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Types of PDEs

hyperbolic, parabolic, and elliptic depending on their characteristics, or
curves of information propagation; examples:

H2 O? .
373 _ 028—3:; 1-D wave equation

IVPs, Cauchy problems; start at t=0 and evolve the solution

, ou 0 ou : : :
Parabolic % = By (Da—x> diffusion equation
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T el T Poisson equation
Elliptic 0z T o p(z,y) q

boundary value problem; no evolution! find the solution which satisfies PDE and boundary conditions

simple prototypes are very instructive and guide the solution of more complicated problems




main concern is stability
accuracy while being fast
remember CFL condition!

boundary heeded! specified in

[ conditions a physical way

v

X /f’

initial values

dependent variables to be propagated forward in time f

evolution equation, e.g., advection eq. CE 4+ ﬂ — 0

ot u(?a: N

prefer to have % on LHS

boundary conditions: Dirichlet BCs (specify boundary values of { at all times), Neumann (specify derivatives
at boundary); & combinations specified in physically plausible way




BVPs

boundary FD reduces to: Ax=b

values
main concern: efficiency of algorithms
methods generally stable
recall Jacobi relaxation, conjugate-
gradient, steepest descent

recall: importance of spectral radius,
condition number!

* What are the variables (dependent & independent)?

. e o 0*u  0%u
e What equations are satisfied in the interior of the region of interest? ——= + ——% = p(:l?, y)

ox?  Oy?

e What equations are satisfied by points on the boundary of the region of
interest? (Here Dirichlet and Neumann conditions are possible choices for elliptic second-order
equations, but more complicated boundary conditions can also be encountered.)

all conditions on BVP must be satisfied “simultaneously,”

boil down to solution of large numbers of simultaneous algebraic equations. When such equations are
nonlinear, they are usually solved by linearization and iteration;

solution of special, large linear sets of equations (thus matrix methods are important for BVPs!)




Flux-Conservative |VPs

flux-conservative equation

du  OF(u)
ot Ox

a lot of PDEs in physics are conservation laws of this form

conserved flux

ou

—) —— U = f(:lj‘ — ?Jt) our old friend: advection equation

ox

FTCS is unstable! recall VNSA, linear stability analysis by expanding in Fourier modes (VWKB limit)
can apply even for nonlinear eq. by linearizing; not rigorous but practically useful

1
Lax/Lax-Friedrichs Method in FTCS in time derivative term u;’ — — (u?+1 —+ u;”_l)

2
1 vAt

n+1 n n n n - "
U’ — — (u' +u. 4) — u' —u. stable if CFL condition

J 9 ( J+1 J 1) INA T ( Jj+1 J 1)

. . ou ou Ax)? stabilizing diffusion term
modified equation: E — —Ua— + ( 5 Al)f Viue numerical dissipation, or
L numerical viscosity




for resolved modes kAx<<I, amplification factor agrees with analytic result
Lax Method small scale modes not accurately captured but:
unstable for FTCS & stable/damped for Lax => while Lax is fine can’t use FTCS

recall that stability concerns are supreme for IVPs
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Lax in 2D

n—+1 1 UAt n n )

1, . vAt .
= §(Sj+1 +s5_1) + AT (rj41 —75-1)

Lax method in 2 variables, e.g.,

VNSAin2 [ . -
variables: Tj fneikj Az | T At
_— B () m
n cos kAzx) — 1—— sin kAx
ST ( ) —¢ A
WAL

multiple eigenvalues instead i—— sinkAx (COS kACU) — &
. D - Ax -
of single amplification factor

At A
£ =coskAzx + 22" sinkAx again stable if vlat <1
Ax Ax




X-t diagrams & characteristics

CFL condition 1n x-t diagram

information beyond nearest

unstable points needed=>instability

X Orj

shaded: finite domain of dependence for hyperbolic egs.
CFL condition: characteristics should not cross more than a grid cell




Upwinding

u= f(x —vt)

vAL
) = 5a7

symmetric w.r.t. +/- direction, unlike advection eq.; leading order

error: O(At, Ax?/At)
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Lax Method u"'"! = i1
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Upwind Scheme
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Az
better than Lax, even if first order accurate in space!
since inherits the upwind property of original equations
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stability again governed by CFL condition: <1

Ujpy — Uy

solution should only be affected by points in upwind direction

n

1)

J

<

--=-=-=---0
A

<

[Vo [

xorj

Ax accuracy improved by using a larger
stencil in upwind direction:
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O(At?) accuracy in time

if method is O(At) but O(Ax?) At << vAx must be chosen for accuracy
better to have same order of accuracy in space and time

staggered leapfrog method
At vAtL
n+1 n—1 __ n n _ n__ ,mn
U — Uy — _A:b( j+1 T Fj—l) N (Uj+1 Uj—1)

2 lv] At
£ = _Z-UAAt sin kAr 411 — <UAAt <in kAx) amplification factor; |r| = | for A <1
X L

chess-board coupling

unstable for steep gradients!

cured by adding small diffusion coefficient




Lax-VVendroff

: n+1/2 1 n n
Lax step: uj_|_1/2 — §(uj_|_1 -+ uj)

At
second order differencing in x.t T =" (

J Ax j+1/2

lv| At
Ax

1
halfstep points
Lax-Wendroff Tﬁ\
il .II ’ |lI II| e V2 N ! , ’

. Q
stable for < 1 as seen in HW2 two-step Lax Wendroff .
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shock-capturing

many eqgs. Euler egs., Burger’s eq., etc. admit discontinuous solutions (a.k.a. shocks)
integral (weak) form of egs. is suited for numerical solution
numerical methods should be able to capture shocks without Gibbs oscillations

artificial viscosity: numerical methods should be able to capture shocks without Gibbs oscillations

Burger’s equation u ou _ 0
HIEETS Equat ot T ud_x - wave steepening

Ly -+ UU r — EUzx

ou 3u_@

FUu— =
8t | 833' 8.’15‘ can’t be multi-valued!

von Neumann Richtmyer artificial viscosity active only at shocks, | (2Ax): length over which shock is smoothened
PPp(dv/ox)? if  (dv/dx) <O

q = - ,
0 otherwise

.

monotonicity preserving/TVD, higher-order schemes; slope/flux limiters on transport terms

Godunov finite-volume schemes: solution described in terms of volume averaged quantities in cells
discontinuities at cell boundaries resolved into shocks/rarefactions and the Riemann problem solved
exactly/approximately; huge area!




Diffusive IVPs

a_u — 3 Da_u F = _Da_u D>0 for being well-posed
ot  Ox Ox Ox

VNSA:

: no_oyn n 4DAt . kAx
explicit FTCS for D=constant: D [uﬂ“ (AI;Z);F 41 E=1- (Ar)? sin? (T)

2D At

stability criterion: <1 time-step ~ diffusion timescale across a cell

(Az)? —
)\2

2 2
diffusion time-step: 7T ~ — A /(Am) timesteps before anything happens at scales of interest

D

implicit/semi-implicit:
uj " —uf Ui+t

=D
At (Ax)?

ntl Zu;hLl + u?fll

fully implicit, unconditionally stable; HW?2

0%
—— = () equilibrium solution as At— but only It order accurate in time

Ox?




Crank-Nicholson scheme: centered in space & time O(At?,Ax?)

n—+1 o o n+1 n—+1 n o n
oy u (uj+1 2u w; "+ u 1)—|—(uijl 2u +u] )

(Ar)?

kA
1 — 2 sin (Tx

gz 02U e

Ox? Ox?

+1 52,,\ ™
[ kAz unconditionally stable, but as At—oo ( _> _ ("_>
1 + 2asin (T)

=> 1nitial disturbances at small scales are maintained at late times!

D = D(x) U?H —uy  Djiija(ufyy —uf) — Dj_1ya(uj —uj_q)

At (Ax)?

A 2
D12 = D(xj+1/2) for stability: At < min { (Dx) }
J j+1/2
'n,—l—l . 22n—l—1 i Zn—i—l

nonlinear D = D(u) if dz= D(u)du RHS= el (A:L,)2 :

uncond. stable,
semi-implicit,
tridiagonal form

now linearize 27" = z(u}™) =




Multl D IVPs

Lax in 2D: :—V F=— aF | aF
dy

815 0x
T =20+ jA U = 4(U§L+1,z Ful g Ul Hul )

n+1 1

yl_y0+ZA _Z_A( jH+1,L F 1z+Fl+1 j,l—l)

VNSA for £z = vyu, Fy=vyu Uy =" ekaitgikyla
A A . . . .
At < At < in N dimensions; similarly for L-W

T V2(v2 +v2)1/2 ~ VNl

u 0°u  0%u
Diffusion Equation in Multidimensions =D |

ot Ozx?  0y?

1
Crank-Nicolson 1n 2D: u?’fl = U?,l =+ 504 (532; ﬁrl - 52 nl + 52 n+1 + 6y 7 l)

_ DAt

sparse but not easily solvable matrix: A?

Jacobi/related relaxation, CG n n
2 0= Ui — 2up Uy

A=Ax=Ay

for explicit methods in N-D At <
P = 9ND




Operator Splitting

n n 1 n n
alternating-direction implicit method (ADI) Uj,z+1/2 = Ujt5a (@%%,7”2 + 55%,1)

results in easily solvable tridiagonal system 172 1 1/2
! sonel sy i =i ga (G 4 )

Operator Splitting Methods Generally

ou B Lu=Liu+Lou+ -+ L, u u ™) =1 (u™, At)
_ — U

ot w @M =y (/M)A

ou 0% u . e
_U(?_:c -+ D@ apply L-W for advection step & CN for diffusion

Tl = Mm(un—k(m—l)/m’ At)
ADI: can think of as operator splitting
w Y = Uy (um, At/m)

very useful because we want to simulate several
y2/m Us (uﬂﬁrl/m7 At/m) processes sim.ultgneously! N N
several combinations of splitting: Strang splitting, etc.

Uy, (uTm=1/m At /)




Fourier Method for BVPs

A-u=D>b for both linear and nonlinear (need to linearize in this case) problems

Fourier methods when regular boundaries & constant coefficients
2-D Poisson eq.:

Uji1,0 — 2Uj 1+ Uj_1 CUgi41 — 2uj1 +Uji-1 ,
AQ | AQ T 10.]7l
w. different BCs

2
llj_l + T uj + uj+1 — gJA vector form at interior points

ll? — (’U,j,o, uj,la .oy uj,L)

Tuy = ujpn —4dujp + g0

discrete IFT
J—1 L—1 1 =il

1 R o o . Z ZA —2mijm/J —2miln/L
w;p = - SJ‘ SJ‘ Ty € 27mgm/J€ 2miln /L Pil 577 Prmn € e

m=0 n=0

m=0 n=0




~ | - | - B - . . ﬁmnAQ
. (627rzm/J N 2mwim/J 4 627T7,n/L N 2min/L 4) _ ,OmnAQ Umn = 2( Sy~ Sy )
COS

7 —I—COST—Q

J—1L—1
discrete DFT  pmn = > _ > _ P4l €
7=0 [=0

277’13’”7»]/*]627”””[’ compute uj by IFT

for periodic BCs Uj] — Uj4+J,1 — U4 [+L

Dirichlet boundary C()nditi()n U — O : use sin transforms which vanish at boundaries
J— 1 L—1 J—1L—-1

~ o mim . win ~ . mim . win
‘] L 7= 1 = 1

JL

mlnl

inhomogeneous BCs: for example U = 0 on all boundaries except U = f(y) on the boundary X = JA

0? 0%u
uH of the homogeneous equation 8—3:; + el = 0 that satisfies the BC

L—-1

L—1
2 ' [ [
=7 nE_ A,, sinh WZJ sin WZ where A, E fisin %

full solution: © = u;; + Uﬁ

for general BCs u=u’+uB where u’=0 on boundary and uB=0 everywhere except boundary; since
boundary terms are known they can be taken to RHS; they affect RHS at the last active zone close to
boundary; see NR for more




Cyclic Reduction

FFT methods are limited as applicable if PDE has constant coefficients; cyclic reduction is more general

0% u | 82u+b( )8u
or2 0y? Y

il _ arises often for Poisson/Helmholz eq.
8y T C(y)u — 9 (aj’ y) in cylindrical/spherical coordinates

this eq. can be FD as
L 9 O(NZlog:N) like FFT
llj_l-|—T'llj—|—llj 1 —g_yA

w2+ T w1 +u; = gj—lAZ uj o+ T uj a0 = g( 'A?

w1 +T - +uw;41 = ngZ combine (1) — 91 _ T2
w +T w1 +ujpo =g A° g/ =A%g; , —T-g +g,)

T(f) Uj/2 = A g(];) o — Uy
Taking the number of mesh points to be a power of 2 Tridiagonal system known BCs

two equations at level f — 1 involve uwy» and usyu. The equation for uys involves uy and w2, both of which are known, and
hence can be solved by the usual tridiagonal routine. A similar result holds true at every stage, so we end up solving J — 1
tridiagonal systems.




Relaxation methods

solve Ax=b iteratively; also think as a solution of time-dependent problem till it reaches steady state

ou

Lu = p elliptic equation in operator form written in diffusive form — = Lu — P

relaxes to the solution as t—00

ou 0*u  O%u
ot  0x2 = Oy? .

At
FTCS differencing: uﬁH = u;; + A2 (U?Jrl,l gl ul g - 411,%) — p1At
1 A2 , :
choose At = A?/4, u?;rl =7 ( n Ul g+ u?,l—l) ~ Pi iterate till conv.

same as Jacobi’s method we saw earlier: Dx=-(L+U)x+b

1 A*
. . n+1 n n-+1 n n-+1 =
Gauss-Seidel method: Uy = 1 (uj+1,l + Ui g T Uy T Uj,l—l) A

* (L+D)x=-Ux+b

pj.1 use updated values

X recall that speed of convergence is governed by spectral radius, which for Poisson eq. is
x

@)

© 2
O % N1_7T_
* 2.J2

recall for CG: no. of steps for conv. /x «J

=> number of steps to convergence«)? (similar scaling for GS)




Successive Over-relaxation (SOR)
(L | D) : x('r) — U . x('r—l) + b Gauss-Seidel method

x(" =x=Y) _(L+D)" ' [(L+D+U) -x""D —p]

_r(r_l)

overcorrect
x () — x(r—1) + w(L 4 D)_l-r(’”_l) remember £'=x"-x—0 as r'=-Agr—0

7

over-relaxation parameter

e = [I-w@L+D) Al b

e The method is convergent only for O<w<2. O0<w<1 under-relaxation

2
9 acobi
* The optimal choice for w is given by w = => PSOR = ( T )

2 2
1+ \/1 ~ PJacobi L+ \/1 PJacobi

. 2
for Poisson eq. w ~
1+mn/J

27

~] - —
PSOR, 7

=> convergence in steps « J!

problem 1s that we need to know w, not available in general




Multigrid methods

most efficient modern tool for well-behaved matrix egs.!

. of iterations to reduce | |e'| | < .01 . .
Many relaxation schemes have the smoothing

property, where oscillatory modes of the error
are eliminated effectively, but smooth modes
are damped very slowly.

20 30 40

wavenumber coarse grids cheaper  better convergence

2h
h

ax on Au=f on Q1o obtain initial guess V

ax on Au=f on Q'to obtain initial guess V

ax on Au=f on Qh to obtain ... final solution???




Full Multigrid (FMG)

- Restriction =
+ Interpolation =3

* High-order Interpolation == ,ﬁ.
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