

Transport Theory Vijay B. Shenoy (shenoy@physics.iisc.ernet.in)

Centre for Condensed Matter Theory Indian Institute of Science

Overview

- Motivation Why do this?
- Mathematical and Physical Preliminaries
- Linear Response Theory
- Boltzmann Transport Theory
- Quantum Theory of Transport

What is Transport Theory ?

Are we thinking of this?

What is Transport Theory (in Materials)?

- Material Atoms arranged in a particular way
- Stimulus" takes material away from thermal equilibrium
- Material "responds" possibly by transferring energy, charge, spin, momentum etc from one spatial part to another
- Transport theory: Attempt to construct a theory that relates "material response" to the "stimulus"

..

Ok..., so why bother?

Why Bother (Taxpayer Viewpoint)?

- ALL materials are used for their "response" to "stimulus"
- Eg. Wool (sweater), Silicon (computer chip), Copper (wire), Carbon (writing) etc...
- Key materials question: What atoms and how should I arrange them to get a desired response to a particular type of stimulus
- **Transport theory lays key foundation of** *theoretical materials design*
- **.**..
- Blah, blah, blah…

Why Bother (Physicist's Viewpoint)?

- The way a material responds to stimulus is a "caricature" of its "state"
- Transport measurements probe "excitations" above a "ground state"
- Characteristic "signatures" for transport are "universal" can can be used to classify materials (metals, insulators etc.)
- **_** .
- Ok, convinced? So what do we need to study transport theory?

Prerequisites

- A working knowledge of Fourier transforms
- Basic quantum mechanics
- Equilibrium (quantum) statistical mechanics
- Band theory of solids
- Some material phenomenology transport phenomenology in metals, mainly
- **_** ...
- **• Our focus:** *Electronic* **transport**

Fourier Transforms

- **•** Function $f(\mathbf{r}, t)$ is a function of space and time
- **9** Its Fourier transform $\hat{f}(\boldsymbol{k},\omega)$ is defined as

$$\hat{f}(\boldsymbol{k},\omega) = \int \mathrm{d}^{3}\boldsymbol{r} \int \mathrm{d}t f(\boldsymbol{r},t) e^{-i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$

• We will write $\hat{f}(\boldsymbol{k},\omega)$ as $f(\boldsymbol{k},\omega)$ (without the hat!) • Inverse Fourier transform

$$f(\boldsymbol{r},t) = \frac{1}{(2\pi)^3} \int d^3 \boldsymbol{k} \frac{1}{2\pi} \int d\omega f(\boldsymbol{k},\omega) e^{i(\boldsymbol{k}\cdot\boldsymbol{r}-\omega t)}$$

Some Useful Results

- **FT** of delta function is 1
- Step function $\theta(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$
- **• FT** of step function $\theta(t)$ is $\frac{i}{\omega + i\eta}$, η is a vanishingly small positive number
- **Similarly FT of** $\theta(-t)$ is $\frac{-i}{\omega i\eta}$
- The strangest of them all

$$\frac{1}{\omega \pm i\eta} = P\left(\frac{1}{\omega}\right) \mp i\pi\delta(\omega)$$

Transport Theory: Introduction

- **•** Example: A capacitor with a dielectric layer
- Stimulus: Voltage applied V
- **P** Response: Charge stored Q
- In general, we expect the response to be a complicated function of the stimulus
- Make life simple (although unreal in many systems), consider only cases where response is *linear* function of the stimulus
- Focus on Linear transport theory part of the general Linear Response Theory
- What is the most general form of linear response?

General Linear Response

- **Stimulus may vary in space and time** $V(\boldsymbol{r},t)$
- Response also varies in space and time $Q(\boldsymbol{r},t)$
- What is the most general *linear* response?
- The most general linear response is non-local in both space and time

$$Q(\boldsymbol{r},t) = \int d^3 \boldsymbol{r} \int dt' \chi(\boldsymbol{r},t|\boldsymbol{r}',t') V(\boldsymbol{r}',t')$$

- The response function $\chi(\mathbf{r}, t | \mathbf{r'}, t')$ is a property of our system (material) notice the nonlocality of response
- In "nice" systems ("time-invariant and transilationally invariant") $\chi(\mathbf{r},t|\mathbf{r}',t') = \chi(\mathbf{r}-\mathbf{r}',t-t')$

Linear Response

- Keep aside spatial dependence: $\chi = \chi(t t')$, response to spatially homogeneous, time varying stimulus
- In Fourier language $Q(\omega) = \chi(\omega)V(\omega)$ another way to see it "independent" linear response for different frequencies of stimulus!
- What can we say about $\chi(\omega)$ (or $\chi(t-t')$) on general grounds?
- Clearly phase of the response may differ from that of stimulus consequence: response function is complex in general $\chi(\omega) = \chi'(\omega) + i\chi''(\omega)$
- **•** Looks like linear response is characterised by two real valued functions $\chi'(\omega)$ and $\chi''(\omega)$

Causal Response

- We know that the future does not affect the present ("usually") – response must be causal
- Another way to say this $\chi(t-t') = 0$ if t-t' < 0 or equivalently $\theta(-(t-t'))\chi(t-t') = 0$
- What is the consequence of this?
- Maxim of linear response theory: "when in doubt Fourier transform!"
- After a bit of algebra (Exercise: Do the algebra)

$$\int d\omega' \frac{1}{\omega - (\omega' - i\eta)} \chi(\omega') = 0$$

$$\implies \oint d\omega' \frac{\chi'(\omega') + i\chi''(\omega')}{\omega - \omega'} = i\pi \chi'(\omega) - \pi \chi''(\omega)$$

Kramers-Krönig Relations

Real and imaginary parts of response function are not independent of each other, in fact one of the completely determines the other:

$$\chi'(\omega) = \frac{1}{\pi} \oint d\omega' \frac{\chi''(\omega')}{\omega - \omega'}, \qquad \chi''(\omega) = \frac{1}{\pi} \oint d\omega' \frac{\chi'(\omega')}{\omega' - \omega}$$

Important experimental consequences: example, one can obtain conductivity information from reflectance measurements!

Its nice when response is linear...

SERC School on Condensed Matter Physics '06

But nature has many nonlinear responses...

(Slap!)

Nonlinear Response

Non-Linearity in the I-V characteristics of Nd_{0.7}Pb_{0.3}MnO₃

(Jain, Raychaudhuri (2003))

What now?

- We posited response to be linear
- Reduced the problem to obtaining (say) the real part of the response based on very general causality arguments!
- **_** ...
- **•** How do we calculate $\chi(\omega)$?
- This is a major chunk of what we will do obtain response functions

What we plan to do...

- **Goal: Study transport in** *metals*
- Focus on zero frequency electrical response ("DC" response)
- Review: Drudé theory
- Review: Bloch theory and semiclassical approximation
- Boltzmann transport theory
- **_** ..
- But before all this, lets see what we need to explain

Almost constant at "low" temperatures...all way to linear at high temperatures

VBS

Resistivity in Metals...There's More!

Has some "universal" features

SERC School on Condensed Matter Physics '06

Transport in Metals

Wiedemann-Franz Law: Ratio of thermal (κ) to electrical conductivities (σ) depends linearly on T

 $\kappa / \sigma = (Const)T, (Const) \approx 2.3 \times 10^{-8}$ watt-ohm/K²

ELEMENT	273 K		373 K	
	к (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)	κ (watt/cm-K)	$\kappa/\sigma T$ (watt-ohm/K ²)
Li	0.71	2.22×10^{-8}	0.73	2.43×10^{-8}
Na	1.38	2.12		
K	1.0	2.23		
Rb	0.6	2.42		
Cu	3.85	2.20	3.82	2.29
Ag	4.18	2.31	4.17	2.38
Au	3.1	2.32	3.1	2.36
Be	2.3	2.36	1.7	2.42
Mg	1.5	2.14	1.5	2.25
Nb	0.52	2.90	0.54	2.78
Fe	0.80	2.61	0.73	2.88
Zn	1.13	2.28	1.1	2.30
Cd	1.0	2.49	1.0	
Al	2.38	2.14	2.30	2.19
In	0.88	2.58	0.80	2.60
Tl	0.5	2.75	0.45	2.75
Sn	0.64	2.48	0.60	2.54
Pb	0.38	2.64	0.35	2.53
Bi	0.09	3.53	0.08	3.35
Sb	0.18	2.57	0.17	2.69

Ashcroft-Mermin)

Magneto-transport! Levitating!

- Hall effect
- Nernst effect
- Righi-Leduc effect
- **•** Ettingshausen effect
- **_** ...
- Things are getting to be quite "effective"
- Goal: Build a "reasonable" theoretical framework to "explain" /" calculate" all this

Drudé Theory – Review

- Electrons: a classical gas
- **9** Collision time τ , gives the equation of motion

$$rac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = -rac{\boldsymbol{p}}{\tau} + \boldsymbol{F}$$

p – momentum, F – "external" force

Gives the "standard result" for conductivity

$$\sigma = \frac{ne^2\tau}{m}$$

(all symbols have usual meanings)

All is, however, not well with Drudé theory!

Bloch Theory

- We do need quantum mechanics to understand metals (all materials, in fact)
- In the periodic potential of the ions, wave functions are $\psi_k(r) = e^{ik \cdot r} u_k(r)$ (u_k is a lattice periodic function), k is a vector in the 1st Brillouin zone
- The Hamiltonian expressed in Bloch language $H = \sum_{k\sigma} \varepsilon(k) |k\rangle \langle k|$ (one band), $\varepsilon(k)$ is the band dispersion (set aside spin throughout these lectures!)
- "Average velocity" in a Bloch state $v(k) = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial k}$
- Occupancy of a Bloch state $f^0(\mathbf{k}) = \frac{1}{e^{\beta(\varepsilon(\mathbf{k})-\mu)}+1}$, $\beta = 1/(k_B T)$, μ chemical potential

So, what is a metal?

- Schemical potential μ determined from electron concentration
- **•** Try to construct a surface in the reciprocal space such that $\varepsilon(\mathbf{k}) = \mu$
- If such a surface exists (at T = 0) we say that the material is a *metal*
- **A metal has a** *Fermi surface*
- Ok, so how do we calculate conductivity?
- Need to understand "how electron moves" under the action of "external forces"

Semi-classical Electron Dynamics

- Key idea: External forces (F; electric/magnetic fields) cause transition of electronic states
- Set in the set of transitions $\hbar \frac{dk}{dt} = F Quantum$ version of "Newton's law"
- By simple algebra, we see the "acceleration" $\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \boldsymbol{M}^{-1} \boldsymbol{F}, \ \boldsymbol{M}^{-1} = \frac{1}{\hbar^2} \frac{\partial^2 \varepsilon}{\partial \boldsymbol{k} \partial \boldsymbol{k}}$
- Electron becomes a "new particle" in a periodic potential! Properties determined by value of M at the chemical potential
- But, what about conductivity? If you think about this, you will find a very surprising result! (Essentially infinite!)

Conductivity in Metals

- What makes for *finite* conductivity in metals?
- Answer: "Collisions"
- Electrons may scatter from impurities/defects, electron-electron interactions, electron-phonon interaction etc...
- How do we model this? Brute force approach of solving the full Schrödinger equation is highly impractical!
- ✓ Key idea: The electron gets a "life-time" i.e., an electron placed in a Bloch state k evolves according to $\psi(t) \sim \psi_k e^{-i\varepsilon(k)t \frac{t}{\tau_k}}; \text{ "lifetime" is } \tau_k!$
- Source Conductivity could plausibly be related to τ_k ; how?

Boltzmann Theory

- **Solution** Nonequilibrium distribution function $f(\boldsymbol{r}, \boldsymbol{k}, t)$:
 - "Occupancy" of state k at position r and time t
 - r in f(r, k, t) represents a suitable "coarse grained" length scale (much greater than the atomic scale) such that "each" r represents a thermodynamic system
- Idea 1: The (possibly nonequilibrium) state of a system is described by a distribution function f(r, k, t)
- Idea 3: Collisions act to "restore" equilibrium try to bring f back to f^0

Time Evolution of $f(\boldsymbol{r}, \boldsymbol{k}, t)$

- Suppose we know f at time t = 0, what will it be at a later time t if we know all the "forces" acting on the system?
- Use semi-classical dynamics: An electron at r in state k at time t was at $r v\Delta t$ in the state $k \frac{F}{\hbar}\Delta t$ at time $t \Delta t$
- Thus, we get the Boltzmann transport equation $f(\boldsymbol{r}, \boldsymbol{k}, t) = f(\boldsymbol{r} - \boldsymbol{v}\Delta t, \boldsymbol{k} - \frac{\boldsymbol{F}}{\hbar}\Delta t, t - \Delta t) + \frac{\partial f}{\partial t}\Big|_{coll.} \Delta t$ $\implies \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{\hbar} \cdot \frac{\partial f}{\partial \boldsymbol{k}} = \frac{\partial f}{\partial t}\Big|_{coll.}$
- If we specify the forces and the collision term, we have an initial value problem to determine f(r, k, t)

Boltzmann Theory

- **So what if we know** $f(\boldsymbol{r}, \boldsymbol{k}, t)$?
- f(r, k, t) is determined by the "external forces" F the stimulus (and, of course, the collisions which we treat as part of our system)
- If we know $f({\bm r}, {\bm k}, t)$ we can calculate the responses, eg.,

$$\boldsymbol{j}(\boldsymbol{r},t) = \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \boldsymbol{k} \left(-e\boldsymbol{v}\right) \left(f(\boldsymbol{r},\boldsymbol{k},t) - f^0(\boldsymbol{k})\right)$$

Intuitively we know that $f(\mathbf{r}, \mathbf{k}, t) - f^0(\mathbf{r}, \mathbf{k}, t) \sim \mathbf{F}$, so we see that we can calculate linear response functions!

Approximations etc.

- We know the forces F, eg., $F = -e(E + v \times B)$
- What do we do about $\frac{\partial f}{\partial t}\Big|_{coll.}$?
- Some very smart folks have suggested that we can set

$$\left. \frac{\partial f}{\partial t} \right|_{coll.} = -\frac{f - f^0}{\tau_{\boldsymbol{k}}}$$

- the famous "relaxation time appoximation"...
- In general, τ_k is not same as the electron lifetime (more later)...this is really a "phenomenological approach" – it embodies experience gained by looking at experiments

Electrical Conductivity

BTE becomes

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{\hbar} \cdot \frac{\partial f}{\partial \boldsymbol{k}} = -\frac{f - f^0}{\tau_{\boldsymbol{k}}}$$

Homogeneous DC electric field F = -eE

We look for the steady homogeneous response

$$\frac{\boldsymbol{F}}{\hbar} \cdot \frac{\partial f}{\partial \boldsymbol{k}} = -\frac{f - f^0}{\tau_{\boldsymbol{k}}} \implies f = f^0 - \frac{\tau_{\boldsymbol{k}} \boldsymbol{F}}{\hbar} \cdot \frac{\partial f}{\partial \boldsymbol{k}}$$

• Approximate solution (Exercise: Work this out)

$$f(\mathbf{k}) \approx f^0 + \frac{e\tau_k \mathbf{E}}{\hbar} \cdot \frac{\partial f^0}{\partial \mathbf{k}} \approx f^0 \left(\mathbf{k} + \frac{e\tau_k \mathbf{E}}{\hbar}\right)$$

Fermi surface "shifts" (Exercise: estimate order of magnitude of shift)

Current

$$\boldsymbol{j} = \frac{1}{(2\pi)^3} \int d^3 \boldsymbol{k} \left(-e\boldsymbol{v}\right) \frac{e\tau_{\boldsymbol{k}}\boldsymbol{E}}{\hbar} \cdot \frac{\partial f^0}{\partial \boldsymbol{k}}$$

Conductivity tensor

$$\boldsymbol{\sigma} = -\frac{1}{(2\pi)^3} \frac{e^2}{\hbar} \int d^3 \boldsymbol{k} \ \tau_{\boldsymbol{k}} \ \boldsymbol{v} \ \frac{\partial f^0}{\partial \boldsymbol{k}}$$

Further, with spherical Fermi-surface (free electron like), τ_k roughly independent of k (Exercise: Show this)

$$\boldsymbol{\sigma} = \frac{ne^2\tau}{m} \mathbf{1}$$

This looks strikingly close to the Drudé result, but thephysics could not be more different!VBSTransport Theory – 34

What about experiments?

- Well, we now have an expression for conductivity; we should compare with experiments?
- What determines the T dependence of conductivity?
 Yes, it is essentially the T dependence of τ (only in metals)
- **But we do not yet have** τ **!!**
- **•** Need a way to calculate τ ...
- **_** ...
- Revisit the idea of electron-lifetime...how do we calculate life time of an electron?

Lifetime due to Impurity Scattering

- Impurity potential V_I , causes transitions from one Bloch state to another
- Sate of transition from k
 ightarrow k'

$$W_{\boldsymbol{k}\to\boldsymbol{k}'} = \frac{2\pi}{\hbar} |\langle \boldsymbol{k}' | V_I | \boldsymbol{k} \rangle|^2 \delta(\varepsilon(\boldsymbol{k}') - \varepsilon(\boldsymbol{k}))$$

Total rate of transition, or inverse lifetime

$$\frac{1}{\tau_{\boldsymbol{k}}^{I}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\boldsymbol{k}' \, W_{\boldsymbol{k} \rightarrow \boldsymbol{k}'}$$

- **Solution C C and we use** τ_k^I **as the** τ **in the Boltzmann equation?**
- Ok in order of magnitude, but not alright! Why?

How to calculate τ ?

Look back at the collision term, can write it more elaborately as

$$\frac{\partial f}{\partial t}\Big|_{coll.} = \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{k}' W_{\mathbf{k}\to\mathbf{k}'} \left(f(\mathbf{k})(1-f(\mathbf{k}')) - f(\mathbf{k}')(1-f(\mathbf{k}))\right)$$
$$= \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{k}' W_{\mathbf{k}\to\mathbf{k}'} \left(f(\mathbf{k}) - f(\mathbf{k}')\right)$$

Note that k and k' are of the same energy

• Take τ_{k} to depend only on $\varepsilon(k)$

• Now,
$$(f(\boldsymbol{k}) - f(\boldsymbol{k}')) \approx -\frac{\tau e}{\hbar} \frac{\partial f^0}{\partial \varepsilon} \left(\boldsymbol{v}(\boldsymbol{k}) - \boldsymbol{v}(\boldsymbol{k}') \right) \cdot \boldsymbol{E}$$

Calculation of τ cont'd

Putting it all together

$$-\frac{e}{\hbar}\frac{\partial f^{0}}{\partial \varepsilon}\boldsymbol{v}(\boldsymbol{k})\cdot\boldsymbol{E} = -\frac{1}{(2\pi)^{3}}\frac{\tau e}{\hbar}\frac{\partial f^{0}}{\partial \varepsilon}\int \mathrm{d}^{3}\boldsymbol{k}' W_{\boldsymbol{k}\to\boldsymbol{k}'}\left(\boldsymbol{v}(\boldsymbol{k})-\boldsymbol{v}(\boldsymbol{k}')\right)\cdot$$
$$\implies \frac{1}{\tau} = \frac{1}{(2\pi)^{3}}\int \mathrm{d}^{3}\boldsymbol{k}' W_{\boldsymbol{k}\to\boldsymbol{k}'}\left(1-\frac{\boldsymbol{v}(\boldsymbol{k}')\cdot\hat{\boldsymbol{E}}}{\boldsymbol{v}(\boldsymbol{k})\cdot\hat{\boldsymbol{E}}}\right)$$
$$\implies \frac{1}{\tau} = \frac{1}{(2\pi)^{3}}\int \mathrm{d}^{3}\boldsymbol{k}' W_{\boldsymbol{k}\to\boldsymbol{k}'}\left(1-\cos\left(\widehat{\boldsymbol{k},\boldsymbol{k}'}\right)\right)$$

• Note τ is *different* from the "quasiparticle" life time!

T dependence of τ

- \checkmark We now need to obtain T dependence of τ
- *T* dependence strongly depends on the mechanism of scattering
- Common scattering mechanisms
 - Impurity scattering
 - e−e scattering
 - *e*-phonon scatting
- More than one scattering mechanism may be operative; one has an effective \(\tau\) (given by the Matthiesen's rule)

$$\frac{1}{\tau} = \sum_{i} \frac{1}{\tau_i}$$

τ from Impurity Scattering

- Essentially independent of temperature
- Completely determines the residual resistivity (resistivity at T = 0)
- Interpretent states $\frac{1}{\tau}$ directly proportional to concentration of impurities (Matthiesen's rule!)
- Well in agreement with experiment!

τ from e-e Scattering

- One might suspect that the effects of e-e interactions are quite strong...this is not actually so, thank to Pauli
- *e*-*e* scattering requires conservation of *both* energy and momentum
- "Phase space" restrictions severely limit e-e scattering

• Simple arguments can show
$$\frac{1}{\tau} \sim \left(\frac{k_B T}{\mu}\right)$$

- Also called as "Fermi liquid" effects
- Can be seen in experiments on very pure samples at low temperatures
- At higher temperatures other mechanisms dominate

τ from e--Phonon Scattering

- There is a characteristic energy scale for phonons T_D , the Debye temperature
- Below the Debye temperature, the quantum nature of phonons become important
- Solution Natural to expect different T dependence above and below T_D
- \bullet *e*-phonon scattering is, in fact, *not* elastic in general
- **Study two regimes separately** : $T \gg T_D$ and $T \ll T_D$

τ from e-Phonon Scattering $(T \gg T_D)$

- Scattering processes are definitely inelastic
- Electron can change state k to k' by absorption or emission of phonon
- The matrix element of transition rate in a phonon emission with momentum q

$$W_{\boldsymbol{k}\to\boldsymbol{k}-\boldsymbol{q}} \sim |M_{\boldsymbol{q}}\langle\boldsymbol{k}-\boldsymbol{q},n_{\boldsymbol{q}}+1|a_{\boldsymbol{q}}^{\dagger}|\boldsymbol{k},n_{\boldsymbol{q}}\rangle|^{2}$$
$$\sim |\langle n_{\boldsymbol{q}}+1|a_{\boldsymbol{q}}^{\dagger}|n_{\boldsymbol{q}}\rangle|^{2} \sim \langle n_{\boldsymbol{q}}\rangle \sim k_{B}T$$

• $\frac{1}{\tau}$ varies linearly with temperature!

τ from e–Phonon Scattering $(T \ll T_D)$

- Scattering process is approximately elastic since only very long wavelength phonons (acoustic) are present
- **9** Using expression for au

$$\frac{1}{\tau} \sim \int_{|\boldsymbol{q}| < \frac{k_B T}{c}} \mathrm{d}^3 \boldsymbol{q} W_{\boldsymbol{k} \to \boldsymbol{k} - \boldsymbol{q}} \underbrace{\left(1 - \cos(\boldsymbol{k}, \boldsymbol{k} - \boldsymbol{q})\right)}_{|\boldsymbol{q}|^2} \sim \left(\frac{T}{T_D}\right)^5$$

Bloch-Gruneisen Law!

- Phonons give a resistivity of T at $T \gg T_D$ and T^5 for $T \ll T_D$
- The key energy scale in the system is T_D "universal" features are not surprising

Experiments, Finally!

Our arguments show

- Impurity resistivity does not depend on temperature and is approximately linear with concentration of impurities
- At very low temperatures an in pure enough samples, we will see a T^2 behaviour in resistivity
- This is followed by a T^5 at low T ($T \gg T_D$) going over to T ($T \gg T_D$), and this behaviour with appropriate rescale should be universal
- All of these are verified experimentally in nice metals!

High T_c Surprise

• Resistivity in high T_c normal state

Looking for a research problem?

What next?

- We now have a handle on resistivity...how about thermal conductivity?
- We need also to explain Widemann-Franz!
- Plan: Study thermo-galvanic transport in general
- Include Seebeck effect, Peltier effect etc
- **.**.
- How do we study thermal conductivity?
- **.**..
- Back to Boltzmann

Thermogalvanic Transport

- Stimuli: Both E and ∇T , Response : j and j_Q
- Cannot ignore spatial dependence of f!
- Steady state satisfies

$$\boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} - \frac{e\boldsymbol{E}}{\hbar} \cdot \frac{\partial f}{\partial \boldsymbol{k}} = -\frac{f - f^0}{\tau}$$

Approximate solution (Exercise: Work this out)

$$f - f^0 = \tau \frac{\partial f^0}{\partial \varepsilon} \left(\frac{(\varepsilon - \mu)}{T} \nabla T + e E \right) \cdot v$$

• Heat current j_Q is given by (Question: Why $(\varepsilon - \mu)$?)

$$\boldsymbol{j}_Q = \frac{1}{(2\pi)^3} \int d^3 \boldsymbol{k} \left(\varepsilon - \mu\right) \boldsymbol{v} \left(f(\boldsymbol{k}) - f^0(\boldsymbol{k})\right)$$

Thermogalvanic Transport

Transport relations can be expressed in compact from

$$\boldsymbol{j} = e^2 \boldsymbol{A}_0 \boldsymbol{E} + \frac{e}{T} \boldsymbol{A}_1 (-\boldsymbol{\nabla}T)$$

 $\boldsymbol{j}_Q = e \boldsymbol{A}_1 \boldsymbol{E} + \frac{1}{T} \boldsymbol{A}_2 (-\boldsymbol{\nabla}T)$

where matrices
$$A_{\alpha} = -\frac{1}{(2\pi)^3} \int d^3 \mathbf{k} (\varepsilon - \mu)^{\alpha} \, \tau \, \mathbf{v} \mathbf{v} \, \frac{\partial f^0}{\partial \varepsilon}$$

For nearly free electrons

$$\begin{pmatrix} \boldsymbol{j} \\ \boldsymbol{j}_Q \end{pmatrix} = \frac{n\tau}{m} \begin{pmatrix} e^2 & \frac{1}{2}ek_B\frac{k_BT}{\mu} \\ \frac{1}{2}ek_BT\frac{k_BT}{\mu} & \frac{1}{3}k_B^2T \end{pmatrix} \begin{pmatrix} \boldsymbol{E} \\ -\boldsymbol{\nabla}T \end{pmatrix}$$

Thermogalvanic Transport

- Experimentally more useful result $E = \rho j + Q \nabla T$ $j_Q = \Pi j \kappa \nabla T$
- Thermoelectric properties

•
$$\rho = \frac{m}{ne^2\tau}$$
 - Resistivity $\sim 10^{-8}$ ohm m
• $Q = \frac{1}{2} \frac{k_B}{e} \frac{k_B T}{\mu}$ - Thermoelectric power
 $\sim 10^{-8} T V/K$ (check factors!)
• $\Pi = QT$ - Peltier coefficient
• $\kappa = \frac{\pi^2}{3} \frac{n\tau k_B^2 T}{m}$ - Electronic thermal conductivity
 ~ 100 watt/(m² K)

Widemann-Franz!

We see the "Lorenz number"

$$\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \frac{k_B^2}{e^2}$$

amazingly close to experiments (makes you wonder if something is wrong!)

- Actually, Widemann-Franz law is valid strictly only when collisions are elastic...
- Reason: Roughly, inelastic forward scattering cannot degrade an electrical current, but it does degrade the thermal current (due to transfer of energy to phonons)
- **•** Not expected to hold at $T \ge T_D$

SERC School on Condensed Matter Physics '06

Amazing Cobaltate $Na_x CoO_2$

VBS Another research problem!

Magneto-Transport

- Transport maxim: When you think you understand everything, apply magnetic field!
- Think of the Hall effect; the Hall coefficient is strictly not a linear response fucntion... We will not worry about such technicalities; take that the magnetic field B is applied and the response functions depend parametrically on B in our original notation $\chi = \chi(\omega, B)$.
- Let us start with an isothermal system and understand how electrical transport is affected by a magnetic field
 Hall effect
- But before that we will investigate semi-classical dynamics in presence of a magnetic field

Semiclassical Dynamics in a Magnetic Field

- In a magnetic field *B*, the an electron state changes according to $\hbar \dot{k} = -e v \times B$
- Clearly, the k-states "visited" by the electron must be of same energy
- For a state at the Fermi surface, this could lead to two types of orbits depending on the nature of the Fermi surface:
 - Closed surfaces: The electron executes motion in a closed orbit in k space and a closed orbit in real space...it has a characteristic time scale for this given by the cyclotron frequency $\omega_c = \frac{eB}{m^*}$, (m* cyclotron mass)
 - Open surfaces: story is a bit more complicted...we
 will not get into this
 Transport Theory 54

BTE with Magnetic Field

- We will work with closed Fermi surfaces in the *weak* magnetic field regime $\tau \omega_c \ll 1$...an electron undergoes many collisions before it can complete one orbit
- Boltzmann equation becomes

$$-e(\boldsymbol{E}+\boldsymbol{v}\times\boldsymbol{B})\cdot\frac{\partial f}{\partial \boldsymbol{k}}=-rac{f-f^{0}}{ au}$$

• With a bit of (not-so-interesting) algebra $(bB \cdot E) = 0$

$$f - f^{0} = \frac{e\tau}{1 + (\omega_{c}\tau)^{2}} \left(\boldsymbol{E} + (\omega_{c}\tau)\hat{\boldsymbol{B}} \times \boldsymbol{E} \right) \cdot \boldsymbol{v}\frac{\partial f^{0}}{\partial\varepsilon}$$

And we attain the "Hall of fame"!

9 Setting $B = Be_z$, we get "in plane" response

$$\begin{pmatrix} j_x \\ j_y \end{pmatrix} = \frac{\sigma_0}{(1 + (\omega_c \tau)^2} \begin{pmatrix} 1 & -\omega_c \tau \\ \omega_c \tau & 1 \end{pmatrix} \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$

$$mc^2 \tau$$

$$\sigma_0 = \frac{ne^2\tau}{m}$$

• In the Hall experiment, $j_y = 0$, thus

$$j_x = \sigma_0 E_x$$

$$E_y = -\omega_c \tau E_x \Longrightarrow R_H = \frac{E_y}{j_x B} = -\frac{1}{ne}$$

Our model predicts a vanishing magnetoresistance!

Magnetoresistance

- There is weak magnetoresistance present even in nice metals $\Delta \rho \sim \rho(0) B^2$ (this form arises from time reversal symmetry)
- For nice metals there is something called the Koehler's rule

$$\frac{\rho(B,T) - \rho(0,T)}{\rho(0,T)} = \mathcal{F}\left(\frac{\rho_{ref}B}{\rho(0,T)}\right)$$

The key idea is that magnetoresistance is determined by the ratio of two length scales – the mean free path and the "Larmour radius"

- For metals with open orbits etc. magnetoresponse can be quite complicated!
- /BS Research problem: Magnetoresponse of high Tornermal 57

SERC School on Condensed Matter Physics '06

Manganites: Colossal Responses

Colossal magnetoresistance in LCMO!

Magneto-Thermo-Galvano Transport

- In general we can have both an electric field and temperature gradient driving currents in presence of a magnetic field
- The general "linear" response is of the form

$$E = \rho \boldsymbol{j} + R_H \boldsymbol{B} \times \boldsymbol{j} + Q \boldsymbol{\nabla} T + N \boldsymbol{B} \times \boldsymbol{\nabla} T$$
$$\boldsymbol{j}_Q = \Pi \boldsymbol{j} + K \boldsymbol{B} \times \boldsymbol{j} - \kappa \boldsymbol{\nabla} T + L \boldsymbol{B} \times \boldsymbol{\nabla} T$$

- Leads to many interesting "weak" effects
- Magnetic field in the z-direction in the discussion

Nernst Effect

• A temperature gradient $\frac{\partial T}{\partial x}$ is applied along the *x*-direction

•
$$j_x = j_y = 0$$
 and $\frac{\partial T}{\partial y} = 0$

• One finds an electric field in the *y* direction!

$$N = \frac{E_y}{B\frac{\partial T}{\partial x}}$$

There is a lot of excitement with the Nernst effect in high-T_c...the pseudogap "phase" shows a large anomalous Nernst effect in a certain temperature range

Righi-Leduc Effect

■ A temperature gradient is applied $\frac{\partial T}{\partial x}$ along the *x*-direction

•
$$j_x = j_y = 0$$
 and $(j_Q)_y = 0$

- **•** A temperature gradient $\frac{\partial T}{\partial y}$ develops
- Response determined by

$$\frac{\frac{\partial T}{\partial y}}{B\frac{\partial T}{\partial x}} = \frac{L}{\kappa}$$

Ettingshausen Effect

- **•** Current j_x flows, $\frac{\partial T}{\partial x} = 0$ along the *x*-direction
- **A temperature gradient** $\frac{\partial T}{\partial y}$ develops
- Response determined by Ettingshausen coefficient

$$\frac{\frac{\partial T}{\partial y}}{Bj_x} = \frac{K}{\kappa}$$

K is related to the Nernst coefficient K=NT

Thank You, Boltzmann!

- This is how far we will go with Boltzmann theory...
- Of course, one can do many more things...its left to you to discover
- . ا
- Key ideas I : Distribution function, semiclassical equation of motion, collision term,...
- Key ideas II : Relaxation time, "quasi-Bloch-electrons" life-time, transportation life-time
- Boltzmann theory deals with "expectation value of operators", and does not worry about "quantum fluctuations" – it of course takes into account *thermal* fluctuations, but "cold shoulders" quantum fluctuations

VBS Our next task is to develop a fully quantum the off - 63

Quantum Transport Theory

- **•** There are many approaches...
- Our focus: Green-Kubo theory
- What we will see
 - Theory of the response function (Green-Kubo relations)
 - Fluctuation-dissipation theorem
 - Onsager's principle
- Our development will be "formal" and "real calculations" in this framework require (possibly) "advanced" techniques such as Feynman diagrams

The System

- Our system: A (possibly many-particle) system with Hamiltonian H₀
- Eigenstates $H_0|n\rangle = E_n|n\rangle$
- **Image in the set to Image is a set to 1**
- Also write as: $|\psi(t)\rangle = e^{-iH_0t}|\psi(0)\rangle$
- In presence of a perturbation (stimulus), Hamiltonian becomes $H = H_0 + V$
- One can study the time evolution in different "pictures" : Schrödinger picture, Heisenberg picture, Dirac ("interaction") picture

Dirac ("interaction") picture

- State evolve according to $|\psi_I(t)\rangle = e^{iH_0t}e^{-iHt}|\psi(0)\rangle$
- Operators evolve according to $A_I(t) = e^{iH_0t}Ae^{-OH_0t}$
- Time evolution: $i \frac{\partial |\psi_I\rangle}{\partial t} = V_I |\psi_I\rangle$
- Expectation value of operator *A*: $\langle A(t) \rangle = \langle \psi_I(t) | A_I(t) | \psi_I(t) \rangle$
- Interaction picture *reduces* to the Heisenberg picture when there is no stimulus!
- **.**.
- Ok, how does one describe the thermodynamic (possibly nonequilibrium) state of a quantum system?

The Density Matrix

- The "thermodynamic state" of a system can be described by the following statement the system is in the state $|\alpha\rangle$ with a probability p_{α}
- **States** $|\alpha\rangle$ may not be the energy eigenstates
- p_{α} is the *statistical weight or probability* that the system is in the state $|\alpha\rangle$; clearly $\sum_{\alpha} p_{\alpha} = 1$
- Define a Hermitian operator $\rho = \sum_{\alpha} p_{\alpha} |\alpha\rangle \langle \alpha|$ the density matrix! This operator describes the "thermodynamic (possibly nonequilibrium) state" of the system

• The thermodynamic average of an observable

$$A = \operatorname{tr} \rho A = \sum_{\alpha} p_{\alpha} \langle \alpha | A | \alpha \rangle$$

• Well, "clearly" the equilibrium density matrix $\rho_0 = \sum_n \frac{e^{-\beta E_n}}{Z} |n\rangle \langle n|, \text{ partition function } Z = \sum_n e^{-\beta E_n}$

Exercise: Work out expressions for internal energy, entropy, etc

- **So far** *-fixed particle number* (canonical ensemble)
- Treat $|n\rangle$ to count states with different particle number – state $|n\rangle$ has N_n particles, and move over to the grand canonical ensemble by introducing a chemical potential μ

•
$$\rho_0 = \sum_n \frac{e^{-\beta(E_n - \mu N_n)}}{Z} |n\rangle \langle n|, \ Z = \sum_n e^{-\beta(E_n - \mu N_n)}$$

Question: How does one get Fermi distribution out of this?

Evolution of the Density Matrix

- Suppose I know the density matrix at some instant of time... what will it be at a later instance?
- Now $\rho(t_0) = \sum_{\alpha} p_{\alpha} |\alpha\rangle \langle \alpha |$...if there system where in the state $|\alpha\rangle$, it will evolve to $|\alpha(t)\rangle = e^{-iH(t-t_0)} |\alpha\rangle$...This means $\rho(t) = \sum_{\alpha} p_{\alpha} |\alpha(t)\rangle \langle \alpha(t) |$, or

$$\rho(t) = e^{-iH(t-t_0)}\rho(t_0)e^{iH(t-t_0)} \Longrightarrow i\frac{\partial\rho}{\partial t} + [\rho, H] = 0 \quad !!!!!$$

This is the "quantum Louisville equation"!

In thermal equilibrium (no perturbations), ρ_0 is stationary! Question: Why? – all this fits very well with our earlier understanding

Evolution of the Density Matrix

Time evolution in the interaction representation

$$i\frac{\partial\rho_I}{\partial t} + [\rho_I, V_I] = 0$$

- Perturbation was "slowly" switched on in the distant past $t_0 \rightarrow -\infty$
- $\rho_I = \rho_0 + \Delta \rho_I$, the piece of interest is $\Delta \rho_I$

• Clearly, $\Delta \rho_I(-\infty) = 0$, and we have

$$\Delta \rho_I(t) = i \int_{-\infty}^t dt' [\rho_0, V_I(t')]$$

We know the evolution of the density matrix to *linear* order in the perturbation...we can therefore calculate

VBS the linear response

Linear Response

- The "stimulus" V(t) = f(t)B where B is some operator (e.g. for an AC electric potential $V(t) = -e\phi(t)\mathcal{N}$ where \mathcal{N} is the number density operator, $\phi(t)$ is a time dependent potential
- Any response (observable) A of interest can now be calculated

$$\begin{aligned} \langle \Delta A \rangle(t) &= \operatorname{tr}(\Delta \rho_I(t) A_I(t)) \\ &= i \int_{-\infty}^t \mathrm{d}t' \operatorname{tr}([\rho_0, B_I(t')] A_I(t)) f(t') \\ &= \int_{-\infty}^\infty \mathrm{d}t' \underbrace{-i\theta(t-t') \langle [A(t), B(t')] \rangle_0}_{\chi_{AB}(t-t')} f(t')! \end{aligned}$$
Linear Response

- Completely solved any linear response problem in principle!
- $\chi_{AB}(t-t') = -i\theta(t-t')\langle [A(t), B(t')] \rangle_0$ is called Green-Kubo relation
- Key physical idea: Linear response to stimulus is determined by an equilibrium correlation function (indicated by subscript 0)
- Causality is automatic!
- In systems with strong interaction/correlations, response calculation using Green-Kubo relation is a difficult task

Fluctuation Dissipation Theorem

- **•** The imaginary part of χ is related to the *dissipation*
- Going back to the motivating "capacitor" example, the dielectric response function will $\epsilon(t t') \sim -i\theta(t t')\langle [\mathcal{N}(t), \mathcal{N}(t')] \rangle_0$
- The "leakage current loss" will be determined by the imaginary part of $\epsilon(\omega)$
- One can then go on to show that the imaginary part of $\chi(\omega)$ is directly proportional to the autocorrelator of the density operator (i.e., FT of $\langle \{\mathcal{N}(t), \mathcal{N}(t') \rangle \}_0$) Exercise: Do this, not really difficult
- **D** The autocorrelator is a measure of the *fluctuations in equilibrium*
- The key physical idea embodied in the Fluctuation Dissipation
 Theorem: Fluctuations in equilibrium (how they correlated in time)
 completely govern the dissipation when the system is slightly
 disturbed

Whats more?

- Lots!
- Semiconductors/Ionic solids
- Phonon Transport
- Disordered systems
- Correlated systems
- Nanosystems Landauer ideas
- **9** ..