary, while uB vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of uB would be

uB
J,l

= fl (19.4.17)

The model equation (19.0.3) becomes

∇2u� = −∇2uB + ρ (19.4.18)

or, in finite-difference form,

u�
j+1,l + u�

j−1,l + u�
j,l+1 + u�

j,l−1 − 4u�
j,l

=

− (uB
j+1,l + uB

j−1,l + uB
j,l+1 + uB

j,l−1 − 4uB
j,l

) + ∆2ρj,l
(19.4.19)

All the uB terms in equation (19.4.19) vanish except when the equation is evaluated
at j = J − 1, where

u�
J,l

+ u�
J−2,l + u�

J−1,l+1 + u�
J−1,l−1 − 4u�

J−1,l = −fl + ∆2ρJ−1,l (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

∆2ρJ−1,l → ∆2ρJ−1,l − fl (19.4.21)

The case of Neumann boundary conditions ∇u = 0 is handled by the cosine
expansion (12.3.17):

ujl =
2

J

2

L

J���

m=0

L���

n=0

�umn cos
πjm

J
cos

πln

L
(19.4.22)

full solution:

for general BCs u=u’+uB where u’=0 on boundary and uB=0 everywhere except boundary; since 
boundary terms are known they can be taken to RHS; they affect RHS at the last active zone close to 
boundary; see NR for more
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Here the double prime notation means that the terms form = 0 and m = J should
be multiplied by 1

2 , and similarly for n = 0 and n = L. Inhomogeneous terms
∇u = g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side.
For example, the condition

∂u

∂x
= g(y) at x = 0 (19.4.23)

becomes
u1,l − u−1,l

2∆
= gl (19.4.24)

where gl ≡ g(y = l∆). Once again we write the solution in the form (19.4.16),
where now∇u� = 0 on the boundary. This time∇uB takes on the prescribed value
on the boundary, but uB vanishes everywhere except just outside the boundary.
Thus equation (19.4.24) gives

uB−1,l = −2∆gl (19.4.25)

All the uB terms in equation (19.4.19) vanish except when j = 0:

u�1,l + u�−1,l + u�0,l+1 + u�0,l−1 − 4u�0,l = 2∆gl + ∆2ρ0,l (19.4.26)

Thus u� is the solution of a zero-gradient problem, with the source term modified
by the replacement

∆2ρ0,l → ∆2ρ0,l + 2∆gl (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the u’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the alternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

∂2u

∂x2
+

∂2u

∂y2
+ b(y)

∂u

∂y
+ c(y)u = g(x, y) (19.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in [1].

arises often for Poisson/Helmholz eq. 
in cylindrical/spherical coordinates

this eq. can be FD as
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The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B− 21 (19.4.30)

where the 21 comes from thex-differencing and thematrixB from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for uJ/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve uJ/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].
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The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B− 21 (19.4.30)

where the 21 comes from thex-differencing and thematrixB from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for uJ/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve uJ/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].
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The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B− 21 (19.4.30)

where the 21 comes from thex-differencing and thematrixB from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for uJ/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve uJ/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].

combine

Taking the number of mesh points to be a power of 2
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The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj−1 + T · uj + uj+1 = gj∆
2 (19.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T
has the form

T = B− 21 (19.4.30)

where the 21 comes from thex-differencing and thematrixB from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

uj−2 + T · uj−1 + uj = gj−1∆
2

uj−1 + T · uj + uj+1 = gj∆
2

uj + T · uj+1 + uj+2 = gj+1∆
2

(19.4.31)

Matrix-multiplying the middle equation by −T and then adding the three equations,
we get

uj−2 + T(1) · uj + uj+2 = g(1)
j ∆2 (19.4.32)

This is an equation of the same form as (19.4.29), with

T(1) = 21− T2

g(1)
j = ∆2(gj−1 − T · gj + gj+1)

(19.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T(f) · uJ/2 = ∆2g(f)
J/2 − u0 − uJ (19.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for uJ/2 by the standard
tridiagonal algorithm. The two equations at level f − 1 involve uJ/4 and u3J/4. The
equation for uJ/4 involves u0 and uJ/2, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J − 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].

known BCsTridiagonal system

 two equations at level f − 1 involve uJ/4 and u3J/4. The equation for uJ/4 involves u0 and uJ/2, both of which are known, and 
hence can be solved by the usual tridiagonal routine. A similar result holds true at every stage, so we end up solving J − 1 
tridiagonal systems.

O(N2log2N) like FFT
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FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem(19.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

�ukj−2r + λ(r)
k �ukj + �ukj+2r = ∆2g(r)k

j (19.4.35)

Here λ(r)
k is the eigenvalue of T(r) corresponding to the kth Fourier mode. For

the equation (19.0.3), equation (19.4.5) shows that λ(r)
k will involve terms like

cos(2πk/L)− 2 raised to a power. Solve the tridiagonal systems for �ukj at the levels
j = 2r, 2 × 2r, 4 × 2r, ..., J − 2r. Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128×128
mesh, the optimal level is r = 2; asymptotically, r → log2(log2 J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r = 0 (that is, FFT in one dimension and solve the
tridiagonal equations by the usual algorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r = 2 gives another factor
of two gain in speed.
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19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu = ρ (19.5.1)elliptic equation in operator form written in diffusive form
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

relaxes to the solution as t➝∞

19.5 Relaxation Methods for Boundary Value Problems 855

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press. Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any server com

puter, is strictly prohibited. To order Num
erical Recipes books, diskettes, or CDRO

M
s

visit website http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only), or send em
ail to trade@

cup.cam
.ac.uk (outside North Am

erica).

where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

choose
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

iterate till conv.

Gauss-Seidel method:
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where L represents some elliptic operator and ρ is the source term. Rewrite the
equation as a diffusion equation,

∂u

∂t
= Lu− ρ (19.5.2)

An initial distribution u relaxes to an equilibrium solution as t → ∞. This
equilibrium has all time derivatives vanishing. Therefore it is the solution of the
original elliptic problem (19.5.1). We see that all themachinery of §19.2, on diffusive
initial value equations, can be brought to bear on the solution of boundary value
problems by relaxation methods.

Let us apply this idea to our model problem (19.0.3). The diffusion equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
− ρ (19.5.3)

If we use FTCS differencing (cf. equation 19.2.4), we get

un+1
j,l = un

j,l +
∆t

∆2

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1 − 4un
j,l

�
− ρj,l∆t (19.5.4)

Recall from (19.2.6) that FTCS differencing is stable in one spatial dimension only if
∆t/∆2 ≤ 1

2 . In two dimensions this becomes ∆t/∆2 ≤ 1
4 . Suppose we try to take

the largest possible timestep, and set ∆t = ∆2/4. Then equation (19.5.4) becomes

un+1
j,l =

1

4

�
un
j+1,l + un

j−1,l + un
j,l+1 + un

j,l−1

�
− ∆2

4
ρj,l (19.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the
last century, called Jacobi’s method (not to be confused with the Jacobi method
for eigenvalues). The method is not practical because it converges too slowly.
However, it is the basis for understanding the modern methods, which are always
compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigridmethods (§19.6). Here we make use of updated values of u on
the right-hand side of (19.5.5) as soon as they become available. In other words, the
averaging is done “in place” instead of being “copied” from an earlier timestep to a
later one. If we are proceeding along the rows, incrementing j for fixed l, we have

un+1
j,l =

1

4

�
un
j+1,l + un+1

j−1,l + un
j,l+1 + un+1

j,l−1

�
− ∆2

4
ρj,l (19.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix
splitting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A · x = b (19.5.7)

use updated values

same as Jacobi’s method we saw earlier: Dx=-(L+U)x+b

(L+D)x=-Ux+b

recall that speed of convergence is governed by spectral radius, which for Poisson eq. is
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we can consider splitting A as

A = L+ D+ U (19.5.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal.

In the Jacobi method we write for the rth step of iteration

D · x(r) = −(L +U) · x(r−1) + b (19.5.9)

For our model problem (19.5.5), D is simply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be
made mathematically precise. For matrices arising from finite differencing, this
condition is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix −D−1 · (L + U) is
the iteration matrix which, apart from an additive term, maps one set of x’s into the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus < 1 for
the relaxation to work at all! The rate of convergence of the method is set by the
rate for the slowest-decaying eigenmode, i.e., the factor with largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted ρs .

The number of iterations r required to reduce the overall error by a factor
10−p is thus estimated by

r ≈ p ln 10

(− ln ρs)
(19.5.10)

In general, the spectral radius ρs goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be
computed analytically. For example, for equation (19.5.5) on a J × J grid with
Dirichlet boundary conditions on all four sides, the asymptotic formula for large
J turns out to be

ρs � 1− π2

2J2
(19.5.11)

The number of iterations r required to reduce the error by a factor of 10−p is thus

r � 2pJ2 ln 10

π2
� 1

2
pJ2 (19.5.12)

In other words, the number of iterations is proportional to the number of mesh points,
J2. Since 100 × 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

=> number of steps to convergence∝J2 (similar scaling for GS)

recall for CG: no. of steps for conv. ∝J



Successive Over-relaxation (SOR)
Gauss-Seidel method
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The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L+ D) · x(r) = −U · x(r−1) + b (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

ρs � 1−
π2

J2
(19.5.14)

r � pJ2 ln 10

π2
� 1

4
pJ2 (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)
We get a better algorithm— one that was the standard algorithm until the 1970s

— if we make an overcorrection to the value of x(r) at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x(r), add and
subtract x(r−1) on the right-hand side, and hence write the Gauss-Seidel method as

x(r) = x(r−1) − (L+D)−1 · [(L+D+ U) · x(r−1) − b] (19.5.16)

The term in square brackets is just the residual vector ξ(r−1), so

x(r) = x(r−1) − (L+D)−1 · ξ(r−1) (19.5.17)

Now overcorrect, defining

x(r) = x(r−1) − ω(L+ D)−1 · ξ(r−1) (19.5.18)

Here ω is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:
• The method is convergent only for 0 < ω < 2. If 0 < ω < 1, we speak
of underrelaxation.

• Under certain mathematical restrictions generally satisfied by matrices
arising from finite differencing, only overrelaxation (1 < ω < 2 ) can give
faster convergence than the Gauss-Seidel method.

• If ρJacobi is the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then the optimal
choice for ω is given by

ω =
2

1 +
�

1− ρ2
Jacobi

(19.5.19)

overcorrect

over-relaxation parameter

remember εr=xr-x➝0 as rr=-Aεr➝0

• The method is convergent only for 0<ω<2. 0<ω<1 under-relaxation

 • The optimal choice for ω is given by
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The Gauss-Seidel method, equation (19.5.6), corresponds to the matrix de-
composition

(L+ D) · x(r) = −U · x(r−1) + b (19.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (19.5.13) in components. One
can show [1-3] that the spectral radius is just the square of the spectral radius of the
Jacobi method. For our model problem, therefore,

ρs � 1−
π2

J2
(19.5.14)

r � pJ2 ln 10

π2
� 1

4
pJ2 (19.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

Successive Overrelaxation (SOR)
We get a better algorithm— one that was the standard algorithm until the 1970s

— if we make an overcorrection to the value of x(r) at the rth stage of Gauss-Seidel
iteration, thus anticipating future corrections. Solve (19.5.13) for x(r), add and
subtract x(r−1) on the right-hand side, and hence write the Gauss-Seidel method as

x(r) = x(r−1) − (L+D)−1 · [(L+D+ U) · x(r−1) − b] (19.5.16)

The term in square brackets is just the residual vector ξ(r−1), so

x(r) = x(r−1) − (L+D)−1 · ξ(r−1) (19.5.17)

Now overcorrect, defining

x(r) = x(r−1) − ω(L+ D)−1 · ξ(r−1) (19.5.18)

Here ω is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:
• The method is convergent only for 0 < ω < 2. If 0 < ω < 1, we speak
of underrelaxation.

• Under certain mathematical restrictions generally satisfied by matrices
arising from finite differencing, only overrelaxation (1 < ω < 2 ) can give
faster convergence than the Gauss-Seidel method.

• If ρJacobi is the spectral radius of the Jacobi iteration (so that the square
of it is the spectral radius of the Gauss-Seidel iteration), then the optimal
choice for ω is given by

ω =
2

1 +
�

1− ρ2
Jacobi

(19.5.19)=>
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• For this optimal choice, the spectral radius for SOR is

ρSOR =

�
ρJacobi

1 +
�

1− ρ2

Jacobi

�2

(19.5.20)

As an application of the above results, consider our model problem for which
ρJacobi is given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

ω � 2

1 + π/J
(19.5.21)

ρSOR � 1− 2π

J
for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 10−p,

r � pJ ln 10

2π
� 1

3
pJ (19.5.23)

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose ω for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value of ω. It is better to take ω
slightly too large, rather than slightly too small, but best to get it right.

One way to choose ω is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problemmust have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of ρJacobi for our model
problem on a rectangular J × L grid, allowing for the possibility that ∆x �= ∆y:

ρJacobi =

cos
π

J
+

�
∆x

∆y

�2

cos
π

L

1 +

�
∆x

∆y

�2
(19.5.24)

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement π → 2π.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value ω empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of ω are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.
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• For this optimal choice, the spectral radius for SOR is

ρSOR =

�
ρJacobi

1 +
�

1− ρ2

Jacobi

�2

(19.5.20)

As an application of the above results, consider our model problem for which
ρJacobi is given by equation (19.5.11). Then equations (19.5.19) and (19.5.20) give

ω � 2

1 + π/J
(19.5.21)

ρSOR � 1− 2π

J
for large J (19.5.22)

Equation (19.5.10) gives for the number of iterations to reduce the initial error by
a factor of 10−p,

r � pJ ln 10

2π
� 1

3
pJ (19.5.23)

Comparing with equation (19.5.12) or (19.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (19.5.23) leads to the mnemonic
that 3-figure accuracy (p = 3) requires a number of iterations equal to the number
of mesh points along a side of the grid. For 6-figure accuracy, we require about
twice as many iterations.

How do we choose ω for a problem for which the answer is not known
analytically? That is just the weak point of SOR! The advantages of SOR obtain
only in a fairly narrow window around the correct value of ω. It is better to take ω
slightly too large, rather than slightly too small, but best to get it right.

One way to choose ω is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problemmust have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of ρJacobi for our model
problem on a rectangular J × L grid, allowing for the possibility that ∆x �= ∆y:

ρJacobi =

cos
π

J
+

�
∆x

∆y

�2

cos
π

L

1 +

�
∆x

∆y

�2
(19.5.24)

Equation (19.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement π → 2π.

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value ω empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of ω are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas.

for Poisson eq.
=> convergence in steps ∝ J!

problem is that we need to know ω, not available in general
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Convergence of Gauss-Seidel on
Au=0

• Eigenvectors of RG are not the same as those of A.
Gauss-Seidel mixes the modes of A.
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Multigrid methods
most efficient modern tool for well-behaved matrix eqs.!
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• Many relaxation schemes have the smoothing
property, where oscillatory modes of the error
are eliminated effectively, but  smooth modes
are damped very slowly.

• This might seem like a limitation, but by using
coarse grids we can use the smoothing property to
good advantage.

• Why use coarse grids??

First observation toward
multigrid
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• Many relaxation schemes have the smoothing
property, where oscillatory modes of the error
are eliminated effectively, but  smooth modes
are damped very slowly.

• This might seem like a limitation, but by using
coarse grids we can use the smoothing property to
good advantage.

• Why use coarse grids??

First observation toward
multigrid
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Reason #1 for using coarse
grids: Nested Iteration

• Coarse grids can be used to compute an improved
initial guess for the fine-grid relaxation.  This is
advantageous because:

– Relaxation on the coarse-grid is much cheaper (1/2 as
many points in 1D, 1/4 in 2D, 1/8 in 3D)

– Relaxation on the coarse grid has a marginally better
convergence rate, for example

                                       instead of 1 )(! hO 241 )(! hO 2

better convergence
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Idea!  Nested Iteration

• …
• Relax on Au=f on         to obtain initial guess
• Relax on Au=f on         to obtain initial guess
• Relax on Au=f on         to obtain … final solution???

• But, what is Au=f on         ,            ,  … ?

• What if the error still has smooth components
when we get to the fine grid        ?

!4h

!2h

!h

v2h

vh

!2h !4h

!h
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Full Multigrid (FMG)
• Restriction
• Interpolation
• High-order Interpolation

more in: A Multigrid Tutorial, Briggs et al.


