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Overview

Recap: Linear Response Theory et al.

What do we mean by “disorder”? Why bother?

Synopsis of The Story

A More Detailed Plan

Preliminary Physical Discussion: Hamiltonians,
Localized States etc.

“Gang of Four” Scaling Theory

Self Consistent Theory of Localization

Replica Trick

Field Theory of Disorder Problem
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Metals, Wonder Materials!

What is a metal?

Many electron system with a Fermi Surface

Key: Gapless excitations

Linear T specific heat

Temperature independent magnetic susceptibility

...

“Protected” from repulsive interactions by Pauli –
Fermi liquid
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Resistivity in Metals

Almost constant at “low” temperatures...all way to
linear at high temperatures
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Resistivity in Metals...There’s More!

Increases with impurity content

Has some “universal” features...
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Our Immediate Questions...and Answers

What is resistivity anyway? – Linear response..

“Simplest” ideas about resistivity

Drudé theory

Bloch-Boltzmann theory

Crux: ”Semi”classical ideas, mean free path,
relaxation time...
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Linear Response

Stimulus (E-field) may vary in space and time E(r, t)

Response (current) also varies in space and time j(r, t)

What is the most general linear response?

The most general linear response is non-local in both
space and time

j(r, t) =

∫
d3r′

∫
dt′ σ(r, t|r′, t′)E(r′, t′)

The conductivity tensor response function σ(r, t|r′, t′)
is a property of our system (material) – notice the
nonlocality of response

In “nice” systems (“time-invariant and translationally
invariant”) σ(r, t|r′, t′) = σ(r − r′, t− t′)



HCM Discussion Group ’07

VBS Fermions in Disorder – 7

What are we measuring in experiments?

The conductivity tensor response function in nice
systems can be written in Fourier space σ(q, ω)

The complex amplitude j(q, ω) of the current response

for an electric field E(r, t) = E(q, ω)ei(q·r−ωt) is given
as j(q, ω) = σ(q, ω) · E(q, ω)

Imagine q −→ 0, ω −→ 0, i.e., a “constant” electric
field; the response is described be the complex tensor
σ(q → 0, ω → 0) (note: order of limit is crucial, more
later)

Assume isotropic system, then σ (conductivity) is
simply ℜσ(q → 0, ω → 0)

Resistivity ρ = 1/σ!
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Drudé Theory – Review

Electrons: a classical gas

Collision time τ , gives the equation of motion

dp

dt
= −p

τ
+ F

p – momentum, F – “external” force

Gives the “standard result” for conductivity

σ =
ne2τ

m

(all symbols have usual meanings)

All is, however, not well with Drudé theory!
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Bloch Theory

We do need quantum mechanics to understand metals
(all materials, in fact)

In the periodic potential of the ions, wave functions

are ψk(r) = eik·ruk(r) (uk is a lattice periodic
function), k is a vector in the 1st Brillouin zone

The Hamiltonian expressed in Bloch language
H =

∑
kσ ε(k)|k〉〈k| (one band), ε(k) is the band

dispersion (set aside spin throughout these lectures!)

“Average velocity” in a Bloch state v(k) =
1

~

∂ε

∂k

Occupancy of a Bloch state f0(k) =
1

eβ(ε(k)−µ) + 1
,

β = 1/(kBT ), µ – chemical potential
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So, what is a metal?

Chemical potential µ determined from electron
concentration

Try to construct a surface in the reciprocal space such
that ε(k) = µ

If such a surface exists (at T = 0) we say that the
material is a metal

A metal has a Fermi surface

Ok, so how do we calculate conductivity?

Need to understand “how electron moves” under the
action of “external forces”
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Semi-classical Electron Dynamics

Key idea: External forces (F ; electric/magnetic fields)
cause transition of electronic states

Rate of transitions ~
dk

dt
= F – Quantum version of

“Newton’s law”

By simple algebra, we see the “acceleration”
dv

dt
= M−1 F , M−1 =

1

~2

∂2ε

∂k∂k

Electron becomes a “new particle” in a periodic
potential! Properties determined by value of M at the
chemical potential

But, what about conductivity? If you think about this,
you will find a very surprising result! (Essentially
infinite!)
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Conductivity in Metals

What makes for finite conductivity in metals?

Answer: “Collisions”

Electrons may scatter from impurities/defects,
electron-electron interactions, electron-phonon
interaction etc...

How do we model this? Brute force approach of
solving the full Schrödinger equation is highly
impractical!

Key idea: The electron gets a “life-time” – i.e., an
electron placed in a Bloch state k evolves according to

ψ(t) ∼ ψke
−iε(k)t− t

2τk ; “lifetime” is τk!

Conductivity could plausibly be related to τk; how?
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Boltzmann Theory

Nonequilibrium distribution function f(r,k, t):

“Occupancy” of state k at position r and time t

r in f(r,k, t) represents a suitable “coarse grained”
length scale (much greater than the atomic scale)
such that “each” r represents a thermodynamic
system

Idea 1: The (possibly nonequilibrium) state of a
system is described by a distribution function f(r,k, t)

Idea 2: In equilibrium, f(r,k, t) = f0(k)! External
forces act to drive the distribution function away from
equilibrium!

Idea 3: Collisions act to “restore” equilibrium – try to
bring f back to f0



HCM Discussion Group ’07

VBS Fermions in Disorder – 14

Time Evolution of f (r,k, t)

Suppose we know f at time t = 0, what will it be at a
later time t if we know all the “forces” acting on the
system?

Use semi-classical dynamics: An electron at r in state

k at time t was at r − v∆t in the state k − F
~
∆t at

time t− ∆t

Thus, we get the Boltzmann transport equation

f(r,k, t) = f(r − v∆t,k − F

~
∆t, t− ∆t) +

∂f

∂t

∣∣∣∣
coll.

∆t

=⇒ ∂f

∂t
+ v · ∂f

∂r
+

F

~
· ∂f
∂k

=
∂f

∂t

∣∣∣∣
coll.

If we specify the forces and the collision term, we have
an initial value problem to determine f(r,k, t)
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Electrical Conductivity

BTE becomes

∂f

∂t
+ v · ∂f

∂r
+

F

~
· ∂f
∂k

= −f − f0

τk

Homogeneous DC electric field F = −eE
We look for the steady homogeneous response

F

~
· ∂f
∂k

= −f − f0

τk
=⇒ f = f0 − τkF

~
· ∂f
∂k

Approximate solution (Exercise: Work this out)

f(k) ≈ f0 +
eτkE

~
· ∂f

0

∂k
≈ f0

(
k +

eτkE

~

)
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Solution of BTE

f0(k)

ky

kx

−eτE

~

f(k)

Fermi surface “shifts” (Exercise: estimate order of magnitude of shift)
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Conductivity from BTE

Current

j =
1

(2π)3

∫
d3k (−ev)

eτkE

~
· ∂f

0

∂k

Conductivity tensor

σ = − 1

(2π)3
e2

~

∫
d3k τk v

∂f0

∂k

Further, with spherical Fermi-surface (free electron
like), τk roughly independent of k (Exercise: Show this)

σ =
ne2τ

m
1

This looks strikingly close to the Drudé result, but the
physics could not be more different!
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What about experiments?

Well, we now have an expression for conductivity; we
should compare with experiments?

What determines the T dependence of conductivity?
Yes, it is essentially the T dependence of τ (only in
metals)

But we do not yet have τ !!

Need a way to calculate τ ...

...

Revisit the idea of electron-lifetime...how do we
calculate life time of an electron?
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Lifetime due to Impurity Scattering

Impurity potential VI , causes transitions from one
Bloch state to another

Rate of transition from k → k′

Wk→k′ =
2π

~
|〈k′|VI |k〉|2δ(ε(k′) − ε(k))

Total rate of transition, or inverse lifetime

1

τ I
k

=
1

(2π)3

∫
d3k′Wk→k′

Can we use τ I
k as the τ in the Boltzmann equation?

Ok in order of magnitude, but not alright! Why?
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How to calculate τ?

Look back at the collision term, can write it more
elaborately as

∂f

∂t

∣∣∣∣
coll.

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k)(1 − f(k′)) − f(k′)(1 − f(k))

)

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k) − f(k′)

)

Note that k and k′ are of the same energy

Take τk to depend only on ε(k)

Now, (f(k) − f(k′)) ≈ −τe
~

∂f0

∂ε

(
v(k) − v(k′)

)
· E
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Calculation of τ cont’d

Putting it all together

− e

~

∂f0

∂ε
v(k) · E = − 1

(2π)3
τe

~

∂f0

∂ε

∫
d3k′Wk→k′

(
v(k) − v(k′)

)
· E

=⇒ 1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 − v(k′) · Ê

v(k) · Ê

)

=⇒ 1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 − cos (k̂,k′)

)

Note τ is different from the “quasiparticle” life time!

Key physical idea: Forward scattering does not affect
electrical conductivity!
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T dependence of τ

T dependence strongly depends on the mechanism of
scattering

Common scattering mechanisms

Impurity scattering

e–e scattering ∼ T 2

e–phonon scatting ( ∼ T 5 low T , ∼ T high T )

More than one scattering mechanism may be
operative; one has an effective τ (given by the
Matthiesen’s rule)

1

τ
=
∑

i

1

τi

Explains universal behaviour of good metals! So what
remains?
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Experiments and Puzzles

Numbers: Typical metals - ρ ∼ 10−6(−8) Ohm-cm(m)

Data by Mooij (1973), Ti1−xAlx alloys

x = 0 (Pure Ti) is doing what it should at low

T , but at high T seems to be “saturating”

For large x,
dρ

dT
is negative!!!

All the resistivities are tending to a roughly

equal saturation value!

The saturation resisitivity 2 orders of magnitude

higher than usual metallic values...

Note that these are binary alloys...crystals with a
random placing of Ti and Al ions! Electrons see a
“highly disorderd” potential!
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There’s more!
Mooij found that the low temperature

1

ρ

dρ

dT
≡ α is

related to the “residual resistivity”

This is magic! The key resistivity is about 100 µΩ-cm!
If low T resistivity exceeds this value, then strange
things happen...

Most interestingly, similar stuff is seen in other
disordered alloys!
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How can we forget the Cuprates?

Resistivity in high Tc normal state

What is (are?) the puzzle(s) here?
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Story so far...

The Bloch-Boltzmann theory is highly successful in
explaining resistivities of elemental metals containing a
small concentration of impurities

Experiments on disordered alloys suggest

Possibility of negative
1

ρ

dρ

dT

Correlated with low temperature resistivity; if low

T resistivity & 100 µΩ-cm, we have negative
1

ρ

dρ

dT

How do we understand this?

Before we get to the answer, we need to understand
resistivity and its relation to other response functions
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Meaning of Standard Formula for Conductivity

The “standard result” for conductivity

σ =
ne2τ

m

(all symbols have usual meanings)

Meaning of τ – sharper meaning for 1
τ – 1

τ is the
number of collisions undergone by the electron per
unit time...

Idea: Think of an electron to be in a k state at time
t = 0, then τ is the life-time of such a state

Also, the electron does not remember past collisions!
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Meaning of τ

To see that τ is the life-time, ask what is the
probability P (t) that the electron is still in the state k

for t . τ ...

The probability that the electron did not undergo a

collision in an infinitesimal time ǫ is
(
1 − ǫ

τ

)
...Thus,

P (t) = lim
N→∞

(
1 − 1

τ

t

N

)N

= e−t/τ

This precisely connects up with our earlier statement:
An electron placed in a Bloch state k evolves

according to ψ(t) ∼ ψke
−iε(k)t− t

2τk ; “lifetime” is τk ∼ τ !
Caveat: Note however that τ is Drude formula is the transportation

lifetime
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So what is the electron doing?

A collision puts the electron in a different Bloch state
(of same energy, discussion restricted to impurity
scattering )...classically, simply changed direction...

A moment’s reflection tells us that the electron is
RANDOM WALKING

k k1

kn

Since the average velocity of electrons is vF , the mean
free path of electrons is ℓ = vF τ Caveat: Note that this, in

general, is not the “average spacing between impurities”
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So what is the electron doing in an E-field?

The electron is random walking and drifting!

E

k k1

kn

Develops a drift velocity |vd| ∼ τ |E|
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Consequences of Random Walk

So what? How is this different from a free gas (no
scattering) where electrons propagate with only Pauli
to respect?

Key question: Suppose we create a very long
wavelength (compared to inverse Fermi vector) density
disturbance (without changing the total number of
electrons) in the electron gas...what difference does
the scattering (dirt) make to this

In the free gas, there is no mechanism to “relax” this
density wave...and the system will simply “do some
dynamics”...can never attain a uniform density back
again! We will call this the Free Fermi Fixed Point
(more later...)!
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Consequences of Random Walk

What happens in a dirty gas?

Particles, doing random walk, will DIFFUSE! Well
known elementary result!

Punch line: Presence of weak disorder will give us a
qualitatively new state... a state with a diffusive density
mode (not present in the free)...this state is the
Diffusive Fixed Point

Note that there will be no qualitative differences in
the thermodynamic properties of DFP and FFFP!

Why the word weak?

What is “not weak” is the question that we will address
in great detail...
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Consequences of Random Walk: Diffusion

At the diffusive fixed point (DFP), we are guaranteed
that density fluctuations n(r, t) will be governed by

Continuity equation (conservation law) – always
holds (J particle current)

∂tn+ ∇ · J = 0

Diffusive constitutive (Fick’s) law (property of
DFP)

J = −D∇n

D is the diffusion coefficient...property of the DFP
Caveat: A more “correct” form is J(q, ω) = −D(q, ω)iqn(q, ω)

What determines D?
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The Diffusion Coefficient

Consider dicing up space into cubes of size ℓd (in d
dimensions)

Take three adjacent “cubes” (in 1-d) called −1, 0, 1
with N−1, N0 and N1 particles at time t = 0

ℓ ℓ ℓ

N0N−1 N1

At time t = τ , the number of particles in the 0 cube is
1
2(N−1 +N+1)
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The Diffusion Coefficient

Change in particle number ∆N0 = 1
2(N−1 +N+1 − 2N0)

∆N0

τ︸ ︷︷ ︸
∂tn

=
ℓ2

2τ︸︷︷︸
D

(N−1 +N+1 − 2N0)

ℓ2︸ ︷︷ ︸
∇2n

If we do this correctly in 3D, we will get

D =
1

3
v2
F τ

We see that D is linearly related to τ ...this is not the
first time this has happened! Note that the
conductivity is also linear in τ !!!

Are σ and D related?
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Diffusion Coefficient and Conductivity

Here is an experiment

Open Circuit

x

φ(x)

Metal

V

V

The “undisturbed” metal has electron density n and
chemical potential µ

The battery generates an electric potential φ(x)

Open circuit...there is not current flowing through the
circuit!
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Diffusion Coefficient and Conductivity

Since there is a potential gardient, there is obviously
an electric current j = −σ∂xφ...it is not zero!
Something fishy?

No...there is another contribution to the current
coming from diffusion...

The chemical potential varies in space µ(x) = µ+ eφ(x)
resulting is a density variation given by

n(x) ≈ n+
∂n

∂µ
eφ

Diffusive particle current J = −D ∂n
∂µe∂xφ...which

contributes to a diffusive electric current

jD = −eJ = D ∂n
∂µe

2∂xφ
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Diffusion Coefficient and Conductivity

Now the total current must vanish j + jD = 0

We get (g(µ) – density of states at the chemical
potential)

σ = e2
∂n

∂µ
D = e2g(µ)D

This is the famed Einstein relation...diffusion and
electrical conduction are closely related!

This is a result of particle number conservation...and
hence applicable in any system!!

At the DFP, finite diffusion coefficient implies a finite
conductivity!

Our next step is to derive this relation from a formal
point of view...
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Einstein Relation: Plan of Derivation

Understand “charge susceptibility” χ(q, ω)

Conservation law : relationship between χ and σ

Relationship between χ and diffusion constant -
exploration of relaxation of density disturbance

...which gives the Einstein relation
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Density Response: “Charge Susceptibility”

Suppose we vary the potential (about the homogeneous value) as µ(r, t), then as

usual the density response (excess over the homogeneous value) is given by

n(r, t) =

Z

ddr′

Z

dt′ χ(r − r′, t− t′)µ(r′, t′)

where (n̂ – “excess density” operator)

χ(r − r′, t− t′) = −iθ(t− t′) 〈[n̂(r − r′, t− t′), n̂†(0, 0)]〉
| {z }

eχ(r−r′,t−t′)

In Fourier language

n(q, ω) = χ(q, ω)µ(q, ω)

What can we say about χ without solving anything?
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Density Response: “Charge Susceptibility”

Consider a time independent static potential
perturbation µ(q) that was statically turned on at
t = −∞
The response function is χ(q, 0)...we can calculate this

using standard statistical mechanics formulae (N̂(q) is
the full number operator, not excess)

n(q) = 〈N̂(q)〉 − 〈N̂(q)〉0 = χ(q, 0)︸ ︷︷ ︸
χs(q)

µ(q)

lim
q→0

χ(q, 0) =
∂n

∂µ
= g(µ)

Conclusion

lim
q→0

lim
ω→0

χ(q, ω) = g(µ)
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Density Response: “Charge Susceptibility”

Now consider a time dependent disturbance of the
potential...this will cause particles to run around in the
system...this “running around” preserves particle
number

This would imply that at all timest (remember n is
excess)

∫
ddrn(r, t) = 0 =⇒

∫
ddrχ(r, t) = 0

=⇒ χ(q = 0, ω) = 0

We thus see that the response function χ is not
analytic near q = 0 and ω = 0...

Note that these results are very general...do not
depend on the Hamiltonian
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Density Response: “Charge Susceptibility”

We know χ(r − r′, t− t′) = −iθ(t− t′)χ̃(r − r′, t− t′)

Recast this as Recall:
R∞
−∞ dt θ(±t) ei(ω±iη−ǫ)t = ±i

ω±iη−ǫ

χ(q, ω) =
1

2π

∫ ∞

−∞

dω′ χ̃(q, ω′)

ω+ − ω′

Note that χ̃(q, ω) is real Exercise: Show this!

Now it is easy to see that Recall:
1

x+
= P

1

x
− iπδ(x)

ℜ(χ(q, ω)) = χ′(q, ω) =
1

2π
P

∫ ∞

−∞

dω′ χ̃(q, ω′)

ω − ω′

ℑ(χ(q, ω)) = χ′′(q, ω) = −1

2
χ̃(q, ω)
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Relaxation of a “Static” Perturbation

Immediate goal: Connect χ to D

To do this we ask the following question: Suppose a
static potential µ(q) is turned on at t = −∞...a static
density response will develop in the system and is
given by ns(q) = χs(q)µ(q)...

At time t = 0 we switch off the external
potential...what happens?

The density perturbation ns(q) will relax... Question: Will

this happen in a free gas?

The relaxation function (Kubo function) is defined as

n(q, t) = Φ(q, t)µ(q), t > 0

How is Φ(q, t) related to χ(q, t)?
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Kubo Relaxation Function

How is Φ(q, t) related to χ(q, t)?

Clearly

Φ(q, t) =

∫ 0

−∞

dt′ χ(q, t− t′)

Going over to Fourier language

Φ(q, ω) =

∫ ∞

−∞

dt eiωt

∫ 0

−∞

dt′ − iθ(t− t′)χ̃(q, t− t′)

=
1

iω+
(χ(q, ω) − χs(q))

Exercise: Show this
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Diffusive Relaxation

Based on earlier arguments we can obtain another
expression for Φ at the DFP

At the DFP, density relaxes via

∂tn+ ∇ · J = 0, J(q, ω) = −D(q, ω)iqn(q, ω)

It is immediate (for D(q, ω) = D) that

n(q, t) = ns(q)e−Dq2t, t > 0...diffusive relaxation

Defining ñ(q, ω) =
∫∞

−∞
dteiωtθ(t)n(q, t), we see that for

ñ(q, ω) =
ins(q)

ω + iDq2
=⇒ Φ(q, ω) =

iχs(q)

ω + iDq2

Φ has a pole...diffusion pole!
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Diffusive Relaxation

We now have two expressions for Φ...

The first one is from general considerations of the
response function

The second one is special to the DFP

They must be equal

Φ(q, ω) =
1

iω+
(χ(q, ω) − χs(q)) =

iχs(q)

ω + iDq2

=⇒ χ(q, ω) =
iDq2χs(q)

ω + iDq2
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Diffusive Relaxation

We see that at DFP, the density response function has
the special form...

Lets check if things are alright

lim
ω→0

χ(q, ω) = χs(q), lim
q→0

χ(q, ω) = 0

...that’s good!

Note that the density response function has a pole in
the lower half plane...this is a characteristic feature of
the DFP...called the diffuson pole.

Now Einstein is in sight!!
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General Electro-Magnetic Response

Drive the system by an electromagnetic field
Aµ(r, t)...(A0 ≡ φ, and Ai ≡ A etc...) Caveat: I may not be

using the standard notation; also we will respect up-down indices

since it will help us to express equations in a compact manner

Response function is jµ (again, j0 ≡ −en – charge

density, and ji ≡ j

Most general linear response Kµν

jµ(r, t) =

Z

d3r′

Z

dt′ Kµν(r − r′, t− t′)Aν(r′, t′)

jµ(q, ω) = Kµν(q, ω)Aν(q, ω)

The general response seems to be a 4 × 4 tensor...are
they all independent?...more importantly how is Kµν

related to χ and σ?
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General Electro-Magnetic Response

First and key point...Kµν must be gauge invariant...so if
we replace Aµ =⇒ Aµ + ∂µζ for any ζ(r, t), then jµ

should not change...this gives us a key condition that

Kµνqν = 0

Similarly, since particle number is conserved, we need

∂µj
µ = 0 =⇒ qµK

µν = 0

Recall: Up-down contraction involves gµν = Diag(−1, 1, 1, 1), also

q0 = ω, and qi ≡ q
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General Electro-Magnetic Response

Let us connect K to χ and σ...

Now consider a case with only the potential
part...A0 = φ, ..., Ai = 0

Then

j0 = K00φ =⇒ −en = K00µ

e
=⇒ K00 = −e2χ

Similarly,

ji = Ki0φ =⇒ ji =
1

iqi
Ki0Ei =⇒ Ki0 = iqiσ
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General Electro-Magnetic Response

Applying the conservation law

qµK
µν = 0 =⇒ ωe2χ(q, ω) + iq2σ = 0

σ(q, ω) = −e2 iω
q2
χ(q, ω)

Note that this is a general result (independent of the
Haimiltonian)...

At DFP, we have

σ(q, ω) = −e2 iω
q2
iDq2χs(q)

ω + iDq2
=
e2ωχs(q)

ω + iDq2

Thus at the DFP, the conductivity is completely
determined by diffusion!
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And Einstein Appears!

We immediately see that the DC conductivity σ is realted to the diffusion

constant D via

σ = e2g(µ)D

This is a rather general feature of the DFP...transport properties can all be finally

related to D Exercise: How about thermal conductivity?..can you see

Widemann-Franz?

This is really a consequence of the underlying conservation laws...

When will σ go to zero? The case interesting for us is when D vanishes....i. e.,

“absence of diffusion” which takes us back to 1958!

Punch line: When disorder is “not weak”, i. e., “strong enough”...D will vanish

and we get an Anderson insulator...i. e., g(µ) 6= 0, but is not an electrical

conductor!
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...followed by Anderson!

This is the beginning of the field...
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Our Plan

Introduce models, ideas of extended localized states
etc..

Discuss “Phase Diagrams”...this will be the summary
of the story

Scaling theory of localization...

Diagrammatic “derivation” of scaling theory

Replica field theory...non-linear sigma model
approaches and RG
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The “Pancha Bhutas”

We will focus on the electronic sector (no phonons),
and treat effects of things likes phonons by means of
effective coupling constants

The “Pancha Bhutas”

Kinetic energy (t)

Chemical potential (µ)

Long range repulsion (V )

On-site correlation (U , can be repulsive or
attractive)

Disorder (w)

The “Five Elements” – everything we “see” arises
from these
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The “Pancha-Bhuta-Chitra”

The phase diagram (at T = 0, and T > 0), the
“Pancha-Bhuta-Chitra” (PBC), is the goal of HCMP!

−t
∑

i
c
†
iσcjσ + h.c.

∑

ij
Vijninj

∑

i
wini

∑

i
Uni↑ni↓

−∑

i
µni

Our goal: To study the phase diagram in the t, µ, w
“plane”!
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Models of Disordered Non-interacting Electrons

We do not need to worry about spin

Many different models are available

Free gas with random distribution of scatterers
(Edwards model)

Electrons on a lattice with random on-site
potential (Anderson model)

Electrons on a lattice with two values of on-site
potential which are distributed randomly (Alloy
model)

Electrons on a lattice with hopping amplitude
which is an average value plus a random
perturbation

...

We will work with the first two...
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Edwards Model (EM)

Free electrons moving in a background of random scatters

H =

Z

ddr ψ†(r)

„

−
1

2m
∇2 − µ+ V (r)

«

ψ(r)

(we use ψ for free electron operators) where

V (r) =
X

i

v(r − Ri)

i runs over the impurities, v is the potential due to a single impurity (assume that

all impurities are of the same type), Ri is the position of the ith impurity

Impurities are randomly and uniformly distributed...i. e., Ri is a random variable

with can take any vector value in our volume with equal probability

Parameters of the model:

Density n (≡ µ) of electrons

Density nimp of impurities

Scattering potential v(r) (parametrize this by one number later)
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Anderson Model (AM)

This is the model introduced by Anderson in 1958

Electrons move on a lattice

At each site there is a random on-site potential wi

which is usually taken to be uniformly distributed
between −W and W

− t
∑

ij

(
c†icj + h. c.

)
+
∑

i

(wi − µ)ni

Parameters : µ/t and W/t

We shall use Edwards and Anderson models to gain an
understanding of the disorder problem
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Disorder Preliminaries

Note that we have introduced a Hamiltonian that
contains many random disorder parameters (e.g., wi in
the AM)

For each realization of the disorder wi, we get a
different Hamiltonian Hw ! What we therefore have is
an ensemble of Hamiltonians!

Key Question: What are we observing when we do
measurements on a particular sample? Will the answer
be “sample dependent”?

The answers are subtle...
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Disorder Preliminaries

Suppose we are a realization of the disorder...then if
we do a measurement of the observable A in a system
in thermal equilibrium, we obtain

〈A〉w = Tr(̺wA) =
∑

α

̺αw
〈αw|A|αw〉, ̺w =

e−βHw

Tre−βHw

|αw〉 are the eigenstates of Hw

Note that this formula involves two types over
averages: first, 〈αw|A|αw〉 is a quantum average, the
second is the averaging over the thermal probability
distribution and is accomplished by Tr(̺...)...The final
observed value is a thermal average of quantum
averages...a very “average” thing!!

But 〈A〉w depends on the realization of disorder!!



HCM Discussion Group ’07

VBS Fermions in Disorder – 63

Disorder Preliminaries

So, what are we measuring? Would it be a “disorder
averaged” quantity?

The disorder averaged quantity

〈〈A〉〉 = [[〈A〉w]] =
∑

w

P (w)〈A〉w

Notation: 〈...〉 – thermal average, [[...]] – disorder average, 〈〈...〉〉 – disorder

averaged thermal average

When do we expect the measured quantity to be 〈〈A〉〉?
Naturally, if a system is “very large”, then different
parts of the system will behave as “separate members
of the disorder ensemble” and the measured quantities
will correspond to disorder averages

Natural question: what is “very large”?
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Disorder Preliminaries

Suppose we consider a system of size “N”, then we
can calculate the disorder average of any quantity Q
and its variance defined as

[[Qw]]N =
∑

w

P (w)QwN , V Q
N = [[Q2

w]]N − [[Qw]]2N

Now if

RQ
N =

V Q
N

[[Qw]]2N
∼ 1

N

then we say that Q is a self-averaging quantity!

If a quantity Q is self averaging, then for large systems
what we measure will be the disorder average!
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Disorder Preliminaries

The property of self averaging depends on the quantity
and the system...Caveat: Concepts such as strong and weak self

averaging are around

In the case of bulk metals with disorder, we can be
sure that diffusion coefficient (and hence conductivity)
are self averaging quantities

Certain critical systems with disorder are known to be
non-self averaging! (This is topic of current research)

What we measure may not be a disorder averaged
quantity due to the small size of the systems....,i.e., N
is not large enough to kill the statistical
variations,...such systems are called mesoscopic! They
are expected to show fluctuations between one sample
and another...



HCM Discussion Group ’07

VBS Fermions in Disorder – 66

Disorder Preliminaries

This is indeed seen in experiments: conductance of
SiGaAs wires (Malliy and Sanquer 1992)

Conductance depends on

magnetic field

Different curves are obtained

when the sample is thermally

cycled...heated and cooled back

to the same (low) measurement

temperature...this makes the

disorder “move around”!

The bottom curve shows the av-

erage over many such cycles

<
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FIG. 1. Magneto-conductance measurements of a SiGaAswire taken from Ref. [10]. (a) Conductance as a function ofmagnetic �eld for samples which di�er by thermal cycling. (b)The conductance averaged over di�erent realizations. (c) Thevariation of the variance of the conductance uctuations mea-sured as a function of magnetic �eld. (Courtesy of Ref. [10].)Although each individual trace appears to uctuaterandomly around some uniform value, the measurementsare completely reproduceable. (I.e. when held at a con-stant low temperature, the uctuations of the conduc-tance do not change with time.) However, by thermal cy-cling, the accompanying rearrangement of the impuritiescompletely changes the pattern of magneto-conductanceuctuations. These results, which are typical of thoseobserved in phase coherent devices, suggest that sample-sample uctuations provide a characteristic signature (a\magneto-�ngerprint") of an individual system [11,12].Yet characteristic uctuations of this kind are not lim-ited to wires. Figs. 2 and 3 show the variation of two-terminal magneto-conductance measurements togetherwith an applied gate voltage potential performed on a
mesoscopic GaAs quantum dot. Again, the qualitativebehavior is similar: the system shows a reproduceablemagneto-�ngerprint with the same characteristic scale ofuctuations, e2=h.

FIG. 2. Magneto-conductance measurements of a GaAsquantum dot taken from Ref. [13]. The device, shown inset,has a transport mean free path and phase coherence lengthgreatly in excess of the dimensions of the device (ca. 1�m).The \shape" of the quantum dot can be changed by tuninga gate or \plunger". Separate traces are shown for two par-ticular shapes together with the average over an ensemble ofdi�erent realizations. Note the universal scale of the uctua-tions, and the conductance minimum at zero �eld. (Courtesyof Ref. [13].)
FIG. 3. Conductance measurements as a function of mag-netic �eld and external gate voltage for a quantum dotqualitatively similar to that shown in Fig. 2. (Courtesy ofRef. [13].)Taken together, these measurements pose the followingquestions:. Firstly, why is the magnitude of the conductanceuctuations universal? That is, for any size or ge-ometry of the sample, the conductance is found touctuate on a scale comparable to e2=h. Moreprecisely, de�ning h� � �i as the ensemble averageover realizations of the impurity potential (gen-5

B (0 T to 0.15 T)

We shall focus only on self averaging systems!
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What is the difficulty?

The two models that we have introduced are quadratic
in fermion operators...so you might wonder what the
difficulty is!

What we want to calculate is

〈〈A〉〉 = [[
Tr̺wA
Zw

]], Zw = Tr̺w

This requires calculation of energy eigenstates for each
realization of w!!! This is the difficulty

There are many tricks to handle this...replica trick,
super-symmetry approach, Keldysh formalism etc.. we
shall see the replica trick

But before we do the technical stuff, we will discuss
the physics..
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Physics of the Edwards Model

Consider the Edwards model with nimp ≪ n (parts per
million)

Also consider that the scattering potential v(r) is a

delta potential...v(r) = vδ(r)...assume that v ≪ k3
Fµ...

This would constitute a “weak disorder” problem...and
the conductivity would be given by the Drudé formula
with

1

τ
∼ nimpv

2

What would “not weak disorder” mean...to understand
this let us take a deeper look at the Drudé formula...
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Closer Look at the Drudé Formula

The Drude formula in d spatial dimensions

σ =
ne2τ

m
=

n
z }| {

(Cdk
d
F ) e2

vF τ
z}|{

ℓ

m

„
~kF

m

«

| {z }

vF

=
e2

~
Cdk

d−2
F (kF ℓ)

Question: What is e2

~
? (Ans: 0.25 milli-Ω−1)

Suddenly we realize what is “weak”...the disorder is “weak” when the mean free

path is much larger than the inverse Fermi vector..., i. e., when kF ℓ≫ 1...in this

case then we have nothing to do...

But what if kF ℓ ∼ 1 ??...can kF ℓ≪ 1???? If kF ℓ ∼ 1 the electron is moving only

a distance of order of the inter-electron spacing (∼ lattice spacing) between

collisions...thus is essentially not moving!! There is trouble if the mean free path

is less than the de Broglie wavelength of the electron!! Thus if the disorder is

“not weak” the electron is unable to random walk...absence of diffusion!!

kF ℓ ∼ 1 corresponds to the Ioffe-Regel limit!

We will discuss d = 3 and d = 2 separately...but not d = 1!
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Ioffe-Regel Conductivity in d = 3

In d = 3 (a ∼ lattice parameter, kF = 2π
a )

σIR =
e2

~

1

3π2
kF (kF ℓ)︸ ︷︷ ︸

∼1

=
e2

~

2

3π

1

a

The resistivity at such strong disorder is

ρIR =
~

e2︸︷︷︸
4000Ω

3π

2︸︷︷︸
4

a︸︷︷︸
2.5Å

∼ 400µΩ-cm

this is definitely an over-estimate, but we are quite
close to the low temperature resistivity of 100 µΩ-cm
where trouble beings in the Mooij experiments...
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Ioffe-Regel Conductivity in d = 3

In the Edwards model, if τ becomes small (either by a large ni or by a large v

(strength of the potential)), then we will get into the regime where kF ℓ ∼ 1

We thus see why strong disorder causes trouble...the key point is that electron

mean free path becomes too small for it to be able to diffuse!!

Thus as the disorder is made stronger, the system goes to a “new phase” where

there is no diffusion...we will call this the Anderson Fixed Point (AFP)...

Question: What is the nature of the “phase transition” between these two

“phases”...i.e., the “diffusive phase” and “Anderson phase”?

Mott took Drudé seriously and concluded that metal must have a minimum

conductivity...the famous Mott minimum!! Accoding to Mott the transition from

the “diffusive phase” to the “Anderson phase” is “first order”, i.e., accompanied

by a discontinuous jump in the conductivity (This has turned out to be wrong, but

it is a beautiful idea nevertheless...)

In the remainder of these discussions we will understand the nature of this

quantum phase transition...but before that lets see what 2d has in store for us..
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Ioffe-Regel Conductivity in d = 2

In d = 2 (a ∼ lattice parameter, kF = 2π
a )

σIR =
e2

~

1

π
k0

F (kF ℓ)
| {z }

∼1

=
e2

~

2

π

The resistivity at such strong disorder is

ρIR =
~

e2
|{z}

4000Ω

1

2
∼ 20kΩ

...this is amazing! The Ioffe-Regel resistivity turns out
to be a universal number (independent of kF ) in 2d...

Thus, if we see data that shows values of resistivity (or
sheet resistance, as it is called in 2d), then we know
we are in the strong disorder regime...



HCM Discussion Group ’07

VBS Fermions in Disorder – 73

Summary of Discussions

Expect Drudé formula to hold for weak disorder

“Weak” means kF ℓ≫ 1

When kF ℓ→ 1, resistivity will increase...the typical
order of magnitude when kF ℓ→ 1 is called the
Ioffe-Regel limit (∼100 µΩ-cm (3d), ∼10 KΩ (2d))...

In any experimental system if we see low temperature
resistivity greater than the IR limit it is suggestive

As the strength of disorder increases, we will have a
“new phase” where the mean free path is so small that
it has no meaning, i. e., the electron will stop diffusing

Key question: Is there a “phase transition” as a
function of disorder strength? What is the nature of
the transition if it exists?
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“Short Term” Plan

Understand the physics of the Anderson
transition...yes, it exists...it is also called as the
localization transition...

Understand what is happening in the Anderson model
as a function of disorder...this will help us understand
why we use the phrase localization!

Discuss scaling theory of localization, and show that
there is indeed a transition (this will turn out to be
true only in 3d...but we are getting ahead of
ourselves!)
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Qualitative Features of the Anderson Model

The model (wi ∈ [−W,W ] uniformly, µ given)

− t
∑

ij

(
c†icj + h. c.

)
+
∑

i

(wi − µ)ni

We ask: What is the diffusion constant D for this
system?

We “feel”: For a given µ when W/t is “small”, D will
be nonzero, but for W/t large, we should get
D = 0...Anderson insulator!

Key ideas

Lifshitz tails in density of states

Localized and extended states

Concept of the mobility edge
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Density of States of the Anderson Model

Of course, we are thinking of the disorder averaged
DOS (N number of sites)

g(ε) = 〈〈
1

N

X

α

δ(ε− ǫα)〉〉

α runs over the (disorder dependent) one particle
states

First question: What is the “bandwidth” (“length” of
energy range over which g(ε) 6= 0) as a function of in a
“cubic” d dimensional lattice (when W = 0, i.e., for

g0(ε) this is, of course, 4dt)

It is evident that the lowest possible energy eigenvalue
is −2dt−W , and the highest is 2dt+W Question: How is this

“evident”?... the bandwidth is 2(2dt+W )
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Density of States of the Anderson Model

The band bottom (top) are given by the energies

ε∓ = ∓(2dt+W )

Now the question is what is the form of the density of
states near the band bottom, i. e., near
ε− = −(2dt+W )

This is most easily answered in the case of the “alloy
disorder”, i. e., in the Anderson model where w takes
on one of two values −W or W with probability (1 − x)
and x respectively (think of the TiAl problem)
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Density of States of the Anderson Model

LAll sites in this clump have site energy −W

Since w is random (uncorrelated from site to site), there could be isolated regions

of volume ∼ Ld–”clump”– where all sites have energy −W ...the probability of

this is P (L) ∼ (1 − x)Ld
= e−CLd

, C = | ln(1 − x)|

The lowest “band state” in such a clump will have an energy near −dt−W ...in

fact, the energy of the lowest state will be proportional to εc = ε− + A
L2

where

the constant A depends on the shape of the clump

Thus, for εc ≈ ε−

g(εc) ∼ P (L) =⇒ g(εc) ∼ e−C(εc−ε−)−d/2

...we see that the dos gets “exponential tails” near the band bottom (and top)!



HCM Discussion Group ’07

VBS Fermions in Disorder – 79

Lifshitz Tails

g(ε)

g0(ε)

ε− ε+−2dt 2dt

g(ε) ∼ e−C(ε−ε−)−αLifshitz tail

It turns out that this is a general feature of the disorder problem...the DOS ends

up with exponential tails (called Lifshitz tails...note it is not Lifshiftz’s tails!!) of

the form g(ε) ∼ e−C|ε−ε±|−α
where α is a positive exponent

The Lifshitz exponent α depends, in general, on the disorder distribution, the

spatial dimension d etc...so does the positive constant C...

Note that since
R∞
−∞ dε g(ε) = 1 (Question: Why?), we see that there will be a

reduction (compared to g0(ε)) of the density of states near the band centre
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Nature of Wave Functions

Suppose we are in d ≥ 2, then we know that an
attractive potential can have a bound state only if it is
“strong enough”

Suppose I have disorder in the system...then there will
be “small clusters” where there is effectively a strong
attractive potential..

We might expect some of the wave functions to be
“localized”...

What general things can we say about extended and
localized wave functions? In particular, when (for what
disorder parameter etc.) does the wave function
become localized?
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Some Preliminaries

We recall some elementary things about states for
further discussion

The state |j〉 represents the one particle state at site j

The one particle states of the disordered Hamiltonian
are denoted by |a〉 (yes, |a〉 depends on the realization
of the disorder)

Clearly

|a〉 =
∑

j

〈a|j〉 |j〉, with
∑

j|〈a|j〉|2 = 1

By unitarity

|j〉 =
∑

a

〈j|a〉 |a〉
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Extended States

Extended states are “close to bloch states” and are
“non zero” throughout the lattice
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Extended States

A electron in such an extended state can carry current

In such an extended state |a〉, very roughly

|〈a|j〉| ∼ 1√
N

where N is the number of sites in the system... This is
the statement of the idea the wavefunction is nonzero
throughout the lattice Caveat: There are wave functions that

satisfy this criterion, but do not carry currents...do you know any?
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Localized States

Analogous to bound states
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Localized States

Associated length scale ξ – called the localization
length

Does not carry a current

If we calculate the projection of such a state on to
particular sites, we will find that there are some j for
which

|〈a|j〉| ∼ 1

...indeed these are those sites around which the state
is localized!
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“Local” Questions

How can we tell if a given state is extended or
localized?

What determines which states are extended and which
states are localized?

Do we need a critical disorder to have localized states?

...

What has this got to do with diffusion?

Our discussion (unless otherwise stated) will be valid
only for 3d...2d will be discussed later in greater detail
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Deciding Between Extended vs Localized

A popular method is to calculate the Inverse
Participation Ratio (IPR) for the given state defined as

IPR(a) =
∑

j

|〈a|j〉|4

For a Bloch state, IPR will turn out to be 1
N , i. e.,

small for large N

For a state fully localized at one site say |i〉, IPR will
be of the order unity

Why the fourth power? There is a deeper
reason...related to diffusion!!
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Diffusion Again!

Ask the following question: Put an electron at site j
at time t = 0, what is the probability Pj(T ) of finding
the electron at this same site at time T in the limit
T −→ ∞?

Ask a second question: Why ask the first question?

Answer to the second question: If we find that Pj(T )
goes to zero, then we know that the electron is
random walking...more interestingly, if we find that
Pj(T ) is finite, then we know that the electron is not
random walking!! If the second possibility is what we
find, then we know that we will do not have diffusion!

How do we find Pj(T )?
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Diffusion Again!

Finding Pj(T ) is quiet straightforward...let |ψ(t)〉 be
the state of the electron at time t

Clearly, ψ(0) = |j〉 =
∑

a〈j|a〉 |a〉
Now, since we “know” the one particle energy levels
ǫa, we have

|ψ(t)〉 =
∑

a

〈j|a〉 e−iǫat |a〉

The probability that the electron is in |j〉 at time t is

Pj(t) = |〈j|ψ(t)〉|2 =

 
X

a

(〈j|a〉)2 e−iǫat

! 
X

b

(〈b|j〉)2 eiǫbt

!

=
X

a

|〈j|a〉|4 +
X

a 6=b

(〈j|a〉)2(〈b|j〉)2e−i(ǫa−ǫb)t)
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Diffusion Again!

To obtain Pj(T ), (T −→ ∞), one can argue that the second term does not

contribute at large times, (Question: Argue this out! Suggestion: life can be

made simple if you assume that ǫa are non degenerate) and we obtain

Pj(T ) =
X

a

|〈j|a〉|4

Now assume that all states are extended...then we see immediately that

Pj(T ) ∼ 1
N

and in the thermodynamic limit the particle diffuse away from |j〉!

In the second scenario, assume that there is a localized state |ℓj〉 “centered”

around j...then we know that |〈ℓj |j〉| ∼ 1...we thus see immediately that Pj(T ) is

finite and independent of N! This means that the particle is not diffusing!

We also see the connection between the “fourth power” and diffusion!

We have now answered our first question, of how to tell between localized and

extended states...we now move on the next question...
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Which States are Localized?

Consider an Anderson model with N lattice points in
3d

First question: For a given W , are there any localized
states?

Second question: If there are localized states, “which”
states are localized?

The answer the first question for the Anderson model
is: There are localized states for any finite W !

A moment’s reflection will tell us that states very
close to ε−, i.e., states deep in the Lifshitz tail are
localized...in fact we used this fact to show that there
are Lifshitz tails!

Conjecture: states at the band centre are extended?
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Which States are Localized?

Will there be extended states in the Lifshitz tails? Are
there localized states in the centre of the band? Is
there “coexistance”?

More generally, we can ask given an energy ε, what
fraction of the total states g(ε)dε are localized?

Mott provided the answer : At a given energy ε, all
states (in 3d) are either localized or extended! There
is no “coexistance”!

Mott’s Argument: Suppose for a given realization of
disorder, there is a localized state coexisting with
extended states (all of which are infinitesimally close
to energy ε)...now for another realization of disorder
which is “infinitesimally” different from the one above,
the localized states will hybridize with the extended
states and become extended!!
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The Mobility Edge

The arguments there exists an energy µ−c which
depends on the disorder W for which all states are
localized... similarly, there is a µ+

c !
g(ε)

ε− ε+µ−c µ+
c

localized localizedextended

The energy µ−c (µ+
c ) is called mobility edge Caveat:

Mobility edges exist only in 3d

Natural question: How do µ±c evolve with W?
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How Mobility Edge Evolves with Disorder

At large enough disorder we can ”intuite” that the
mobility edges will move towards the band centre

W

ε− ε+

Localized
Wc

Extended

ε

µ−
c µ+

c

Mobility Edge

In fact, at a critical Wc, all states become localized...it
is this that was shown by Anderson in 1958
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The 3d Disorder Solution!

At a given level of disorder W ≤ Wc, if the chemical
potential µ lies in the extended states, i.e.,
µ−c < µ < µ−c we have a diffusive metal, else an
Anderson insulator!

W

ε− ε+

Wc

µ

Anderson Insulator (D = 0)

Diffusive Metal (D 6= 0)

µ−
c µ+

c

Mobility Edge

This is the story in 3d...It is quite different in 1d and
2d!



HCM Discussion Group ’07

VBS Fermions in Disorder – 96

The 1d Disorder Solution!

In 1d it turns out that Wc is zero (Mott and Twose)!
Any amount of disorder will localize all states! There
is “not enough room” in 1d!

W

ε− ε+

µ

Anderson Insulator (D = 0)

Wc = 0+!

2d is a bigger story! We will see that 2d is the
“marginal” dimension!
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The Conductivity Question

Back to 3d...A key question remains...what is the
nature of the transition from a diffusive metal to an
Anderson insulator?

ε− µ−clocalized extended

µ

σ

σMOTT
First Order or Continuous?

Is it a “first order transition” or a continuous one? Is
there a minimum metallic conductivity?

What about localized states? How does the
localization length ξ change across the transition?
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The Scaling Theory

The Gang-of-Four Paper: takes off from the work of
Thouless

Note “Arguments are presented...”!!

Key points: Continuous transition in 3d, no Mott
minimum, no metal in 2d!!
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Back to Thouless

Thouless (and friends) considered the following
scenario:

Take an Anderson model at zero temperature –
cube of size L, find its energy eigenvalues and
states – “our cube”

Now think of making an Anderson model of size
2L, by “connecting other cubes” to “our cube”

This is like adding a “perturbation to the
boundary”...much like “twisting of the order
parameter” to look for a stiffness...

How do we “model” the “effect” of the “other
cubes” on states our original cube of size L?

...the story has two parts...
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The Thouless Story: Part 1

The effect of “other cubes” is to give a lifetime to the
levels in our cube...

The key physical idea is this: If the states are
localized, then they will not be affected by boundary
conditions...(“paramagnet”), while they will “broaden”
if delocalized (large L Question: Compared to what?)

Let the broadening of the states (obviously those near
the chemical potential which is kept fixed as the cubes
are being patched) be Γ(L) (this is an energy scale)

Let the level spacing be ∆E(L)

The Thouless ratio T (L) =
Γ(L)

∆E(L)
= g(L), g(L) is the

dimensionless conductance...note conductance!
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The Thouless Story: Part 1

Relate Γ(L) to diffusion D(L) and call Einstein (G –
conductance)

Γ(L) =
~

tb(L)
=

~D(L)

L2
=

~σ(L)

e2gL(µ)L2
=

~σ(L)Ld∆E

e2L2
=

~

e2
G(L)∆E(L)

=⇒ T (L) =
Γ(L)

∆E(L)
= g(L)

This is really an amazing result! If the states are fully
localized, then Γ(L) will get smaller and smaller as L
goes to infinity compared to the level spacing ∆E(L)...

The key idea is that the behaviour of T (L) ≡ g(L)
contains all the information about the localization
problem...

Now on to the second part of the story...
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The Thouless Story: Part 2

We need to know the behaviour of T (L) as we make L
larger...we can ask this differently, what is T (2L)?

One might think that this depends on the details of
the disorder etc...

Thouless, based on numerical work and intuition,
argued that T (sL) is determined only by T (L)...

The physical idea: if T (L) is large (states of L system
are extended), then the state of the 2L system will be
a strong admixture of states of the L systems, and will
also be extended...thus T (L) appears to be sole
quantity that controls the nature of the states as we
scale the system...

Stated as an equation T (sL) = f(s, T (L))!...Enter gang
of four (Go4)!
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The Thouless Story: A bit more!

There is some more very useful information that we
can learn from the Thouless picture..

Suppose T (L) is “small”, i. e., we have localized
states at µ, then the wave functions will not further
broaden when we have perturbations on the boundary

This means that two localized states of that are close
in energy will be separated far apart in space...why? A
boundary perturbation will tend to mix states of same
energy...thus if we know T (L) is small, this “mixing
matrix element” must be small...this can happen only
if the states are “far apart” , i. e., O(L), thus “mixing

matrix element” ∼ e−L/ξ

We now see that g(L) ∼ e−L/ξ
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Go4 Scaling Theory

Based on the Thouless picture, Go4 write down the
scale dependence of the dimensionless conductance g

dln g

dlnL
= β(g)

where β(g) is a dimension dependent “beta-function”

The key point is that the asymptotic forms of β(g) are
universal and not determined by the nature and details
of the disorder

How do we obtain a functional form for β(g)?

This requires some physical input...
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Go4 Scaling Theory

Let us work in the large L limit and ask the nature of
g for “small” and “large” values...what is small and
large?

The dimensionless conductance is a “measure of the
number of channels” available for electon flow...

A bulk sample of a good metal will have a large value
of g – many many channels

On the other hand a localized metal will have a very
small g...

Thus g0 ∼ O(1) is the comparison point, g ≫ g0 =⇒
“bulk metal like” and g ≪ g0 “localized”
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Go4 Scaling Theory

When g ≫ g0 =⇒ “bulk metal like”, we get

g ∼ σLd−2

where σ is the bulk conductivity of the metal which does
not depend on L!

It is immediate that

β(g) = d− 2, g ≫ g0

It was shown that the quantum corrections (an
correction to the Drudé formula) can be writtenas

β(g) = d− 2 − a

g
, g > g0

a is a constant
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Go4 Scaling Theory

When g ≪ g0 =⇒ “localized” regime,

g = g0e
−L/ξ

Again, it is immediate that

β(g) = ln

(
g

g0

)

Lets see what this means...
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Go4 Scaling Theory

Gang of Four, 1979

Note the “nature is not unreasonable” assumption!

We will investigate this in d = 3 first and then d = 2
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Go4 Scaling Theory d = 3

It is clear that β(g) changes sign at some value gc!

At this value of gc, the dimensionless conductance does
not change on changing L...this is a fixed point of the
flow...

Clearly, this is an unstable fixed point

If g > gc, the system flows to g → ∞ as L→ ∞, i. e.,
it flows to a “Diffusive Fixed Point” (Note that
g = ∞, is also a fixed point and is stable...now you see
why we used the word DFP!!)

If g < gc, then flow is to g → 0, i. e., to the Anderson
Fixed Point!

Finally! But what about Mott minimum etc?
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Go4 Scaling Theory d = 3

To ask about Mott, consider the case when L ∼ ℓ
(mean free path)

Clearly gℓ, the dimensionless conductance depends on
the chemical potential µ of the system,i. e, we write
gℓ(µ)

Now if µ > µc (µc ≡ µ−c ), then we expect gℓ(µ) > gc,
and gℓ(µc) = gc

What we want is the dependence of the bulk
conductivity (L→ ∞) on µ− µc...for this let us record
the following formula

gℓ(µ) − gc = (∂µg)(µ− µc), µ− µc “small”

Strategy: Flow the g to L→ ∞
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Go4 Scaling Theory d = 3

To solve the flow equation, note that near gc

β(g) =
1

ν
ln

(
g

gc

)

where 1
ν is the slope of the βvs ln g curve at gc (ν > 0)

A bit of algebra give

g(L) = Bgc

[
gℓ − gc

gc

]ν
L

ℓ
= σL

=⇒ σ = C(gℓ − gc)
ν = C ′(µ− µc)

ν

There is no minimum metallic conductivity!! Reason:
quantum corrections!
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Conductivity Answer d = 3

ε− µ−clocalized extended

µ

σ

σMOTT
First Order or Continuous?...Continuous!!

σ ∼ (µ − µc)
ν

No metallic minimum! Mott is wrong – a rare
occasion!
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Go4 Scaling Theory d = 3

There is more! A harder look at the formula shows
that, we can define a divergent length scal

ξ =
ℓ

B

[
gℓ − gc

gc

]−ν

such that

σ =
gc

ξ

This is suggesting that this is a “critical phenomenon”

What about the “other side”? µ < µc?
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Go4 Scaling Theory d = 3

By a very similar calculation, we can work out what g

is doing for µ < µc...

g(L) = gce
−K| gℓ−gc

gc
|ν L

ℓ =⇒ ξ =
ℓ

K

∣∣∣∣
gℓ − gc

gc

∣∣∣∣
−ν

∼ |µ− µc|−ν

This is beautiful! We get the same critical exponent ν
as we got on the rightside!! Neat!

What is ν?
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Go4 Scaling Theory d = 3

Use d = 2 + ǫ

β(g) = ǫ− a

g
, a = ǫgc

With a bit of further algebra, we get

ν =
1

ǫ

In 3d, we get ν = 1 (for small enough values of 1)...

This is the story in 3d...what happens in 2d?
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Go4 Scaling Theory d = 2

Without the quantum correction term β(g) = 0 (this is
why d = 2 is called the marginal dimension)

Suppose we start with gℓ (just as we did before), then
we have (due to quantum corrections)

β(g) = −a
g

=⇒ g(L) = g − C ln

(
L

ℓ

)

i. e., a large enough system becomes an insulator!

We say that there is no metal in 2d!

We will later see that is the result of “weak
localization”...a purely quantum effect!
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Summary

Thouless arguments, ratio T of broadening and level
spacing is same as dimensionless
conductance...depends on the scale L of the system,
T (2L) depends only on T (L)

Go4 – scaling of g depends only on g

Forms of β function from simple arguments, key
quantum correction term added

Results (d = 3): No Mott minimum, diverging scales,
critical exponents

Results (d = 2) : Marginal dimension, quantum
corrections play crucial role, no metal in the
thermodynamic limit!

Next we will understand what “quantum correction”
means!
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