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Overview

DMFT - A brief recap

Quantum impurity models (QIM)

Numerical approaches to QIM

Hirsch-Fye quantum Monte Carlo (QMC)

Numerical renormalization group (NRG)
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DMFT - Brief Recap

Motivation: Many interesting unsolved problems in the
area of strongly correlated materials (Eg. High Tc

cuprates, heavy fermion compounds etc.)

Effective low energy Hamiltonains – simple to write
down, hard to solve

Reason: Strong correlations, large couplings...

...

The “simple” Hubbard (“truncated” PPP) model

− t
∑

ij,σ

c†iσcjσ − µ
∑

i,σ

c†iσciσ + U
∑

i

ni↑ni↓

on a 2D lattice (is believed to) gives raise to many
electronic phases such as the antiferromagnet,
superconductor etc.
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What are we looking for?

We would like to calculate the Green’s function

G(kσ, τ) = 〈Tτ ckσ(τ)c†
kσ(0)〉

τ is the imaginary time

We can write this in the frequency domain as

G(kσ, τ) =
1

β

∑

n

G(kσ, iωn)e−iωnτ , ωn =
(2n + 1)π

β

Analytic continuation of G(kσ, iωn) from the upper ω
planes gives us

G(kσ, iωn) =⇒ Analytical Continuation =⇒ GR(kσ, ω+)

the retarded Green’s function
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What are we looking for?

If we know the retarded Green’s function, we can
calculate the spectral density

A(kσ, ω) =
1

π
ℑGR(kσ, ω+)

This is an experimentally observable quantity

Undoped Bi2212,Damascelli et al. 2003
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Some more elementary ideas

The “bare Greens function”, G for U = 0

G0(kσ, iωn) =
1

iωn − (ε(k) − µ)

ε(k) – electronic dispersion

The Dyson equation

G−1(kσ, iωn) = G−1
0 (kσ, iωn) − Σ(kσ, iωn)

Σ(kσ, iωn) is the “self energy”
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Some more elementary ideas

We can define a site Greens function, i – site index

Giσ(τ) = 〈Tτ ciσ(τ)c†iσ(0)〉

In terms of frequency representation, (i - site at the
origin)

Giσ(iωn) =
1

N

∑

k

G(kσ, iωn)

=
1

N

∑

k

1

iωn − ε(k) + µ − Σ(kσ, iωn)

N - number of sites
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DMFT - Key Ideas

Consider the Hubbard model...assume that the system
is translationally invariant and focus on one site

Question: Can we replace the “other sites” of the
lattice by an “effective medium”? If yes, what decides
the properties of the medium?
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DMFT - Key Ideas

Let us replace the “other sites” by a “bath” or
“effective medium”

Bath

How do we describe the bath?

Key point: The bath contains a set of one electron
states labeled by α – the bath by itself is non-interacting!

Our site, now an impurity, mixes or hybridizes with the
bath states
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DMFT - Key Ideas

The bath + impurity, in equations...

HA =
X

α

εαb†ασbασ

| {z }

Bath

+ Un↑n↓ − µc†σcσ
| {z }

Impurity

+
X

α

γα(b†ασcσ + c†σbασ)

| {z }

Hybridization

bs are the bath states, ǫα and γα, and even α’s
themselves are unknows as of now!

This type of a problem is called a “Quantum Impurity
Problem”, the specific one above is called the
“Anderson Impurity Problem”

Key point to note is that only “interacting piece” in
the above Hamiltonian occurs only on the impurity

Lots of unknowns at this point...ǫα, γα!
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DMFT - Key Ideas

Assume that we somehow know ǫα and γα

Suppose U were zero, then we can solve the problem
exactly (quadratic Hamiltonian!), and obtain the
Green’s function of the impurity Gσ(iωn)

Note that Gσ(iωn) has all the required information
regarding ǫα and γα...i. e., this is what we take that we
know

Key question: Suppose Gσ(iωn) is given, what is the
Green’s function with U 6= 0? The “thing” that gives
us the answer to this question is the “impurity solver”!

Upshot: We specify the bath by Gσ(iωn), for a given
U , the impurity solver will give us the Green’s function
Gσ(iωn) (and of course Σσ(iωn))
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DMFT - Key Ideas

We now take the next step...

The DMFT Ansatz : Assert that Σ(kσ, iωn) = Σσ(iωn)!
This is a statement that is rigrously true in infinite

dimensions or on a lattice with infinite coordination...

Recall what our elders told us...be happy with what
you have...for us d = 2, 3, and we take it to be infinity!

This now allows us to calculate the Lattice Green’s
function of the site i as

Giσ(iωn) =
1

N

∑

k

1

iωn − ε(k) + µ − Σσ(iωn)

This is where all the information about the lattice
etc. goes...
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DMFT - Key Ideas

We now take the final step!

We now know Giσ(iωn) and Σσ(iωn)...what happens if
we “remove the self energy effects due to interactons”
from Giσ(iωn), i. e., what is

G−1
iσ (iωn) + Σσ(iωn)?

This must be “mixing” with the rest of the lattice, i. e.,

G−1
iσ (iωn) + Σσ(iωn) = Gσ(iωn)

Thus we get information about the bath! Note that
everything on the LHS is determined by the bath
which is specified by Gσ, and therefore the above
equation is the self consistency equation!
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DMFT - Summary

We can now develop an
iterative scheme to solve the self consistency equation...

Impurity Solver

Self Consistency

Σ(iωn)

Gi(iωn) G(iωn) = Gi(iωn) + Σ(iωn)

G(iωn)

Lattice Green’s Function

Gi(iωn) = 1
N

∑

k
1

iωn−(ǫ(k)−µ)−Σ(iωn)

The most difficult step is the impurity solution...
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Quantum Impurity Solvers

Analytical/Semi-analytical

Iterated Perturbation Theory

Non-crossing approximation

Local-moment approach

etc.

Numerical approaches

Exact diagonalization

Quantum Monte Carlo (QMC)

Numerical renormalization group (NRG)

Density-matrix renormalization group (DMRG)

Our focus QMC, and ideas of NRG if time permits...
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What is the difficulty?

The physics we are interested in happens at very small
energy scales

But the physics at small energy scales is strongly
affected by the larger scales!

How to handle all the scales involved?
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Hirsch-Fye Quantum Monte Carlo

Based on ideas of Blackenbecler, Scalapinio and Sugar
(1981)

We will now keep DMFT aside, and learn how to solve
the Anderson impurity problem with HF-QMC
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Hirsch-Fye Quantum Monte Carlo

Input: Gσ(τ), Output : Gσ(τ)

Key steps

Perform Trotter decomposition of the partition
function – L times slices

Introduce discrete Ising spin like
Hubbard-Stratanovic fields at every time slice for
the interaction at the impurity

The problem now has the quadratic electronic
degrees of freedom and the Ising spins at the
impurity site for every time slice

Integrate out the electrons to obtain the partition
function in terms of the Ising spins

Perform Monte Carlo moves involving flips of Ising
spins to calculate observables
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HF-QMC: Preliminaries

We now change notation a bit...

Imagine that the impurity and bath together contain a
total of M sites, the first one is the impurity, and the
others are bath sites

H = (
U

2
− µ)(n↑ + n↓) +

MX

j=2

εjc
†
jσcjσ +

MX

j=2

γj

“

c
†
jσcσ + c†σcjσ

”

| {z }

H0−Noninteracting part

+ U

„

n↑n↓ − 1

2
(n↑ + n↓)

«

| {z }

U−Interacting part

We have dropped A subscript on the Hamiltonian, cσ with out a j stands for the

impurity i.e., j = 1 etc.

Notation for quadratic operators, we write A =
P

ij Aijc
†
iσcjσ where A is a

matrix
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HF-QMC: Times Slices

Aim is to calculate the partition function Z = Tre−βH

We introduce L slices on the imaginary time axis each

of width ∆τ = β
L

The partition function is then written as

Z = Tr

(

L
∏

ℓ=1

e−∆τH

)

So far there is no approximation of any kind!
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HF-QMC: Times Slices

ImpurityBath site

∆τ

1
τ = 0

τ = β

ℓ

L

τ

s1

sℓ

sL

M sites
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HF-QMC: Trotter-Suzuki Approximation

Consider e−∆τH = e−∆τ(H0+U)

Note that U does not commute with H0

We can approximate

e−∆τ(H0+U) = e−∆τH0e−∆τU + O(∆τ2)

This does introduce a systematic error, which can be
taken to zero by making ∆τ −→ 0...this is the only
source of systematic error in this method

With this approximation

Z = Tr

(

L
∏

ℓ=1

e−∆τH0e−∆τU

)



NQM2007

VBS Quantum Impurity Solvers – 22

HF-QMC: Hirsch-Hubbard-Stratanovic Transformation

We now use the identity

e−∆τU =
1

2

∑

s=±1

eλs(n↑−n↓)

if λ is chosen such that

e∆τ U
2 = cosh(λ)

Idea of the proof: the Hilbert space of the impurity is
spanned by states |00〉, | ↑ 0〉, |0 ↓〉, | ↑↓〉, these states
are eigenstates of both LHS and RHS operators, if λ is
chosen appropriately



NQM2007

VBS Quantum Impurity Solvers – 23

HF-QMC: Hirsch-Hubbard-Stratanovic Transformation

Now take the term e−∆τU in the ℓ-th time slice and
use the HHS identity to get

e−∆τU
∣

∣

∣

ℓ
=

1

2

∑

sℓ

eλsℓ(n↑−n↓)

Note that exponential in the right hand side is a
quadratic operator...thus it is “as if” the impurity is
experiencing a one body potential from the auxillary
ising spin field...
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HF-QMC: Hirsch-Hubbard-Stratanovic Transformation

We can therefore define a quadratic operator Vσ(ℓ)
which depends on the Ising spin configuration at the
slice ℓ

Vσ(ℓ) =
X

i,j

(Vσ(ℓ))ijc
†
iσcjσ ; Vσ =

0

B
B
B
B
B
B
@

σλsℓ 0 . . . 0

0 0 . . . 0

..

.
..
.

. . .
..
.

0 0 . . . 0

1

C
C
C
C
C
C
A

M×M

Thus the stuff at the ℓ-th time slice in the partition
function can now be written as Question: Why?

e−∆τH0e−∆τU
∣

∣

∣

ℓ
=

1

2

∑

sℓ

e−∆τH0↑eV↑(ℓ)e−∆τH0↓eV↓(ℓ)
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HF-QMC: Partition Function in Terms of Ising spins

Now the partition function can be written as

Z =

„
1

2

«L X

{s1,...,sL}

Tr

 
LY

ℓ=1

e−∆τH0↑eV↑(ℓ)e−∆τH0↓eV↓(ℓ)

!

This can be recast as Question: Why?

Z =

„
1

2

«L X

{s1,...,sL}

Tr

 
LY

ℓ=1

e−∆τH0↑eV↑(ℓ)

!

Tr

 
LY

ℓ=1

e−∆τH0↓eV↓(ℓ)

!

If we can perform the traces, we see that the partition
function can be written as

Z =
X

{s1,...,sL}

some function of{s1, . . . , sL}

We have achieved our goal in principle; we now
evaluate the “some function”
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HF-QMC: Two Lemmas

Lemma I: Let A =
∑

ij Aijc
†
icj Question: Why are there no spin

indices?, then

Tre−A = det (1 + e−A)

Proof is quite easy...

Lemma II: Consider quadratic operators A,B, C..., then

Tr(e−Ae−Be−C ...) = det (1 + e−Ae−Be−C...)
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HF-QMC: The Partition Function

With these lemmas, we can write

Z =
X

{s1,...,sL}

det
“

1 + e−∆τH0eV↑(1) . . . e−∆τH0eV↑(ℓ) . . . e−∆τH0eV↑(L)
”

×

det
“

1 + e−∆τH0eV↑(1) . . . e−∆τH0eV↑(ℓ) . . . e−∆τH0eV↑(L)
”

Question: What has been dropped? Is it okay?

Now following the standard route, we define matrices

Bσ(ℓ) = e−∆τH0σeVσ(ℓ)

to get

Z =
X

{s1,...,sL}

det
`
1 + B↑(L) . . . B↑(ℓ) . . . B↑(1)

´
det
`
1 + B↓(L) . . . B↓(ℓ) . . . B↓(1)

´
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HF-QMC: The Partition Function

Now with a little bit of matrix algebra one can show
that

det (1 + Bσ(L) . . . Bσ(ℓ) . . . Bσ(1)) = det Oσ({sℓ})

where

Oσ({sℓ}) =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 . . . 0 Bσ(L)

−Bσ(1) 1 0 . . . . . . 0

0 −Bσ(2) 1 0 . . . 0

...
...

. . .
. . .

. . .
...

..

.
..
.

..

. −Bσ(L − 2) 1 0

0 . . . . . . . . . −Bσ(L − 1) 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

ML×ML

which is an L × L matrix of M × M matrices
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HF-QMC: The Partition Function

The partition function is now

Z =
∑

{s1,...,sL}

det O↑({sℓ}) det O↓({sℓ})

In particular any Fermionic observable A can be
calculated for a given Ising spin configuration as
A({sℓ}) by Wick’s theorem

〈A〉 =
∑

{s1,...,sL}

A({sℓ})
det O↑({sℓ}) det O↓({sℓ})

Z

We can now interpret det O↑({sℓ}) det O↓({sℓ})/Z as
the statistical weight of the Ising spin configuration!
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HF-QMC: The Algorithm

This will be perfectly fine if det O↑({sℓ}) det O↓({sℓ}) is
of the same sign for all Ising spin configurations! It is
empirically known (and recently proved) that there is
no sign problem (unless you ask for the unreasonable)

Note that we have mapped a quantum impurity
problem to one of an chain of Ising spins of length L!
d-Quantum = d + 1-Classical!

The QMC Algo
Start with a random Ising spin configuration {sℓ}
Visit each Ising spin and attempt to flip it by calculating the ratio of the

weights of the configuration, i. e., if you attempt to do {sℓ} −→ {s′ℓ}, you

have to calculate

r =
det O↑({s′ℓ}) det O↓({s′ℓ})
det O↑({sℓ}) det O↓({sℓ})

Accept or reject {s′ℓ} based on r
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HF-QMC: Some Questions

At this stage it appears that one has to calculate
determinants of an ML × ML matrices to perform the
Ising spin update!

There are further problems...Actually, we do not know

all the details of the bath!, we know only the Green’s
function G
....

How do we proceed?

In fact, whatever we have discussed so far was
developed by Blackenbecler, Scalapino and
Sugar...Hirsch and Fye made some key observations
which make this possible...
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HF-QMC: Key Obsevations

What is the “meaning” of the matrix Oσ({sℓ}) ?

A little thought will tell you that Gσ({sℓ}) = O−1
σ ({sℓ}),

the Green’s function of impurity + bath for a given

realization of the Ising spin configuration!

In particular, if i and j are any two sites in the system,

(Gσ({sℓ}))(ℓ1,i);(ℓ2,j) = 〈ciσ(ℓ1)c
†
jσ(ℓ2)〉{sℓ}, ℓ1 > ℓ2

Specifically,

(Gσ({sℓ}))ℓ1,ℓ2 = (Gσ({sℓ}))(ℓ1,1);(ℓ2,1) = 〈cσ(ℓ1)c†σ(ℓ2)〉{sℓ}
, ℓ1 > ℓ2

is the impurity Green’s function for a given realization
of the Ising spin configuration! Gσ({sℓ}) is an L × L
sub-matrix of Gσ({sℓ})
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HF-QMC: Key Obsevations

Gσ({sℓ}) depends on the Ising spin configuration
{sℓ}...Hirsch and Fye made the key observation that if
the spin configuration is changed to {s′ℓ}, then the

new Gσ({s′ℓ}) = G ′
σ satisfies a Dyson like equation

G
′
σ = Gσ + (Gσ − 1)eVσ−V

′
σG

′
σ

where 1 is a ML×ML identity, and V is an ML×ML
diagonal matrix

(Vσ)(ℓ1,i);(ℓ2,j) = δi,1δj,1δℓ1,ℓ2 σλsℓ1

There is more...
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HF-QMC: Key Obsevations

Here is the punch line observation of Hirsch-Fye...

The new impurity Green’s function matrix G′
σ also

satisfies a Dyson equation of the form

G′
σ = Gσ + (Gσ − 1)eV −V ′

G′
σ

where 1 is a L× L identity, and V is an L× L diagonal
matrix

(Vσ)ℓ1ℓ2 = δℓ1,ℓ2 σλsℓ1

Suddenly, we realize Question: How?

Gσ = Gσ + (Gσ − 1)e−V Gσ
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HF-QMC: Key Obsevations

Thus if we know G (which we do!), we can calculate
Gσ which depends on the Ising spin configuration!

And, here is the final observation

det O ′
σ

det Oσ
=

det Gσ

det G′
σ

Happily, now

We need to worry only about L × L determinants!

We need only G!

A couple of more technical things...
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HF-QMC: Key Obsevations

Note when we go from spin configuration s to s′ we
flip the spin only at one τ -site, say ℓ...

It turns out that we can explicitly calculate the ratio of
the determinants

det Gσ

det G′
σ

= 1 + (1 − (Gσ)ℓℓ)(e
−2λσsℓ − 1)

...as simple as that! Just one floating multiplication!!

If the new configuration is accepted, then we have to
update Gσ...there is an L × L efficient formula

(G′
σ)ℓ1ℓ2 = (Gσ)ℓ1ℓ2 +

(Gσ)ℓ1ℓ(e
−2λσsℓ − 1)(Gσ)ℓℓ2

1 + (1 − (Gσ)ℓℓ)(e−2λσsℓ − 1)
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HF-QMC: The Complete Algorithm

Input, the matrix G, choose L

Generate a random string of Ising spins {sℓ}; set up G

using Gσ = Gσ + (Gσ − 1)e−V Gσ

Visit each Ising spin, calculate r

If the new configuration is accepted, update the
Green’s function using the L2 update

Keep track of observables

...

The only point to be noted is that we need to make
sure that the precision is maintained, so every so
often, we use the L3 formula to generate the Green’s
function
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HF-QMC Example : Anderson Impurity Problem

The Anderson impurity problem is specified by three
parameters

1. εd – d-orbital (imipurity) energy level

2. ∆ – effective hybridization parameter

3. U – Coulomb repulsion

The bare Greens function G can be explicitly
calculated as

Gσ(τ) =

∫ ∞

−∞
dω

e−ωτ

e−βω + 1

1

π

∆

(ω − εd − U/2)2 + ∆2

For the symmetric model εd = −U/2, the Kondo

temperature is TK ∼
√

∆
U e−

πU
8∆
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HF-QMC Example : Anderson Impurity Problem

HFQMC code – freely available with this lectures
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HF-QMC Example : Anderson Impurity Problem

System with TK = 0.03

τ/β

G

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

U=4.0
∆=0.5
TK = 0.03
T = 0.5

G↑ (QMC)

curly G↑
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HF-QMC Example : Anderson Impurity Problem

System with TK = 0.03

τ/β

G

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

U=4.0
∆=0.5
T = 0.05

G↑ (QMC)

curly G↑
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HF-QMC Example : Anderson Impurity Problem

System with TK = 0.03

τ/β

G

0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

τ/β

G

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

U=4.0
∆=0.5
T = 0.005

G↑ (QMC)

curly G↑
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HF-QMC Example : Anderson Impurity Problem

Susceptibility

T

χ

10-3 10-2 10-1 100

0.25

0.50

0.75

1.00

U=1.0
∆=0.1
TK ≈ 0.01

What is the physics?
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HF-QMC and DMFT

Once we obtain Gσ(τ) we can calculate Gσ(iωn)

Calculate Σσ(iωn) using Dyson equation

Feed Σσ(iωn) to the lattice etc...

...

Iterate to convergence

...

We need physical quantities such as Aσ(ω)...what we
have is Gσ(τ) or equivalently Gσ(iωn)
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Analytical Continuation

We have information along the discrete Matsubara
frequencies in Gσ(iωn) (or equivalently Gσ(τ))

Gσ(iωn)

Gσ(ω+)

Complex ω plane

Several ideas around

Padé approximation

Maximum entropy method
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Padé Approximation

Pre-DMFT, used in strong coupling superconductivity
(Vidberg and Serene 1977)

The idea is simple: “Fit a rational function to data”,
i. e.,

Gσ(ω) =
Pn(ω)

Rm(ω)

where Pn, Rm are polynomials of degrees n and m

We now determine the polynomials from the known
Gσ(iωn)... The nice thing is that this allows for poles

which have physical significance
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Padé Approximation

Gσ(τ) obtained by exactly summing the partition function

Georges et al. RMP, 1996, Note how a Mott insulator emerges with increasing U

Problem: Small errors (such as statistical errors) in Gσ

can give very wild answers! Ill-posed!
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Maximum Entropy

Digression: We have a dice on which we do an
experiment, and find that the mean is 4... we ask
what is the probability pi of getting face i

We know
∑

i xipi = x̄ = 4

We also know
∑

i pi = 1

How can we find pi? Shanonn’s solution: Maximize
the information entropy S[p] = −∑i pi ln pi

We maximize S[p] subject to the known conditions
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Maximum Entropy

Back to our problem, we know Gσ(τ) for a discrete set
of values

This is related to Aσ(ω) by

Gσ(τ) =

∫ ∞

−∞
dω

e−ωτ

e−βω + 1
Aσ(ω)

Also we know that
∫∞
−∞ dωA(ω) = 1

Information entropy S[A] = −
∫∞
−∞ dωA(ω) ln A(ω)

Maximize S[A], with knowledge of the errors in the
QMC (Gubernatis et al. 1991)
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Maximum Entropy

Solution of the Anderson impurity problem

Jarrell and Gubernatis, Phys. Rep., 1996
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Some other Issues!

At low temperatures we see that most of the
information is near τ = 0 and τ = 0 and τ = β...this
means that we will have very few points with the real
information!

τ/β

G

0 0.1 0.2
0

0.1

0.2

0.3

0.4

0.5

τ/β

G

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

U=4.0
∆=0.5
T = 0.005

G↑ (QMC)

curly G↑

Recent development to tackle this: Werner, Mills et
al., PRL, 2006, “Continuous time Monte Carlo”,
evaluate certain class of perturbative diagrams using
Monte Carlo
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Numerical Renormalization Group

We will now get a flavour of what NRG is...

Plan

To motivate this method, we will quickly review the
Kondo effect, NRG was invented by Wilson (Nobel
Prize 1982) to sort out the Kondo effect – the first
non-perturbative application of RG ideas!

Poor Man’s renormalization group idea of the
Kondo problem

Wilson NRG
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Resistivity in Metals

Almost constant at “low” temperatures...all way to
linear at high temperatures
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Resistivity in Metals...There’s More!

Increases with impurity content

Has some “universal” features...
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The Kondo Effect!

There is a “resistance minimum” in some cases!
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The sd Hamiltonian

The Hamiltonian

H =
∑

kσ

ε(k)c†kσckσ + Js · S

s = 1
N

∑

kσ,k′σ′ c
†
kσ~τσσ′ck′σ′ is the conduction electron

spin at the impurity site (N is number of sites); J is
an exchange term...

J

2N

X

k,k′

h“

c
†
k↑ck′↑ − c

†
k↓ck′↓

”

Sz + c
†
k↑ck′↓S− + c

†
k↓ck′↑S+

i

Notice the spin flip scattering terms...
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Poor Man’s Approach to the Kondo Problem

Anderson asked the following question: What are the
most important degrees of freedom in the Kondo
problem? Can one write out an effective Hamiltonian
just for these degrees of freedom?

Clearly the key degrees of freedom at low
temperatures are the states near the chemical
potential... They can undergo scattering from the
impurity that may be direct or spin-flip...

He considered the Hamiltonian of the form
X

k

ε(k)c†kσckσ +
X

k,k′

Jz

“

c
†
k↑ck′↑ − c

†
k↓ck′↓

”

Sz + J⊥c
†
k↑ck′↓S− + J⊥c

†
k↓ck′↑S+

This is an “anisotropic sd Hamiltonain” with Jz , J⊥...
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Poor Man’s Approach to the Kondo Problem

What is the effective Hamiltonian in the band reduced by δD as shown?

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

−D
µ = 0

D

δD δD

We expect to get a Hamiltonian with the same form as the sd but with new

“renormalized” values of the Js...

How can we find the new Js? Let us say that Jz goes to J̃z .... Interpret Jz : it is

the amplitude for scattering from |k ↑〉 to |k′ ↑〉...

Now if k, k′ belong to the reduced band, the amplitude of this scatteringy will be

a sum of direct scattering in the band (Jz), and scattering from k to k′ via all

intermediate states which lie in the shaded part of the band (call this δJz)...

Clearly we need only to worry about spin flip scattering..
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Poor Man’s Approach to the Kondo Problem

Flow equation for Js best seen by diagrams

= + +

J⊥S+

J⊥S−

J⊥S−

J⊥S+

J̃zSz
JzSz

δJ = J2
⊥S−S+

„

−ρ0
δD

D

«

+ J2
⊥S+S−

„

ρ0
δD

D

«

= −2ρ0J2
⊥

„
δD

D

«

=⇒ dJz

dln D
= −2ρ0J2

⊥

With a similar equation for J⊥, we have

dJz

dln D
= −2ρ0J

2
⊥

dJ⊥
dln D

= −2ρ0J⊥Jz
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Poor Man’s Approach to the Kondo Problem

The solution J2
z − J2

⊥ = C!

Key point: Suppose we start with Jz = J⊥ = J > 0
(antiferromagnetic), then the coupling constant J
flows to infinity...cannot do any pertubation theory
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Poor Man’s Approach to the Kondo Problem

Note that for our sd-model, De
− 1

2Jρ0 = D̄e
− 1

2J̄ρ0 !! Thus
the Kondo temperature is preserved along the
trajectory!! Thus the key energy scale remains
“invariant”

Changing D is like changing T , and hence we expect

all properties to be “universal functions” of T
TK

In many ways, this is the solution of the Kondo
problem! But the full solution by Wilson is a treat in
itself...
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Wilson’s RG Appoach to Kondo Problem

Key observation: The problems are caused by a

logarithmic divergence...consider
∫ b
a

dε
ε = ln

(

b
a

)

We ask “why” is
∫ 1
0

dε
ε = ∞? To see this, break up

[0, 1] into intervals [Λ−(n+1), Λ−n] with Λ > 1...Thus

[0, 1] =
∞[

n=0

[Λ−(n+1), Λ−n] =⇒
Z 1

0

dε

ε
=

∞X

n=0

Z Λ−n

Λ−(n+1)

dε

ε
=

∞X

n=0

lnΛ = ∞!!

The divergence occurs because all the “logarithmic
intervals” contribute equally...

To study the Kondo model, Wilson considered a
simplified Hamiltonian

H =

Z 1

−1
dk kc

†
kσckσ + Js · S

Repeated σ are summed here and henceforth
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Wilson’s RG Appoach to The Kondo Problem

Starting from H =
R 1
−1 dk kc

†
kσckσ + Js · S, and using log descretization

reduced to

H =
1

2
(1 + Λ−1)

∞X

n=0

Λ−n(c†+nσc+nσ − c
†
−nσc−nσ) + Js · S

c±nσ are electron operators to the right (left) of µ(k = 0)

Now

s =
1

2
f
†
0σ~τσσ′f0σ′ f0σ =

1√
2

Z 1

−1
dk ckσ

f0σ ≈
„

1

2
(1 − Λ−1)

«1/2 ∞X

n=0

Λ−n/2(c+nσ + c−nσ)

Thus, the impurity couples equally to states of all energies! This is the problem!
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Wilson’s RG Appoach to The Kondo Problem

By sheer genius (bordering on subterfuge!) Wilson
mapped this Hamiltonian to

H =
∞
∑

n=0

Λ−n(f †
nσf †

n+1σ + f †
n+1σfnσ) + J

1

2
f †
0σ~τσσ′f0σ′ · S

This is a “1-D” semi-infinite chain with the first site
interacting with the impurity, and an exponentially
falling hopping between neighbours!

0 1 2 n

Λ−n

S

n + 1

J

We know what f †
0σ does...what do the operators f †

nσ

do?
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Wilson’s RG Appoach to The Kondo Problem

f †
0σ corresponds to a “spherical wave packet” localized

around the impuritiy...f †
1σ is a wave packet which peaks

at a larger distance from the impurity... and so on!

Electrons can “hop” from one wavepacket state to the
“neighbouring” wave packet states...

The states f †
nσ can be obtained from c†±nσ...via

Lanczos tridiagonalization of the kinetic energy!

Why all this? Impurity now couples only to one state!
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Wilson’s RG Appoach to The Kondo Problem

Wilson then used a numerical renormalization group
technique to diagnolize the Hamiltonian which involves
the following step

Define

HN = Λ(N−1)/2

 
N−1X

n=0

Λ−n(f†
nσf

†
n+1σ + f

†
n+1σfnσ) + J

1

2
f
†
0σ~τσσ′f0σ′ · S

!

Why do this?: N → ∞ is like taking T → 0, note that

Λ(N−1)/2J which is the effective exchange coupling at
N (temperature T ) goes to infinity as N → ∞
(T → 0)....

Define a transformation
HN+1 = Λ1/2HN + f †

NσfN+1σ + f †
N+1σfNσ
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Wilson’s RG Appoach to The Kondo Problem

Take J = 0 to start with, and ask what happens for
large N?

You will see with a bit of thought that you will get two
types of spectrum depending on if N is even or odd..

For Λ = 2 Wilson showed that the eigenvalues are

even N : 0,±1.297,±2.827,±4
√

2... ± 2ℓ−1
√

2....

odd N : ±0.6555,±1.976,±4,±8, ...,±2ℓ

Thus RG transformation HN+2 = R[HN ] has two “fixed
points” – one corresponding to even number N and
another odd number N ...
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Wilson’s RG Appoach to The Kondo Problem

Now start with a very small J 6= 0...and focus on N even...

Until N becomes large enough so that Jeff = Λ(N−1)/2
J ≤ 1, the

eigenvalues will look like those of even N ...

For even larger N the Jeff → ∞...what does this mean...the site

0 will from a singlet with the impurity and completely drop out of

the Hamiltonian...i. e., the site 0 will decouple from the chain

since it fully couples with the impurity!! This means although there

are N is even, the spectrum of HN will be similar to that of odd N!

When you start with a tiny J , there is a range of N (high T )

where the behaviour is same as that of the J = 0 fixed point (this

is where perturbation theory works)... and as N is increased it

flows to the J → ∞ fixed point (the Kondo singlet)!

J = 0 is an unstable fixed point, J = ∞ is a stable fixed

point...Best visualized by lifting a figure straight out of Wilson’s

RMP...
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Wilson’s RG Appoach to The Kondo Problem

RG flow in the Kondo problem...all well and
good..what about quantitative things?
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Wilson’s RG Appoach to The Kondo Problem

Using the fact that T ∼ Λ−N , and using an iterative
scheme that correctly calculates the low energy

excitations of the Hamiltonians at large N , Wilson
obtained the universal function for susceptibility...
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What about the Anderson Model?

The Anderson model was solved by NRG techniques
by Krishnamurthy et al.
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NRG and DMFT

Given G, there are following steps that we need to
implement DMFT

Need to get the “1-d” “tridiagonal” chain...this is
a numerically tricky part and requires high
precision numerics

Iterative diagonalization

Looking at states, matrix elements, etc., we can
get A(ω)...at least this is easy to say!

The actual implementation is quite involved...talk to
Nandan!
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