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Overview

CNTs - What are they?

Why should we care?

CNTs - Electronic puzzles

Transport properties

Puzzle “solved”!

Is it really?

But first, carbon...amazing carbon!
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Carbon: Diamond

High Stiffness

Poor Electrical Conductivity

High Thermal Conductivity
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Carbon: Graphite

Electrical Conductor (Semi-Metal)

Less Stiff (than Diamond)
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Carbon: Fullerenes

Superconductivity!
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Carbon: Onions!!

(Harris 2001)
Very Tasty!!
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Carbon: Nanotubes (CNTs)

Made by “Physical” and “Chemical” Routes

(Harris 2001)

May be Single-Walled and/or Multi-Walled
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Carbon: More Nanotubes

(Harris 2001)



SERC School on Solid State and Materials Chemistry ’05

VBS CNTs – 8

CNTs – Wonder Materials?

“Amazing” Properties of CNTs

“Interesting” electronic properties

High elastic stiffness (∼5–10 × steel)

High strength

High thermal conductivity

...

Nanotube electronics

Nanotube sensors

Question: How do you measure transport properties of
CNTs?
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CNT Electronic Transport Properties

Field Effect Transistor Measurements

(Avouris et al. 2003)



SERC School on Solid State and Materials Chemistry ’05

VBS CNTs – 10

Electronic Transport Properties

FET Characteristics

(Dürkup et al. 2004)

May be Metallic or Semiconducting! Huh..how?

Our task: explain this!
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Quantum Review

Key concept : the state |ψ〉
Expected value of observable 〈ψ|O|ψ〉
Something called the Hamiltonian H

Time evolution H|ψ〉 = i~∂|ψ〉∂t

Stationery states H|ψ〉 = E|ψ〉
...

One electron theory: No interactions between
electrons...many particle state constructed from one
particle states...hence, one electron theory
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“Solid State” Review

In the elementary (free electron) theory of metals this
leads to the idea of the “filling of states” and Fermi
energy

Semiconductors – the idea of a gap

Transport properties – Temperature dependence

...

How about a “free electron” CNT?
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A “Free Electron” Theory of CNTs

Imagine a single walled CNT to be a “very long”
cylinder of radius R, electron density Σ

Energy states decide by two quantum number k and
n...k is due to motion along the tube axis and n is due
to revolution around the tube

Energy states and levels (quantum number k and n)

E(k, n) = E◦ǫk,n =
~

2

2meR2
(k2 + n2)
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A “Free Electron” Theory of CNTs

Chemical Potential (Fermi Energy) ǫf

ρ

ε f
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“Size Parameter” ρ = ΣR2: ǫf Specified by Nf , {kfn}
How is this related to the 2D sheet?...The FECNT
dispersion are “slices” of the 2D dispersion!
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A “Free Electron” Theory of CNTs

“But, there is just one more thing my dear
Watson...all your FECNTs are metallic!” Not really
surprising (for Holmes, of course)!

Holmes back in business!

...

Puzzle...how do we get a semiconductor?

Even more fundamental puzzle...Why are there

semiconductors at all?

And why are some CNTs metallic and some semi
conducting? (Now you begin to fear hair-loss!)
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Free Electron needs Repair

Electrons are not really free!

They move in a periodic potential

V (r) =
∑

R

Va(r − R)

Schrödinger equation

(

− ~
2

2m
∇

2 + V (r)

)

ψ = Eψ

What are allowed Es and associated ψs?

Bloch theorem ψk(x) = eikxu(x), u lattice periodic

What can we say without solving anything? (Stick to
1D)
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1D Solid – Simple Arguments

Solid with V (r), V (r + na) = V (r), a is lattice
parameter

Imagine that V (r) is a perturbation on free electrons

What effect does V (r) have on the “free” electron?

Well, it is like Bragg reflection!

If the wavelength of the electron is related to the
lattice parameter a, then the electron cannot “travel”
through the crystal...Bragg reflection will make it a
standing wave!

This happens when the electron wavelength satisfies
nλ = 2a or when electron wavevector satisfies k = nπ

a !

Clearly, the electron energies are also changed!
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1D Solid – Simple Arguments

Since the state of the electron for k = nπ
a is not a

propagating one, we can imagine it as a superposition
of a forward moving wave and backward moving wave
of amplitude to get two types of standing waves

ψ+ = eikx + e−ikx = 2 cos(kx),

ψ− = eikx − e−ikx = 2i sin(kx)

Note that these are standing waves!

What are (estimates of) E±?

To get an idea, think of |ψ+|2...it is the probability
density...if the atomic potential Va is attractive, then
E+ will be lower than E−, since the electron in ψ+

state is “located closer to the atom”!
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1D Solid – Simple Arguments

Clearly, ψ+ has lower energy (for the attractive atomic
potential)

r/a

|ψ
2 |

0 1 2 3 4 50.00

0.25

0.50

0.75

1.00

|ψ-
2||ψ+

2|

This implies for the same value of free electron
wavevector k, there are two possible energy levels...in
other words, energy values between these levels are
not allowed...a band gap opens up!
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1D Solid – A Simple Model

1-D solid with lattice parameter a

Smallest reciprocal vector G = 2π
a

Simple model “ionic potential” V (x) = 2VG cosGx
(Note that V (x) is lattice periodic, VG is the
“strength” of the potential)

What are eigenvalues and eigenstates of

H = − ~
2

2m
∂2

∂x2 + V (x)?

We know from previous arguments that when k ≈ G
2

we expect strong Bragg reflection of a plane wave
state...based on this it is reasonable to take the energy
eigenstate as a linear combination of the forward going
wave and the reverse going wave
|ψ〉 = Ck|k〉 + Ck−G|k −G〉, where Ck, Ck−G are
numbers that we need to determine...
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1D Solid – A Simple Model

Determine Ck, Ck−G using H|ψ〉 = E|ψ〉; a bit of

algebra gives (ǫ(k) = ~
2k2

2m )




ǫ(k) VG

VG ǫ(k −G)








Ck

Ck−G



 = E




Ck

Ck−G





Energy eigenvalues are

E±(k) =
ǫ(k) + ǫ(k −G) ±

√

(ǫ(k) + ǫ(k −G))2 − 4(ǫ(k)ǫ(k −G) − V 2
G)

2

with associated eigenstates

ψ±(x) =
(
C±

k + C±

k−Ge
−iGx

)

︸ ︷︷ ︸

u±(x)...lattice periodic

eikx
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1D Simple Model – What is learned?

An energy gap opens up at k = G
2 , E+ − E− = 2VG

1 2 3 4 5 6
ka

10

20

30

40
ΕHkL

Forbidden Gap
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A 1D chain

Electrons can hop to neighbouring atom with
amplitude t (Tight binding model...What does this
mean?)

H =
∑

l

e0|l〉〈l| − t
∑

<lm>

|l〉〈m| + |m〉〈l|

Energy eigenstates

|k〉 =
1√
N

∑

l

eikl|l〉

with eigenvalues

ǫ(k) = −2t cos k (1)

Exercise: Do this for a square lattice
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How about doing this for Graphene?

First, how to describe graphene “crystal”?

A triangular lattice with a two atom basis

Avouris et al. 2003
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Graphene Band Structure

Tight binding model to understand electronic structure

What are the relevant orbitals to be included?

There are three sp2 orbitals, and one pz orbital on
each carbon... the electronic physics is governed only
by pz-pz “bonding” or π-bonding!

Tight binding Hamiltonian

H = −t
∑

lm,αβ

|lα〉〈mβ|

l,m, Bravais lattice index, α, β basis index, t is the
pz-pz π overlap integral
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Graphene Band Structure

There are two bands...the π band and π∗ band

One band is fully filled...but is there a gap?

There are six

points in the corners of BZ where the gap is exactly zero

Avouris et al. 2003

Graphite is a “semi-metal in plane”! c-axis
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Graphite: Transport Experiments

Graphite is a “semi-metal in plane”! c-axis
“semi-conductor”!

Indeed seen in experiments

Dutta 1953

Ready to tackle CNTs
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Structure of CNTs

CNT = Rolled Up Graphene Sheet

(Avouris et al. 2003)

CNT : Defined chiral vector (Bravais lattice vector)
C = ma1 + na2
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Structure of CNTs

To construct an (m,n) CNT cut the graphene sheet
along two parallel lines which are both perpendicular
to C to get at “graphene strip”...roll up and stick the
long edges of the strip to get a CNT!

(Dresselhaus et al. 1999)

What will be the radius of the CNT? And what will be
the band structure?
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One Electron Theory of CNTs

Key idea: Component of crystal momentum can take
any value along the axis of the tube, but can take only
quantized values along the direction of the chiral
vector...this is much like the “angular momentum”
quantization in the case of the free electron
nanotube...thus k · C = 2πN .

Thus, CNT bands can be obtained by “slicing” the
graphene band structure! For every slice, we will get
two dispersion curves from π sheet and π∗ sheet!

If it so happens that one of the slices passes through
the corner of the BZ, then we will have metallic tubes
(zero gap), else semi-conducting! In fact, a tube will
be metallic if (n−m)/3 is an integer!
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One Electron Theory of CNTs

Energy dispersions

(Dresselhaus et al. 1999)

For “large” diameter d, Egap ∼ 1
d!
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One Electron Theory of CNTs

CNT Chirality – Metal or Semiconductor

(Dresselhaus et al. 1999)
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One Electron Theory of CNTs

DOS of CNTs

(Dresselhaus et al. 1999)

Can any of these be checked experimentally?
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Experiment vs. Theory

Scanning Tunneling Microscopy of Nanotubes

(Odom et al. 2002)

Excellent Agreement with One Electron Theory
(Really?)
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“Strange” Metallic Properties

(Bockrath et al. 1999)
Coulomb Blockade

Luttinger Liquid Behaviour
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Summary

CNTs are wonder materials...may be?

CNT : Simplet model – roll up of graphene sheets!

Can understand overall electronic properties!

What will you do with CNTs?
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Magnetic Impurities and CNTs

Scanning Tunneling Microscopy of Magnetic Clusters

Co Clusters (Odom et al. 2002)

Kondo Clouds!
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Background: Magnetic Impurities in Metals

May (Fe in Cu) or May Not(Fe in Al) Retain Moment

– Anderson Model

H = ǫdc
†
dσcdσ + Und↑nd↓ +

∑

k

(

Vkc
†
dσckσ + h. c.

)

+
∑

k

ǫkc
†
kσckσ

Magnetic Impurity Physics

High Temperature : “Free Moments” Interacting
via RKKY (Local Moment Regime)

Low Temperature : “Quenching” of Moments by
Conduction Electrons (Strong Coupling Regime –
Kondo Effect)

Recent Interest in RKKY – Spintronics Materials
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RKKY Interaction

RKKY = Ruderman-Kittel-Kasuya-Yoshida

Conduction Electron Mediated Magnetic Impurity
Interaction

HRKKY =
∑

〈ij〉

J (|Ri − Rj |)Si · Sj , J (r) =
T (kF r)

(kF r)d

T ( ) – Periodic Function (cos() in 1 and 3-D, sin() in
2D)

Question(s) :

What is the RKKY Function for a Single-Walled NT?

What are the “Dimensionality” Effects?
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“Free Electron” Model of Metallic Nanotubes

Cylinder of Radius R with Electron Density Σ

Energy States E◦ǫk,n = ~
2

2meR2 (k2 + n2)

Chemical Potential (Fermi Energy) ǫf

ρ

ε f

0.00 0.25 0.50 0.75 1.000
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-kf3

εf

0± 2 ± 3± 1

k
kf3 kf1-kf1

ε

“Size Parameter” ρ = ΣR2: ǫf Specified by Nf , {kfn}



SERC School on Solid State and Materials Chemistry ’05

VBS CNTs – 41

RKKY Interaction in Nanotubes

Kondo s− d Hamiltonian : Impurity – Conduction

Electron Interaction

Hsd = −J
∫

dxdθ s(x, θ) · S(x, θ),

(S(x, θ) =
∑

p

Spδ(x− xp)δ(θ − θp))

Second Order Perturbation Theory : Conduction

Electron Energies Depend on Impurity Spin

Configuration

HRKKY =
∑

〈ij〉
J (xi − xj, θi − θj)Si · Sj
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RKKY Interaction in Nanotubes

Impurity Spin-Polarises Conduction Electrons; “Felt”
by Another Impurity

RKKY Interaction (Dimensionless)

J (x, θ) =
1

(2π)2

∞
X

m=−∞

Z

∞

−∞

dq ei(qx+mθ)χs(q, m)

Spin Susceptibility (Polarisation Bubble)

χs(q, m) =

Nf
X

n=−Nf

Z kfn

−kfn

dk

„

1

ǫk−q,n−m − ǫk,n

+
1

ǫk+q,n+m − ǫk,n

«

Final Result (After Contour Integration)

J (x, θ) = H0(x) + 2

∞
X

m=1

cos (mθ)Hm(x),
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RKKY Interaction in Nanotubes

1 2 3 4 5 6 7 8 9 10

x

ρ = 5.0
1 2 3 4 5 6 7 8 9 10

x

-4.0 -3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2 4.0

θ

ρ = 1.0

Strong Angular Dependence

Magnitude Falls with x (How?)
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RKKY Interaction in Nanotubes – Asymptotics

“Large” x behaviour J a(x, θ) = T (x,θ)
x

Modulating Non-Periodic Function

1

2π
T (x, θ) =

Nf
X

n=−Nf

cos(kfnx)

kfn

+

M
X

m=1

cos (mθ)

2

4

Nf
X

n=−Nf

Θ(−α+)

 

cos((kfn −
p

|α+|)x)

kfn −
p

|α+|
+

cos((kfn +
p

|α+|)x)

kfn +
p

|α+|

!

+

Nf
X

n=−Nf

Θ(−α−)

 

cos((kfn −
p

|α−|)x)

kfn −
p

|α−|
+

cos((kfn +
p

|α−|)x)

kfn +
p

|α−|

!

3

5

(α± = (n ± m)2 − ǫf , M = Nf +
√

ǫf )

T (x, θ) Depends on ρ (= ΣR2) – Size Determines
Modulating Function
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RKKY Interaction in Nanotubes – Asymptotics

J (x, θ) ∼ T (x, θ)/x at “Large” x

T (x, θ) – Non-Periodic Function of x

x

J(
x,

0)

1 2 3 4

-5

0

5

10

15

20

25

Exact

Asymptotic
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Physics of Non-Periodic Modulation

Intraband and Interband P-H Excitations

k

ǫ

ǫf

Interbandk

ǫ

ǫf

Intraband

(k, m)

(k′, m)

(k, m)

(k′, m′)

kfm and kfn : Not Integer Multiples

Both Intra- and Interband Excitations Lead to
Non-Periodicity
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RKKY Interaction in Nanotubes

Summary:

J (x, θ) ∼ T (x, θ)/x at “Large” x

T (x, θ) – Size Dependent Non-Periodic Function

Implications:

CNTs – Possible Systems for 1D Spin Glasses

CNT Spintronics – May be Not(??)

Reference: Shenoy, V., Physical Review B, 71, 125431
(2005).
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A Final Thought
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