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Goal and Outline

@ Goal — Answer the question: What the !@@! is a topological insulator

(TH?
@ Where do Tls fit into condensed matter physics?
@ Symmetries (revise time reversal)
@ Band theory — metals and insulators
@ Integer quantum Hall effect
e 2D Tls
e 3D Tls
@ Why the fuss? What can you do with Tls?
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Prerequisites

Graduate quantum mechanics (including second quantization)
Basic solid state physics (QKittel)

A keen desire to understand things and put in the necessary effort

Follow the maxim (source: T. V. Ramakrishnan):
There are no stupid questions, only stupid answers!

DISCLAIMER: The speaker is NOT an expert! Focus is on elementary
concepts...not on calculations
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Condensed Matter

e Operative definition of condensed matter: A collection/aggregate of
atoms/ions in the non-relativistic regime
“Raw materials” for condensed matter
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Condensed Matter

@ What happens when we aggregate atoms? Many things...

@ In fact, the same atoms will give you very different things if
aggregated differently! Eg., carbon atoms give

o Different arrangement of atoms leads to very different emergent
properties!
@ Again: More is different... Different mores are more so!

o Natural question: What are all the different “emergent
states/things/properties” can we obtain by aggregating atoms?



Quantum Condensed Matter Physics

@ We will dwell mainly on electrons in materials
@ Electrons in materials experience various things:
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...this defines the “space of Hamiltonians” for the electrons

@ The ground state (and concomitant excitations) of the electrons
depend on where in the Hamiltonian space you are! There are many
“electronic phases”

@ One encounters (quantum) phase transitions as one moves about in
the Hamiltonian space! /%



Electronic Phases

@ Electrons in materials can organize themselves in many different ways
— “phases/states”...we have

Metals

Semi-metals

Insulators/Semiconductors

Topological insulators

Superconductors

Magnets

Charge density wave systems

Spin liquids

vV VY Y VY VY VY VvYVvYY

e Each of these have a common set of characteristics...(similar in sprint
to: all liquids flow). In this sense each of the above is an “electronic
phase”!
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Electronic Phases

@ The goal of condensed matter research is to discover and understand
“all” the phases of electrons!

@ Think of a “character table”

- —
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...idea is to tabulate phases and their properties...and add to this
table!

@ This is useful ...and most interesting!
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Characterization of Phases

@ Question: How do we characterize phases?

o Key idea: Symmetry...many electronic phases break the symmetries of
the Hamiltonian...e.g., a ferromagnet breaks time reversal and spin
rotation symmetry

@ Not all phases can be distinguished by symmetry...

- 5 ilLsal
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% ME AN

...we go from the half filled state to the fully filled state by tuning the
chemical potential

@ There is no symmetry difference, but the states are very different!
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Characterization of Phases

@ Phases with the same symmetry can have very different responses

@ This is the idea behind classification as “metals” (opc > 0) and
“insulators” (opc = 0)

@ Abstractly: The phase is characterized by how “test particles behave
in the phase (system)”...the "most natural” test particle —
light(photon)!

@ In somewhat more technical language: 1 — “matter” fields, A* gauge
fields associated with light

sto. 1= [ (et o) - hu)

V

Integrate out ¢

V
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Characterization of Phases

e K, (1,2) is the electromagnetic response function which can be
calculated by the Kubo formula

K/J,I/(]-az) ~ _<T./u(1)./l/(2)>
where j,, is the current...the mean is taken over the ensemble
describing an (equilibrium) state of the fermionic system " Find out more:
Kubo formula is actually just second order perturbation theory.

o Ky (q,w) (written in Fourier space) characterizes the system...A
metal has a very different characteristic functional form of K,,, than
an insulator or superconductor!

@ The DC conductivity of the system is related to K,

_ 1
opc~ lim —K,(q,w)
w—0,q—0 1w ’
@ Key point: The nature of the state of electrons modifies how an
electromagnetic wave propagates in the system...this can be used to
characterize the phase that the electrons organize themselves in
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Insulators

@ An insulating state is characterized by opc =0
@ This can arise in many ways
@ Non-interacting systems
» Band insulators
» Anderson insulators (due to disorder)
@ Interacting systems
» Mott insulators
@ These states have opc = 0, but very different o(w)...electromagnetic

response can distinguish these phases!

We are interested in band insulators...non-interacting electrons!
These come in two varieties:

@ Ordinary (trivial) insulators (Ol)
@ Topological insulators (TI)

Immediate goal: Look at one-electron physics in crystals
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One-Electron Physics in Crystals

Preliminaries

Symmetries — mainly time reversal
Tight binding models

Metals and insulators

Example: Graphene

Example: Insulator (related to graphene)

Edge states
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One-Electron Physics in Crystals: Preliminaries

@ Unit cell with many atoms (unit cell vectors a1, az, a3)
Unt ct - 3
Vol =V

@ Hamiltonian

H=T+ V + Hyo

» T = %2 — kinetic energy

» V — potential due to ions

» Hso spin-orbit interaction
(keep aside for now)

Subspace of focus in the Hamiltonian space
16/36



Symmetries
Symmetry — Quick Revision
@ System = A Hilbert space + Hamiltonian H
@ A symmetry operation U on a system is a function on the Hilbert
space, such that if |¢) = U(|¢)) and [&b) = U(|sb)), then
[(B|h)]| = [{@])] for all |¢) and |1b) B question: What are some symm. ops. on B3?

Wigner's theorem: A symmetry operation U is either a linear/unitary

or an anti—/inear/unitary Operator IIgFind out more: Look at Gottfried and Yan
A symmetry operation I{ is a symmetry of the system if U *HU = H,
i. e., the Hamiltonian is unchanged by the symmetry operation

Hilbert space: space spanned by {|ro) = |r) ® |o)} where r runs over
points in a box of volume Q = NV, N number of unit cells,
|o), 0 =T, ] span the spin sector
2

Hamiltonian: H =T+ V = % + V(r)
Symmetries

> Lattice translation

» Time reversal

» Parity (Inversion) — Not always, but in most crystals 17/36



Lattice Translations

o Translation operator 7(a) = e~@P; T(a)|r) = |r + a)
e Every lattice translation 7(l), | = >  n“a, is a symmetry of our

Hamiltonian IIg’Exercise: Show that 77(1) form a group. Is it a non-Abelian group?

@ Seen by noting that V(r+1) = V/(r) for all |

\\/A\j/\ /i*'\)\/n\j/\ /J\\/A\j/\ [
VIVILVTVEY

o T(I) has right eigenstates which are labelled by the crystal momentum
k which lives in the 1st Brillouin zone ...this is Bloch theorem

Tk = e " o), W

Every |¢x) = > g #k(G)|k+ G), where |k + G) are plane waves, Gs are
reciprocal lattice vectors, ¢x(G) are c-numbers P& exercise: Prove this statement
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Lattice Translations
@ Since [T (), H] = 0, VI, find simultaneous eigenstates of H and 7 (I)

Tl = e ™), VI and H|vw) = elth)

o Note that ¢y (r) = {r|ti) = e u(r) where u(r +1) = u(r)...Bloch
states are modulated plane waves ™ grercise: Show this
@ u(r) satisfies a Schrodinger equation

% (—iV + k)2 + V(r)| w(r) = cu(r)

which is an eigenvalue problem defined only on the unit cell V!
15

Exercise: Show this
@ For each k, therefore, there is a discrete spectrum ¢,(k) and
associated states uk,(r); equivalently

Hltokn) = ewn(k)|¥rn)s  (rltwn) = " un(r)

The energy functions £,(k) is the n'® band
o Diagonalized Hamiltonian H = ", en(k)|kno) (kno|
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Time Reversal (TR) Symmetry

@ TR symmetry O requires two things:
» |dea of a time reversed state
» |dea of reverse time evolution

..understand this first in classical mechanics

e A states = (r,p), @s =§ = (r,—p)
@ Reverse time evolution, integrate Hamilton's equation “backwards”,
i. e., negative times
@ Understand this for a simple classical system
@ A system is said to be time reversal invariant if the following diagram
commutes
S  Forvawd £,
.__>_ar S(td
ne
B3t ...system is time reversal invariant if
1 O(3(—t0)) = s(to) for all s and tq
S —<—— Tt
S BTy ¢t

@ Examples of systems with and without TR symmetry
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Tl Crash Course: Plan of Action

Complete TR invariance, Kramer's theorem

Tight binding models, role of TR invariance

Graphene — massless

Graphene — massive

Edge states

Integer quantum hall effect: landau levels, edge states
Laughlin's argument

Quantum Hall effect on a lattice: Hofstadter butterfly

TKNN formula = Chern number, topological quantization
Hatsugai's connection between Chern number and edge states
QHE without magnetic field — Haldane model and edge states
Introduction of spin-orbit interaction

Obtaining a Tl by gluing two Haldanes — edge states

General arguments using TR in 2D — Z5 index

3D - brief statements

Possibilities with Tls

Topology and geometry in physics

21/36



Graphene
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Question: Which are the TR invariant momenta?
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Massive Graphene S

[
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Thanks: J. P. Vyasanakere
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Edge States




Integer Quantum Hall Effect
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@ Puzzle: The plateaus, and why integer?
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@ We will not discuss the resolution of the puzzle in detail... " Find out

more: Look at any standard book on QHE, e. g., by Jain
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Edge States in Integer Quantum Hall
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Hofstadter Spectrum and Butterfly

energy
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Hofstadter Chern Butterfl

Avron et al.
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Hofstadter Model Edge States

energy
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Haldane Model

Edge states

The states corresponding to the two
edge bands are associated with
different edges!

@ Both bands have non-zero Chern
number — Chern bands!

@ For one (spinless) fermion per unit
cell, bottom band is filled — bulk
insulator!

I
@ ...and a quantum Hall state! 30/36



From MassiveG to Haldane

MassiveG Graphene ~ Haldane _

@ Massive graphene and Haldane differ at the edge!
@ We need to close the bulk gap to go from MassiveG to Haldane, i. e.,
via graphene — need a quantum phase transition
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Kane-Mele Double Haldane Model

Two time reversed copies (1,) of the
Haldane model glued together

The Chern number of the |-band is
negative of that of the 1 band,

0xy = 0...has to be since the system is
TR invariant...

But there is a SPIN current on
application of the voltage!! This is
quantized and related to the number
of edge modes! In this example it is
€?/h...and is dissipation less!!

We get the quantum spin Hall state,
with a fully insulating bulk

This is the simplest realization of a
Topological Insulator!

Robust against TR invariant
perturbations
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Trivial and Topological Insulator (2D)

Edge State
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Figure 4. In three-dimensional topologi-
cal insulators, the linearly dispersing edge
states of figure 3b become surface states
described by a so-called Dirac cone.

(a) The crystal structure of the 3D topolog-
ical insulator BiTe, consists of stacked
quasi-2D layers of Te-Bi-Te-Bi-Te. The ar-
rows indicate the lattice basis vectors. The
surface state is predicted to consist of a
single Dirac cone (b) Angle-resolved
photoemission spectroscopy maps the
energy states in momentum space. Spin-
dependent ARPES of the related com-
pound Bi,5e, reveals that the spins (red) of
the surface states lie in the surface plane
and are perpendicular to the momentum.”
() This ARPES plot of energy versus
wavenumber in Bi,Te, shows the linearly

"

i dispersing surface-state band (55B) above
® Bi = the bulk valence band (BVB). The dashed
® o1 Z white line indicates the Fermi level. The

= blue lines meet at the tip of the Dirac
© Te2 conef

02 0 0.2
WAVENUMBER k (A™)

Qi and Zhang, Physics Today (2010) e



TI Possibilities
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Figure 5. Novel behavior is predicted for topological insulators. (a) When a topo-
logical insulator (Tl, green) is coated by a thin ferromagnetic layer (gray), each
electron (red sphere) in the vicinity of the surface induces an image monopole
(blue sphere) right beneath it.? When one electron winds around another (red
circle), it will experience the magnetic flux (arrows in the blue dome) carried by
the image monopole of the other, so that the electron-monopole composite,
called a dyon, obeys fractional statistics. (b) When a Tl is coated by an s-wave
superconductor (SC), the superconducting vortices are Majorana fermions—they
are their own antiparticles. Exchanging or braiding Majorana vortices, as sketched
here, leads to non-abelian statistics.”” Such behavior could form the basis for topo-
logical quantum computing.

Qi and Zhang, Physics Today (2010)
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