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Overview'

® DMFT - A brief recap
® Quantum impurity models (QIM)

® Numerical approaches to QIM
s Hirsch-Fye quantum Monte Carlo (QMC)
» Numerical renormalization group (NRG)
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DMFT - Brief Recap'

Motivation: Many interesting unsolved problems in the
area of strongly correlated materials (Eg. High T,
cuprates, heavy fermion compounds etc.)

Effective low energy Hamiltonains — simple to write
down, hard to solve

Reason: Strong correlations, large couplings...

The “simple” Hubbard (“truncated” PPP) model
— tz c;-racjg — [ Z cgacw +U Z niN;|
19,0 1,0 )

on a 2D lattice (is believed to) gives raise to many

electronic phases such as the antiferromagnet

VBS
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What are we looking for?I

We would like to calculate the Green’s function
G(ko,7) = (Trcpe(T)ck_(0))

7 is the imaginary time

We can write this in the frequency domain as

(2n+ )7
o

G(ko,T) G(ko,iwy)e —WnT =
( =3 Z Je

Analytic continuation of G(ko,iw,) from the upper w
planes gives us

G(ko,iw,) = Analytical Continuation —= G*(ko,w™)

VBS
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What are we looking for?I

® |If we know the retarded Green’s function, we can
calculate the spectral density

1
Alko,w) = =SGH (ko,w™)

-

® This is an experimentally observable quantity

.].llll‘lllitlll

Loy
_II]I[II]IIIIF[ lII||HI||]III]

T(K)
180
L 50
120
95

=z 20
70 g
\ = 10
=
a2 0
| (b) : i =
[RERE EEEEE . Pl by =-10
500 500 =

Binding energy (meV) i M 0 50 11?{[]{_\ 150

VBS  Undoped Bi2212,Damascelli et al. 2003  Quantum Impurity Solvers — 4




NQM2007

Some more elementary ideas'

® The “bare Greens function”, (G for U =0
1
twn — (e(k) — 1)

e(k) — electronic dispersion

Go(ko,iwy) =

® The Dyson equation
G ko, iwy) = Gyt (ko,iwy) — B(ko, iwy,)

Y.(ko,iwy) is the “self energy”

VBS Quantum Impurity Solvers — 5



NQM2007

Some more elementary ideas'

® We can define a site Greens function, i — site index

Gio(T) = <Z—Cia(T)CT (0))

10
# In terms of frequency representation, (i - site at the
origin)
Ginlicn) = 3 Glka,in)
ioc\Wn) — N ) g, Wn

1 1
N ; iy — (k) + p— X(ko, iwn)

N - number of sites
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DMFT - Key IdeasI

® Consider the Hubbard model...assume that the system
is translationally invariant and focus on one site

0 N Y S

—@ @ @ @ o—

—@ ¢ @ ® o—

—@ ® ¢ ® o—

RERSRERERS

® Question: Can we replace the “other sites” of the
lattice by an “effective medium”? If yes, what decides
the properties of the medium?
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DMFT - Key IdeasI

® Let us replace the “other sites” by a “bath” or
“effective medium”

RERER

How do we describe the bath?

| I

Key point: The bath contains a set of one electron
states labeled by o — the bath by itself is non-interacting!

® Qur site, now an impurity, mixes or hybridizes with the
VBS bath states Quantum Impurity Solvers — 8
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DMFT - Key IdeasI

® The bath + impurity, in equations...

Ha = Z eabl bao + Unin| — pel co + 27a (bl co + cLbas)
N ~~ 4 Impurity N ~~ d
Bath Hybridization

bs are the bath states, ¢, and v,, and even a's
themselves are unknows as of now!

® This type of a problem is called a “Quantum Impurity
Problem”, the specific one above is called the
“Anderson Impurity Problem”

® Key point to note is that only “interacting piece” in
the above Hamiltonian occurs only on the impurity

® Lots of unknowns at this point...c,, 7,!
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DMFT - Key IdeasI

® Assume that we somehow know ¢, and v,

® Suppose U were zero, then we can solve the problem
exactly (quadratic Hamiltonian!), and obtain the
Green’s function of the impurity G, (iw,)

® Note that G, (iw,) has all the required information
regarding ¢, and 7,...i. e., this is what we take that we
know

® Key question: Suppose G, (iw,) is given, what is the
Green’s function with U # 0?7 The “thing” that gives
us the answer to this question is the “impurity solver”!

® Upshot: We specify the bath by G,(iw,), for a given
U, the impurity solver will give us the Green’s function
Go(iwy) (and of course X, (iwy,))
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DMFT - Key IdeasI

We now take the next step...

The DMFT Ansatz : Assert that X (ko,iw,) = X (twp)!
This is a statement that is rigrously true in infinite
dimensions or on a lattice with infinite coordination...

Recall what our elders told us...be happy with what
you have...for us d = 2, 3, and we take it to be infinity!

This now allows us to calculate the Lattice Green’s
function of the site 7 as

1
G'J W, — A7
io (#n) Z iwn, —e(k) + p — Xg(iwn)

This is where all the information about the lattice
etc. goes...

VBS
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DMFT - Key IdeasI

® We now take the final step!

® We now know G, (iw,) and X, (iwy,)...what happens if
we “remove the self energy effects due to interactons”
from G, (iwy), i. e., what is

G Hiwn) + Yo (iwy)?
® This must be “mixing” with the rest of the lattice, i. e.,
G5 Hiwn) + Yo (iwn) = Go (iwy)

® Thus we get information about the bath! Note that
everything on the LHS is determined by the bath
which is specified by G,, and therefore the above
equation is the self consistency equation!
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DMFT - Summary'

® We can now develop an
iterative scheme to solve the self consistency equation...

Lattice Green’s Function Self Consistency

A

. 1 : . . .
G;(iwy,) = % 2k s (e =) =S Gioon) GZ'(an) G(iw,) = Gi(iwy,) + X(iwy)

> (iwn,)

Impurity Solver

® The most difficult step is the impurity solution...

VBS Quantum Impurity Solvers — 13
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Quantum Impurity Solvers'

® Analytical /Semi-analytical
» lterated Perturbation Theory
» Non-crossing approximation
s Local-moment approach
s etc.

#® Numerical approaches
» Exact diagonalization
s Quantum Monte Carlo (QMC)
» Numerical renormalization group (NRG)
s Density-matrix renormalization group (DMRG)

® Our focus QMC, and ideas of NRG if time permits...
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What is the difficulty?'

® The physics we are interested in happens at very small
energy scales

® But the physics at small energy scales is strongly
affected by the larger scales!

® How to handle all the scales involved?

VBS Quantum Impurity Solvers — 15
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Hirsch-Fye Quantum Monte Carlo

® Based on ideas of Blackenbecler, Scalapinio and Sugar
(1981)

" VOLUME 56, NUMBER 23 PHYSICAL REVIEW LETTERS 9 JUNE 1986

Monte Carlo Method for Magnetic Impurities in Metals

J. E. Hirsch'®
Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106

and

R. M. Fye

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 17 March 1986)

We discuss a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can
treat a small number of magnetic impurities interacting with the conduction electrons in a metal.
Results for the susceptibility of a single Anderson impurity in the symmetric case show the expect-
ed universal behavior at low temperatures. Some results for two Anderson impurities are also dis-

cussed.

® We will now keep DMFT aside, and learn how to solve
the Anderson impurity problem with HF-QMC

VBS Quantum Impurity Solvers — 16
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Hirsch-Fye Quantum Monte CarIoI

® Input: G,(7), Output : G,(7)

® Key steps

» Perform Trotter decomposition of the partition
function — L times slices

» Introduce discrete Ising spin like
Hubbard-Stratanovic fields at every time slice for
the interaction at the impurity

» The problem now has the quadratic electronic
degrees of freedom and the Ising spins at the
impurity site for every time slice

» Integrate out the electrons to obtain the partition
function in terms of the Ising spins

» Perform Monte Carlo moves involving flips of Ising

spins-to-calculateobservables

VBS Quantum Impurity Solvers — 17
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HF-QMC: Preliminaries'

® We now change notation a bit...

#® Imagine that the impurity and bath together contain a
total of M sites, the first one is the impurity, and the
others are bath sites

U M M
"= (5w +n)+ _2253'(3}003'0 + ZQ%' (C}GCU + Clcg'a)
J= J=

A 7

-~

Ho—Noninteracting part

1
+U nyn| — E(nT —I—nl)

\ . 7
N

U —Interacting part

® We have dropped A subscript on the Hamiltonian, ¢, with out a j stands for the
impurity i.e., 5 = 1 etc.

® Notation for quadratic operators, we write A4 = Zij Aijczacja where A is a
matrix

VBS Quantum Impurity Solvers — 18
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HF-QMC: Times SIicesI

® Aim is to calculate the partition function Z = Tre "
#® We introduce L slices on the imaginary time axis each
of width A7 =7
® The partition function is then written as
L
7 =Tr (H eATH>
(=1
® 5o far there is no approximation of any kind!
VBS Quantum Impurity Solvers — 19
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HF-QMC: Times SIicesI

4

A

T

r=p
ST L
AT Sy 14
S1 1
T7T=0 ‘\ <L & &
_ M sites
Bath site Impurity

VBS
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Trotter-Suzuki Approximation

Consider e A™H — ¢~ AT(Ho+U)

Note that // does not commute with H

We can approximate

e—AT(Ho—H/l) _ e—ATH()e—ATZ/{ 4 O(ATZ)

This does introduce a systematic error, which can be
taken to zero by making A7 — 0...this is the only
source of systematic error in this method

With this approximation

L
7 — Ty (H 6A7H06A7U>

(=1

VBS
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e t et
oS A
, S SvE %k

: Hirsch-Hubbard-Stratanovic Transformat

® We now use the identity

—ATZ/{ Z As(ny—ny)

s:l:l

if \ is chosen such that
AT = cosh(\)

Idea of the proof: the Hilbert space of the impurity is
spanned by states |00),| T 0),|0 |),| T]), these states
are eigenstates of both LHS and RHS operators, if )\ is

chosen appropriately

VBS
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+ Hirsch-Hubbard-Stratanovic Transformat

® Now take the term ¢ 27 in the /-th time slice and

use the HHS identity to get

E : Ase(ny—ny)

® Note that exponential in the right hand side is a
quadratic operator...thus it is “as if” the impurity is
experiencing a one body potential from the auxillary
ising spin field...

—ATZ/{

VBS Quantum Impurity Solvers — 23
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m + Hirsch-Hubbard-Stratanovic Transformat

#® We can therefore define a quadratic operator V, (/)
which depends on the Ising spin configuration at the

slice ¢
/ oisy 0 ... O\
0 o ... O
Z(V (6) ij chjaa =
\ 0 0 .. 0/

® Thus the stuff at the /-th time slice in the partition
function can now be written as Question: Why?

AT Hy e—mu) _ }Z o~ ATHo V1 ()~ ArHoy V()

VBS Quantum Impurity Solvers — 24
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C: Partition Function in Terms of Ising spi

® Now the partition function can be written as

1\ *“ L—ATH Vi () —ATHo V| (£
7 = <§> Z Tr(He 01 V1 (g 0L VL6

{81 ..... SL} =1

® This can be recast as Question: Why?

1 . = —ATH Vi (£ = —ATH V(£
7 = (5> Z Tr(He 01 V1) | Ty He 01 V1)

{s1,...,s1.} =1 =1

® |If we can perform the traces, we see that the partition
function can be written as

Z = Z some function of{sy,...,s;}

We have achieved our goal in principle; we now
ves evaluate the "some function” Quantum Impurity Solvers — 25
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HF-QMC: Two Lemmas'

® Lemma l: Let A = Zij AijCl-LCj Question: Why are there no spin
indices?, then

Tre ™ = det (1 + %)

Proof is quite easy...

#® Lemma ll: Consider quadratic operators A, 5.C..., then

Tr(e e PeC. ) =det (1 +e PeBe C.)

VBS Quantum Impurity Solvers — 26
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HF-QMC: The Partition Function'

® With these lemmas, we can write

4 = Z det (1 + e ATHo V(1) | o=ATHo V1 (6) - o—ATHD eVT(L)) X

{81,...,SL}

det (1 4+ e ATHo V(1) | o= ATHo V1 (£) | o—ATHo Vs (L))

Question: What has been dropped? Is it okay?

#® Now following the standard route, we define matrices

IB%O-(K) - G_ATHOO'€VO'(€)

VBS Quantum Impurity Solvers — 27
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HF-QMC: The Partition Function'

® Now with a little bit of matrix algebra one can show
that

det (1 +By(L)...Bs(¢)...Bs(1)) = det Oy ({s¢})

where
[ 1 0 0 0 Bo (L) \
—B,(1) 1 0 0
0 —B,(2) 1 0 0
Os({5¢}) =
. _]BU(L_Q) 1 0
K 0 —BJ(L_l) 1 )MLxML

which is an L x L matrix of M x M matrices

VBS Quantum Impurity Solvers — 28
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HF-QMC: The Partition Function'

® The partition function is now

Z= Y detO)({s;})det O ({s¢})

{81,...,8L}

® In particular any Fermionic observable A can be

calculated for a given Ising spin configuration as
A({s,}) by Wick’s theorem

<A> _ Z A({Sg}) det ﬁT(‘{Sﬁ})Zdet ﬁl({sf})

{81,...,8L}

® We can now interpret det O ({s¢})det 0| ({s;})/Z as
the statistical weight of the Ising spin configuration!

VBS Quantum Impurity Solvers — 29
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HF-QMC: The Algorithml

This will be perfectly fine if det 0 ({s/}) det &|({s,}) is
of the same sign for all Ising spin configurations! It is
empirically known (and recently proved) that there is
no sign problem (unless you ask for the unreasonable)

Note that we have mapped a quantum impurity
problem to one of an chain of Ising spins of length L!
d-Quantum = d + 1-Classical!

The QMC Algo

#® Start with a random Ising spin configuration {s;}

® \Visit each Ising spin and attempt to flip it by calculating the ratio of the
weights of the configuration, i. e., if you attempt to do {s,} — {s}}, you
have to calculate

- det 01 ({s},}) det 0| ({s},})
det O; ({s¢}) det 0| ({s,})

VBS
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HF-QMC: Some Questions'

At this stage it appears that one has to calculate
determinants of an ML x ML matrices to perform the
Ising spin update!

There are further problems...Actually, we do not know
all the details of the bath!, we know only the Green’s
function ¢

How do we proceed?

In fact, whatever we have discussed so far was
developed by Blackenbecler, Scalapino and
Sugar...Hirsch and Fye made some key observations
which make this possible...

VBS
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HF-QMC: Key Obsevations'

What is the “meaning” of the matrix &,({sy}) ?

A little thought will tell you that ¥, ({s;}) = 0;'({s/}),
the Green’s function of impurity + bath for a given
realization of the Ising spin configuration!

In particular, if : and j are any two sites in the system,

(Yo ({s¢})) (01,i);(€2,5) <C’i0(€1)cj'a(£2>>{85}7 b1 > by
Specifically,
(Go({se}))er 0, = o ({5)) (0, 1)s29.1) = (o (1)l (€2)) 15,35 €1 > L2

is the impurity Green’s function for a given realization
of the Ising spin configuration! G,({s/}) is an L x L
sub-matrix of ¥ ({s,})

VBS
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HF-QMC: Key Obsevations'

® 9,({sy}) depends on the Ising spin configuration
{s¢}...Hirsch and Fye made the key observation that if

the spin configuration is changed to {s;}, then the
new ¥,({s,}) = ¢, satisfies a Dyson like equation

G =G + (G — 1)V

where 1 is a ML x ML identity, and ¥ is an ML x ML
diagonal matrix

(Y6) (01,3):(02.5) = 06,105,100, T ASe,

® There is more...

VBS Quantum Impurity Solvers — 33
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HF-QMC: Key Obsevations'

® Here is the punch line observation of Hirsch-Fye...

® The new impurity Green’s function matrix G, also
satisfies a Dyson equation of the form

G =Gy + (Gy— 1)V VG,

where 1 is a L x L identity, and 7" is an L x L diagonal
matrix

(VU)€1€2 — 551,52 0)‘851

® Suddenly, we realize Question: How?

Gy =G + (ga — 1)€_VG0

VBS Quantum Impurity Solvers — 34



NQM2007

HF-QMC: Key Obsevations'

® Thus if we know G (which we do!), we can calculate
G, which depends on the Ising spin configuration!
® And, here is the final observation
det 0, detG,
det 0, det G’
® Happily, now
» We need to worry only about L x L determinants!
» We need only ¢!
® A couple of more technical things...
VBS Quantum Impurity Solvers — 35
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HF-QMC: Key Obsevations'

#® Note when we go from spin configuration s to s’ we
flip the spin only at one 7-site, say /...

® |t turns out that we can explicitly calculate the ratio of
the determinants

det G,

det (7 1+ (1 — (Go)ee)(e72275¢ — 1)

...as simple as that! Just one floating multiplication!!

® If the new configuration is accepted, then we have to
update G, ...there is an L x L efficient formula

/ GJ 1 6—2>\O'Sg_1 Gg 2
(Golue, = (Golune, + 1(+ ()1@((610)%)(62);(;& )_%1)

VBS Quantum Impurity Solvers — 36
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~ |HF-QMC: The Complete Algorithml

#® Input, the matrix ¢, choose L

® Generate a random string of Ising spins {s/}; set up G
using Gy = G, + (G — 1)e YV Gy

Visit each Ising spin, calculate r

L

If the new configuration is accepted, update the
Green'’s function using the L? update

°

Keep track of observables

L

The only point to be noted is that we need to make
sure that the precision is maintained, so every so
often, we use the L3 formula to generate the Green's
function

VBS Quantum Impurity Solvers — 37
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MC Example : Anderson Impurity Problen

® The Anderson impurity problem is specified by three
parameters

1. ¢; — d-orbital (imipurity) energy level
2. A — effective hybridization parameter
3. U — Coulomb repulsion

® The bare Greens function G can be explicitly
calculated as

> e~ w1 A
o — d —
Go (7) /_OO Y e 1 T (w—eq—U/2)? + A?

® For the symmetric model ¢;, = —U/2, the Kondo

temperature is T ~ \/ A=

VBS Quantum Impurity Solvers — 38
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MC Example : Anderson Impurity Problen

® HFQMC code — freely available with this lectures

@ e & @ @ & o o % @ : @ @ 2

PROGRAM HirschFye

USE dble_prec

USE HMisclUtils

USE Andersonilodel
USE HFEMonteCarlo

ke IMPLICIT NONE

INTEGER, PARAMETER :: NSTRIMG=1000
CHARACTERCNSTRING) :: casename

REAL :: startime. endtime. runtime
MAMELIST fcasecard/casename
CALL CPU_TIME(startime)

CALL UNLINKC"hfgmec.ok")

——:—— hirschfye.f90 5:21PH 0.32

B Starting new Ispell process...

——

VBS Quantum Impurity Solvers — 39
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-QMC Example : Anderson Impurity Problen

® System with T = 0.03
0.5

0.4}

0.3
)
02} A=0.5
: G, (QMC) T, = 0.03
- T=0.5
0.1 B
0 i | | |
0 0.25 0.5 0.75 1
/B

VBS Quantum Impurity Solvers — 40
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® System with T = 0.03
0.5

0.4

03}

@)
0.2 -
0.1
: G, (QMC)
| | | | ] | | | | ] | | | | ] | | | |
00 0.25 0.5 0.75 1

/B
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® System with T = 0.03

0.5 i
- |U=4.0
L |A=05 |
0.4 03
T = 0.005 ° |
03
I B
O
02 H
01\ curly G,
: G, (w/
| | | | I | | | | | | | | | |
OO 0.25 0.5 O 75 1

/B3
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® Susceptibility
1.00
0.75

0.50 |

0.25

10~

& What-is-thephysies?

VBS Quantum Impurity Solvers — 43
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HF-QMC and DMFTI

Once we obtain G,(7) we can calculate G, (iw,)
Calculate ¥, (iw,) using Dyson equation
Feed >, (iw,) to the lattice etc...

Iterate to convergence

© o o o o 0 0

We need physical quantities such as A, (w)...what we
have is G,(7) or equivalently G, (iw),)

VBS Quantum Impurity Solvers — 44
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Analytical Continuation'

® We have information along the discrete Matsubara
frequencies in G, (iw,) (or equivalently G, (7))

Complex w plane

® Several ideas around
o Padé approximation

s Maximum entropy method
VBS Quantum Impurity Solvers — 45
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Padé Approximation'

Pre-DMFT, used in strong coupling superconductivity
(Vidberg and Serene 1977)

The idea is simple: “Fit a rational function to data”,
. e.,

where P, R,, are polynomials of degrees n and m

We now determine the polynomials from the known
Go(twy)... The nice thing is that this allows for poles
which have physical significance

VBS
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Padé Approximation'

® G, (7) obtained by ezactly summing the partition function
e
p(m) ojo___/\k_/L_

0301 ]

.00/~ —M .

0.50f— N

0.00

Georges et al. RMP, 1996, Note how a Mott insulator emerges with increasing U

® Problem: Small errors (such as statistical errors) in G,
can give very wild answers! lll-posed!

VBS Quantum Impurity Solvers — 47
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Maximum Entropy'

Digression: We have a dice on which we do an
experiment, and find that the mean is 4... we ask
what is the probability p; of getting face

We know > zip; =2 =4
We also know > . p; =1

How can we find p;? Shanonn’s solution: Maximize
the information entropy S|p] = —>_. pilnp;

We maximize S|p| subject to the known conditions

VBS
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Maximum Entropy'

® Back to our problem, we know G, (7) for a discrete set
of values
® This is related to A,(w) by
G T2 4
o) = [ do g Ae(w)
® Also we know that [ de(w) =
® Information entropy S[A] = — [*. dwA(w)In A(w)
#® Maximize S|A], with knowledge of the errors in the
QMC (Gubernatis et al. 1991)
VBS Quantum Impurity Solvers — 49
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nTA(w)

1.0

0.8

0.6

0.4

0.2

0.0

Maximum Entropy'

#® Solution of the Anderson impurity problem

Tk Scaling

—_—

I IIIIIII| LI IIIIII| L

u = 1.25, 1.5, 2.0, 2.5, 3.0

- o/p = 15
oo f“*
'- 1 1 1 1111 il L L1l L

[y

10 100

III1IIII‘[EII|IIII|IIII

nTA(w)

1.0 e

0.8

0.6 —

0.4

0.2

0.0

u= U =20
T/Ty = 0.2, 0.8, 3.2, 128

k-

a8 — QMO—ME

IIII[1III|III|III|I|I!I

l]l | - IIIIII|

- DS T/Ty = 25

I'IlrllIIIIFllllllllllllltll

1 10
W/TK

100

Jarrell and Gubernatis, Phys. Rep., 1996

VBS
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Some other Issues! I

® At low temperatures we see that most of the
information is near 7 =0 and 7 = 0 and 7 = (...this
means that we will have very few points with the real
information!

05

L [U=40 o
| |A=05
°4F [T= 0005 o\

0.3t e
|

O]
0.2

T\ curly G,
f G, (@QVC
— %> R - —

0 0.25 05

/B

0.1

0

1

® Recent development to tackle this: Werner, Mills et
al., PRL, 2006, “Continuous time Monte Carlo”,

evaluate certain class of perturbative diagrams using

Mente—Carle
VBS e Quantum Impurity Solvers — 51
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Numerical Renormalization GroupI

® We will now get a flavour of what NRG is...
#® Plan

o To motivate this method, we will quickly review the
Kondo effect, NRG was invented by Wilson (Nobel
Prize 1982) to sort out the Kondo effect — the first
non-perturbative application of RG ideas!

» Poor Man’s renormalization group idea of the
Kondo problem

s Wilson NRG

VBS Quantum Impurity Solvers — 52
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Resistivity in Metals'

QO un
Ll

w £~

[

Relative resistance R/Roggk
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Temperature (K)

® Almost constant at “low” temperatures...all way to
linear at high temperatures
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Resistivity in Metals...There's More!
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® Increases with impurity content

® Has some “universal”’ features..

Reduced temperature T/#?
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The Kondo Effect! I
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® There is a “resistance minimum” in some cases!
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The sd Hamiltonian I

® The Hamiltonian

1 T = . .
8 = ¥ Xkok'o’ ChyToo' Ckor 1S the conduction electron

spin at the impurity site (/V is number of sites); J is
an exchange term...

J
ﬁ [(CLTC}C/T _C]];lck/l) Sz+CLTCk?/lS_ —|—CLle/TS+:|
k,k’

Notice the spin flip scattering terms...
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Poor Man’s Approach to the Kondo Problem

® Anderson asked the following question: What are the
most important degrees of freedom in the Kondo

problem? Can one write out an effective Hamiltonian
just for these degrees of freedom?

® C(learly the key degrees of freedom at low
temperatures are the states near the chemical

potential... They can undergo scattering from the
impurity that may be direct or spin-flip...
® He considered the Hamiltonian of the form

Zs(k)ck Cko —|— Z Jz (CkTCk/T C/]::lck’/l) Sz -I— JJ_CLTCk/lS_ —|— J—chlck,TS—i_
k,k’

This is an “anisotropic sd Hamiltonain” with J., J; ...
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Poor Man’s Approach to the Kondo Problem

® What is the effective Hamiltonian in the band reduced by §D as shown?

0D~ oD~
| _ |
D p="0 D

» We expect to get a Hamiltonian with the same form as the sd but with new
“renormalized” values of the Js...

® How can we find the new Js? Let us say that J, goes to .J..... Interpret J,: it is
the amplitude for scattering from |k 1) to |k’ 7)...

® Now if k, k' belong to the reduced band, the amplitude of this scatteringy will be
a sum of direct scattering in the band (J.), and scattering from £ to £’ via all
intermediate states which lie in the shaded part of the band (call this 6.J.)...

® Clearly we need only to worry about spin flip scattering..
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Poor Man’s Approach to the Kondo Problem

® Flow equation for Js best seen by diagrams

JS_ AS+
LS. 0= e 4 L IE ,V
TS, 3
oD oD 5D dJ, .

#® With a similar equation for J,, we have

dJ, 9
dnD —2po L
dJ|
— 9 .
din D poid
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Por Man’s Approach to the Kondo Problem

® The solution J? — J? = (!

0

fm Kondo afm Kondo

~- 0l 0 O
2/5p

® Key point: Suppose we start with J,=J, =J >0
(antiferromagnetic), then the coupling constant J
flows to infinity...cannot do any pertubation theory
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Por Man’s Approach to the Kondo Problem

1 _ 1
® Note that for our sd-model, De 2/r0 = De 2701l Thus

the Kondo temperature is preserved along the
trajectory!! Thus the key energy scale remains
“invariant”

® Changing D is like changing 7', and hence we expect
all properties to be “universal functions” of %

#® In many ways, this is the solution of the Kondo
problem! But the full solution by Wilson is a treat in
itself...
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'Wilson’s RG Appoach to Kondo Problem

® Key observation: The problems are caused by a

logarithmic divergence...consider f; % = In (3)

® We ask “why” is fol % = o0? To see this, break up
0,1] into intervals [A~("TD A~="] with A > 1...Thus

—n

de

o0 1d8 o0 o0
0,1] = A—HD AT — = = / — = InA = ool
o1 = Ul | D DY N S

The divergence occurs because all the “logarithmic
intervals” contribute equally...

® To study the Kondo model, Wilson considered a
simplified Hamiltonian

1
H = / dk kel cpo +Js- S
—1
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ilson’s RG Appoach to The Kondo Problem

reduced to
1 O
H = 5(1 + A_l) ngzoA_n(clnaq_ng — ch_nac_no—) +Js- S

Cc+no are electron operators to the right (left) of u(k = 0)
$ Now

1 1 [l
_ T = _
S §f007-00’f00’ fOJ — \/5 /_1 dk Cko

1 1/2 oo
for = (50=070) S AT e + o)

n=0

Thus, the impurity couples equally to states of all energies! This is the problem!
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ilson’s RG Appoach to The Kondo Problem

® By sheer genius (bordering on subterfuge!) Wilson
mapped this Hamiltonian to

o0 N 1 .
H =3 N"(Hofiars + Fhsiohna) + 50570 foor - S
n=0

® This is a “1-D” semi-infinite chain with the first site
interacting with the impurity, and an exponentially
falling hopping between neighbours!

0 1 % n  n+1
7? ¢ @ o & -
./ A7

S

® We know what fga does...what do the operators f:w

ol
U
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ilson’s RG Appoach to The Kondo Problem

o f(J)fa corresponds to a “spherical wave packet” localized

around the impuritiy...ffa is a wave packet which peaks
at a larger distance from the impurity... and so on!

® Electrons can “hop” from one wavepacket state to the
“neighbouring” wave packet states...

® The states ff,;fg can be obtained from ci_Lm...via

Lanczos tridiagonalization of the kinetic energy!

® Why all this? Impurity now couples only to one statel
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ilson’s RG Appoach to The Kondo Problem

® Wilson then used a numerical renormalization group
technique to diagnolize the Hamiltonian which involves
the following step

® Define

Hy = AN-D/2 (Z A fiaflﬂa + fn+1afna) + J foc Too! foo! - S)

® Why do this?: N — oo is like taking 17" — 0, note that

AWN=1/2 1 which is the effective exchange coupling at
N (temperature T) goes to infinity as N — oo
(T — 0)....

® Define a transformation
Hyyp =AY Hy + f]J[\fng+1a + f;hlnga
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Ison’s RG Appoach to The Kondo Problem

® Take J =0 to start with, and ask what happens for
large N7

® You will see with a bit of thought that you will get two
types of spectrum depending on if IV is even or odd..

® For A = 2 Wilson showed that the eigenvalues are

even N :  0,4£1.297. +£2.827. +4v/2... + 2712 ...
odd N :  =£0.6555,+1.976, +4, +8, ..., +2°

® Thus RG transformation Hy_ o = R|Hy| has two “fixed
points” — one corresponding to even number N and
another odd number N...

VBS Quantum Impurity Solvers — 67



NQM2007

ilson’s RG Appoach to The Kondo Problem

® Now start with a very small J # 0...and focus on N even...

® Until N becomes large enough so that J ;s = AV~1U/2] <1, the
eigenvalues will look like those of even V...

® For even larger N the J.ry — oo...what does this mean...the site
0 will from a singlet with the impurity and completely drop out of
the Hamiltonian...i. e., the site 0 will decouple from the chain
since it fully couples with the impurity!! This means although there
are N 1is even, the spectrum of Hy will be similar to that of odd N!

® When you start with a tiny J, there is a range of N (high T)
where the behaviour is same as that of the J = 0 fixed point (this
is where perturbation theory works)... and as N is increased it
flows to the J — oo fixed point (the Kondo singlet)!

® J =0 is an unstable fixed point, J = oo is a stable fixed
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' on’s RG Appoach to The Kondo Problem
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® RG flow in the Kondo problem...all well and
good..what about quantitative things?
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ilson’s RG Appoach to The Kondo Problem

® Using the fact that 7 ~ A=, and using an iterative
scheme that correctly calculates the low energy
excitations of the Hamiltonians at large N, Wilson
obtained the universal function for susceptibility...
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What about the Anderson Model?l

® The Anderson model was solved by NRG techniques
by Krishnamurthy et al.

T (Temperature)

D fT=U
plane
il Reg\™e
Tr'a'rr-n—' J% Locd\. N
RIS Moe™ | Coulomb
peQ™ Energy
X &z Y
s1999” gy Surface
- ouP L8
-7 O Red'™ B S 0T
A \
I" (d level width) o =T
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NRG and DMFTI

#® Given @G, there are following steps that we need to
implement DMFT

» Need to get the “1-d” “tridiagonal” chain...this is
a numerically tricky part and requires high
precision numerics

» lterative diagonalization
» Looking at states, matrix elements, etc., we can
get A(w)...at least this is easy to say!

® The actual implementation is quite involved...talk to
Nandan!
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