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Overview

Motivation – Why do this?

Mathematical and Physical Preliminaries

Linear Response Theory

Boltzmann Transport Theory

Quantum Theory of Transport
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What is Transport Theory ?

Are we thinking of this?
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What is Transport Theory (in Materials)?

Material – Atoms arranged in a particular way

“Stimulus” takes material away from thermal
equilibrium

Material “responds” – possibly by transferring energy,
charge, spin, momentum etc from one spatial part to
another

Transport theory: Attempt to construct a theory that
relates “material response” to the “stimulus”

...

Ok..., so why bother?
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Why Bother (Taxpayer Viewpoint)?

ALL materials are used for their “response” to
“stimulus”

Eg. Wool (sweater), Silicon (computer chip), Copper
(wire), Carbon (writing) etc...

Key materials question: What atoms and how should I
arrange them to get a desired response to a particular
type of stimulus

...

Transport theory lays key foundation of theoretical
materials design

...

Blah, blah, blah...
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Why Bother (Physicist’s Viewpoint)?

The way a material responds to stimulus is a
“caricature” of its “state”

Transport measurements probe “excitations” above a
“ground state”

Characteristic “signatures” for transport are
“universal” can can be used to classify materials
(metals, insulators etc.)

...

Ok, convinced? So what do we need to study
transport theory?
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Prerequisites

A working knowledge of Fourier transforms

Basic quantum mechanics

Equilibrium (quantum) statistical mechanics

Band theory of solids

Some material phenomenology – transport
phenomenology in metals, mainly

...

Our focus: Electronic transport
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Fourier Transforms

Function f(r, t) is a function of space and time

Its Fourier transform f̂(k, ω) is defined as

f̂(k, ω) =

∫
d3r

∫
dt f(r, t) e−i(k·r−ωt)

We will write f̂(k, ω) as f(k, ω) (without the hat!)

Inverse Fourier transform

f(r, t) =
1

(2π)3

∫
d3k

1

2π

∫
dω f(k, ω) ei(k·r−ωt)
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Some Useful Results

FT of delta function is 1

Step function θ(t) =

{
1 t ≥ 0

0 t < 0

FT of step function θ(t) is
i

ω + iη
, η is a vanishingly

small positive number

Similarly FT of θ(−t) is
−i

ω − iη

The strangest of them all

1

ω ± iη
= P

(
1

ω

)
∓ iπδ(ω)
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Transport Theory: Introduction

Example: A capacitor with a dielectric layer

Stimulus: Voltage applied V

Response: Charge stored Q

In general, we expect the response to be a
complicated function of the stimulus

Make life simple (although unreal in many systems),
consider only cases where response is linear function of
the stimulus

Focus on Linear transport theory – part of the general
Linear Response Theory

What is the most general form of linear response?
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General Linear Response

Stimulus may vary in space and time V (r, t)

Response also varies in space and time Q(r, t)

What is the most general linear response?

The most general linear response is non-local in both
space and time

Q(r, t) =

∫
d3r

∫
dt′χ(r, t|r′, t′)V (r′, t′)

The response function χ(r, t|r′, t′) is a property of our
system (material) – notice the nonlocality of response

In “nice” systems (“time-invariant and transilationally
invariant”) χ(r, t|r′, t′) = χ(r − r′, t− t′)
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Linear Response

Keep aside spatial dependence: χ = χ(t− t′), response
to spatially homogeneous, time varying stimulus

In Fourier language Q(ω) = χ(ω)V (ω) – another way to
see it – “independent” linear response for different
frequencies of stimulus!

What can we say about χ(ω) (or χ(t− t′)) on general
grounds?

Clearly phase of the response may differ from that of
stimulus – consequence: response function is complex
in general χ(ω) = χ′(ω) + iχ′′(ω)

Looks like linear response is characterised by two real
valued functions χ′(ω) and χ′′(ω)
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Causal Response

We know that the future does not affect the present
(“usually”) – response must be causal

Another way to say this χ(t− t′) = 0 if t− t′ < 0 or
equivalently θ(−(t− t′))χ(t− t′) = 0

What is the consequence of this?

Maxim of linear response theory: “when in doubt
Fourier transform!”

After a bit of algebra (Exercise: Do the algebra)

∫
dω′ 1

ω − (ω′ − iη)
χ(ω′) = 0

=⇒

∫
P dω′ χ

′(ω′) + iχ′′(ω′)

ω − ω′
= iπχ′(ω) − πχ′′(ω)
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Kramers-Krönig Relations

Real and imaginary parts of response function are not
independent of each other, in fact one of the completely
determines the other:

χ′(ω) =
1

π

∫
P dω′χ

′′(ω′)

ω − ω′
, χ′′(ω) =

1

π

∫
P dω′ χ

′(ω′)

ω′ − ω

Important experimental consequences: example, one
can obtain conductivity information from reflectance
measurements!
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Its nice when response is linear...
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But nature has many nonlinear responses...

(Slap!)
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Nonlinear Response

(Jain, Raychaudhuri (2003))
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What now?

We posited response to be linear

Reduced the problem to obtaining (say) the real part
of the response based on very general causality
arguments!

...

How do we calculate χ(ω)?

This is a major chunk of what we will do – obtain
response functions
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What we plan to do...

Goal: Study transport in metals

Focus on zero frequency electrical response (“DC”
response)

Review: Drudé theory

Review: Bloch theory and semiclassical approximation

Boltzmann transport theory

...

But before all this, lets see what we need to explain
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Resistivity in Metals

(Ibach and Lüth)

Almost constant at “low” temperatures...all way to
linear at high temperatures
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Resistivity in Metals...There’s More!

(Ibach and Lüth)

Increases with impurity content

Has some “universal” features
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Transport in Metals

Wiedemann-Franz Law: Ratio of thermal (κ) to
electrical conductivities (σ) depends linearly on T

κ/σ = (Const)T, (Const) ≈ 2.3 × 10−8watt-ohm/K2

(Ashcroft-Mermin)
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Magneto-transport! Levitating!

Hall effect

Nernst effect

Righi-Leduc effect

Ettingshausen effect

...

Things are getting to be quite “effective”

Goal: Build a “reasonable” theoretical framework to
“explain”/”calculate” all this
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Drudé Theory – Review

Electrons: a classical gas

Collision time τ , gives the equation of motion

dp

dt
= −

p

τ
+ F

p – momentum, F – “external” force

Gives the “standard result” for conductivity

σ =
ne2τ

m

(all symbols have usual meanings)

All is, however, not well with Drudé theory!
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Bloch Theory

We do need quantum mechanics to understand metals
(all materials, in fact)

In the periodic potential of the ions, wave functions

are ψk(r) = eik·ruk(r) (uk is a lattice periodic
function), k is a vector in the 1st Brillouin zone

The Hamiltonian expressed in Bloch language
H =

∑
kσ ε(k)|k〉〈k| (one band), ε(k) is the band

dispersion (set aside spin throughout these lectures!)

“Average velocity” in a Bloch state v(k) =
1

~

∂ε

∂k

Occupancy of a Bloch state f0(k) =
1

eβ(ε(k)−µ) + 1
,

β = 1/(kBT ), µ – chemical potential
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So, what is a metal?

Chemical potential µ determined from electron
concentration

Try to construct a surface in the reciprocal space such
that ε(k) = µ

If such a surface exists (at T = 0) we say that the
material is a metal

A metal has a Fermi surface

Ok, so how do we calculate conductivity?

Need to understand “how electron moves” under the
action of “external forces”
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Semi-classical Electron Dynamics

Key idea: External forces (F ; electric/magnetic fields)
cause transition of electronic states

Rate of transitions ~
dk

dt
= F – Quantum version of

“Newton’s law”

By simple algebra, we see the “acceleration”
dv

dt
= M−1 F , M−1 =

1

~2

∂2ε

∂k∂k

Electron becomes a “new particle” in a periodic
potential! Properties determined by value of M at the
chemical potential

But, what about conductivity? If you think about this,
you will find a very surprising result! (Essentially
infinite!)



SERC School on Condensed Matter Physics ’06

VBS Transport Theory – 27

Conductivity in Metals

What makes for finite conductivity in metals?

Answer: “Collisions”

Electrons may scatter from impurities/defects,
electron-electron interactions, electron-phonon
interaction etc...

How do we model this? Brute force approach of
solving the full Schrödinger equation is highly
impractical!

Key idea: The electron gets a “life-time” – i.e., an
electron placed in a Bloch state k evolves according to

ψ(t) ∼ ψke
−iε(k)t− t

τk ; “lifetime” is τk!

Conductivity could plausibly be related to τk; how?
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Boltzmann Theory

Nonequilibrium distribution function f(r,k, t):

“Occupancy” of state k at position r and time t

r in f(r,k, t) represents a suitable “coarse grained”
length scale (much greater than the atomic scale)
such that “each” r represents a thermodynamic
system

Idea 1: The (possibly nonequilibrium) state of a
system is described by a distribution function f(r,k, t)

Idea 2: In equilibrium, f(r,k, t) = f0(k)! External
forces act to drive the distribution function away from
equilibrium!

Idea 3: Collisions act to “restore” equilibrium – try to
bring f back to f0
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Time Evolution of f (r,k, t)

Suppose we know f at time t = 0, what will it be at a
later time t if we know all the “forces” acting on the
system?

Use semi-classical dynamics: An electron at r in state

k at time t was at r − v∆t in the state k − F
~
∆t at

time t− ∆t

Thus, we get the Boltzmann transport equation

f(r,k, t) = f(r − v∆t,k −
F

~
∆t, t− ∆t) +

∂f

∂t

∣∣∣∣
coll.

∆t

=⇒
∂f

∂t
+ v ·

∂f

∂r
+

F

~
·
∂f

∂k
=

∂f

∂t

∣∣∣∣
coll.

If we specify the forces and the collision term, we have
an initial value problem to determine f(r,k, t)
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Boltzmann Theory

So what if we know f(r,k, t)?

f(r,k, t) is determined by the “external forces” F –
the stimulus (and, of course, the collisions which we
treat as part of our system)

If we know f(r,k, t) we can calculate the responses,
eg.,

j(r, t) =
1

(2π)3

∫
d3k (−ev) (f(r,k, t) − f0(k))

Intuitively we know that f(r,k, t) − f0(r,k, t) ∼ F , so
we see that we can calculate linear response functions!
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Approximations etc.

We know the forces F , eg., F = −e(E + v × B)

What do we do about
∂f

∂t

∣∣∣∣
coll.

?

Some very smart folks have suggested that we can set

∂f

∂t

∣∣∣∣
coll.

= −
f − f0

τk

– the famous “relaxation time appoximation”...

In general, τk is not same as the electron lifetime
(more later)...this is really a “phenomenological
approach” – it embodies experience gained by looking
at experiments
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Electrical Conductivity

BTE becomes

∂f

∂t
+ v ·

∂f

∂r
+

F

~
·
∂f

∂k
= −

f − f0

τk

Homogeneous DC electric field F = −eE

We look for the steady homogeneous response

F

~
·
∂f

∂k
= −

f − f0

τk
=⇒ f = f0 −

τkF

~
·
∂f

∂k

Approximate solution (Exercise: Work this out)

f(k) ≈ f0 +
eτkE

~
·
∂f0

∂k
≈ f0

(
k +

eτkE

~

)
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Solution of BTE

f0(k)

ky

kx

−
eτE

~

f(k)

Fermi surface “shifts” (Exercise: estimate order of magnitude of shift)
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Conductivity from BTE

Current

j =
1

(2π)3

∫
d3k (−ev)

eτkE

~
·
∂f0

∂k

Conductivity tensor

σ = −
1

(2π)3
e2

~

∫
d3k τk v

∂f0

∂k

Further, with spherical Fermi-surface (free electron
like), τk roughly independent of k (Exercise: Show this)

σ =
ne2τ

m
1

This looks strikingly close to the Drudé result, but the
physics could not be more different!
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What about experiments?

Well, we now have an expression for conductivity; we
should compare with experiments?

What determines the T dependence of conductivity?
Yes, it is essentially the T dependence of τ (only in
metals)

But we do not yet have τ !!

Need a way to calculate τ ...

...

Revisit the idea of electron-lifetime...how do we
calculate life time of an electron?
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Lifetime due to Impurity Scattering

Impurity potential VI , causes transitions from one
Bloch state to another

Rate of transition from k → k′

Wk→k′ =
2π

~
|〈k′|VI |k〉|

2δ(ε(k′) − ε(k))

Total rate of transition, or inverse lifetime

1

τ I
k

=
1

(2π)3

∫
d3k′Wk→k′

Can we use τ I
k as the τ in the Boltzmann equation?

Ok in order of magnitude, but not alright! Why?
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How to calculate τ?

Look back at the collision term, can write it more
elaborately as

∂f

∂t

∣∣∣∣
coll.

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k)(1 − f(k′)) − f(k′)(1 − f(k))

)

=
1

(2π)3

∫
d3k′Wk→k′

(
f(k) − f(k′)

)

Note that k and k′ are of the same energy

Take τk to depend only on ε(k)

Now, (f(k) − f(k′)) ≈ −τe
~

∂f0

∂ε

(
v(k) − v(k′)

)
· E
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Calculation of τ cont’d

Putting it all together

−
e

~

∂f0

∂ε
v(k) · E = −

1

(2π)3
τe

~

∂f0

∂ε

∫
d3k′Wk→k′

(
v(k) − v(k′)

)
· E

=⇒
1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 −

v(k′) · Ê

v(k) · Ê

)

=⇒
1

τ
=

1

(2π)3

∫
d3k′Wk→k′

(
1 − cos (k̂,k′)

)

Note τ is different from the “quasiparticle” life time!

Key physical idea: Forward scattering does not affect
electrical conductivity!
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T dependence of τ

We now need to obtain T dependence of τ

T dependence strongly depends on the mechanism of
scattering

Common scattering mechanisms

Impurity scattering

e–e scattering

e–phonon scatting

More than one scattering mechanism may be
operative; one has an effective τ (given by the
Matthiesen’s rule)

1

τ
=
∑

i

1

τi
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τ from Impurity Scattering

Essentially independent of temperature

Completely determines the residual resistivity
(resistivity at T = 0)

1
τ directly proportional to concentration of impurities

(Matthiesen’s rule!)

Well in agreement with experiment!
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τ from e–e Scattering

One might suspect that the effects of e–e interactions
are quite strong...this is not actually so, thank to Pauli

e–e scattering requires conservation of both energy and
momentum

“Phase space” restrictions severely limit e–e scattering

Simple arguments can show
1

τ
∼

(
kBT

µ

)2

Also called as “Fermi liquid” effects

Can be seen in experiments on very pure samples at
low temperatures

At higher temperatures other mechanisms dominate
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τ from e–Phonon Scattering

There is a characteristic energy scale for phonons –
TD, the Debye temperature

Below the Debye temperature, the quantum nature of
phonons become important

Natural to expect different T dependence above and
below TD

e–phonon scattering is, in fact, not elastic in general

Study two regimes separately : T ≫ TD and T ≪ TD
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τ from e–Phonon Scattering (T ≫ TD)

Scattering processes are definitely inelastic

Electron can change state k to k′ by absorption or
emission of phonon

The matrix element of transition rate in a phonon
emission with momentum q

Wk→k−q ∼ |Mq〈k − q, nq + 1|a†q|k, nq〉|
2

∼ |〈nq + 1|a†q|nq〉|
2 ∼ 〈nq〉 ∼ kBT

1
τ varies linearly with temperature!
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τ from e–Phonon Scattering (T ≪ TD)

Scattering process is approximately elastic since only
very long wavelength phonons (acoustic) are present

Using expression for τ

1

τ
∼

∫

|q|<
kBT

c

d3qWk→k−q

(
1 − cos( ̂k,k − q)

)

︸ ︷︷ ︸
|q|2

∼

(
T

TD

)5

Bloch-Gruneisen Law!

Phonons give a resistivity of T at T ≫ TD and T 5 for
T ≪ TD

The key energy scale in the system is TD – “universal”
features are not surprising
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Experiments, Finally!

Our arguments show

Impurity resistivity does not depend on
temperature and is approximately linear with
concentration of impurities

At very low temperatures an in pure enough
samples, we will see a T 2 behaviour in resistivity

This is followed by a T 5 at low T (T ≫ TD) going
over to T (T ≫ TD), and this behaviour with
appropriate rescale should be universal

All of these are verified experimentally in nice metals!
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High Tc Surprise

Resistivity in high Tc normal state

Looking for a research problem?
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What next?

We now have a handle on resistivity...how about
thermal conductivity?

We need also to explain Widemann-Franz!

Plan: Study thermo-galvanic transport in general

Include Seebeck effect, Peltier effect etc

...

How do we study thermal conductivity?

...

Back to Boltzmann
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Thermogalvanic Transport

Stimuli: Both E and ∇T , Response : j and jQ

Cannot ignore spatial dependence of f!

Steady state satisfies

v ·
∂f

∂r
−
eE

~
·
∂f

∂k
= −

f − f0

τ

Approximate solution (Exercise: Work this out)

f − f0 = τ
∂f0

∂ε

(
(ε− µ)

T
∇T + eE

)
· v

Heat current jQ is given by (Question: Why (ε− µ)?)

jQ =
1

(2π)3

∫
d3k (ε− µ)v (f(k) − f0(k))
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Thermogalvanic Transport

Transport relations can be expressed in compact from

j = e2A0E +
e

T
A1(−∇T )

jQ = eA1E +
1

T
A2(−∇T )

where matrices Aα = −
1

(2π)3

∫
d3k(ε− µ)α τ vv

∂f0

∂ε

For nearly free electrons

(
j

jQ

)
=
nτ

m

(
e2 1

2ekB
kBT

µ
1
2ekBT

kBT
µ

1
3k

2
BT

)(
E

−∇T

)
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Thermogalvanic Transport

Experimentally more useful result
E = ρj +Q∇T

jQ = Πj − κ∇T

Thermoelectric properties

ρ =
m

ne2τ
– Resistivity ∼ 10−8 ohm m

Q =
1

2

kB

e

kBT

µ
– Thermoelectric power

∼ 10−8TV/K (check factors!)

Π = QT – Peltier coefficient

κ =
π2

3

nτk2
BT

m
– Electronic thermal conductivity

∼ 100 watt/(m2 K)
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Widemann-Franz!

We see the “Lorenz number”

κ

σT
=
π2

3

k2
B

e2

– amazingly close to experiments (makes you wonder
if something is wrong!)

Actually, Widemann-Franz law is valid strictly only
when collisions are elastic...

Reason: Roughly, inelastic forward scattering cannot
degrade an electrical current, but it does degrade the
thermal current (due to transfer of energy to phonons)

Not expected to hold at T ≥ TD
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Amazing Cobaltate NaxCoO2

High thermoelectric power!!

Another research problem!
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Magneto-Transport

Transport maxim: When you think you understand
everything, apply magnetic field!

Think of the Hall effect; the Hall coefficient is strictly
not a linear response fucntion... We will not worry
about such technicalities; take that the magnetic field
B is applied and the response functions depend
parametrically on B – in our original notation
χ = χ(ω,B).

Let us start with an isothermal system and understand
how electrical transport is affected by a magnetic field
– Hall effect

But before that we will investigate semi-classical
dynamics in presence of a magnetic field
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Semiclassical Dynamics in a Magnetic Field

In a magnetic field B, the an electron state changes

according to ~k̇ = −ev × B

Clearly, the k-states “visited” by the electron must be
of same energy

For a state at the Fermi surface, this could lead to two
types of orbits depending on the nature of the Fermi
surface:

Closed surfaces: The electron executes motion in a
closed orbit in k space and a closed orbit in real
space...it has a characteristic time scale for this

given by the cyclotron frequency ωc = eB
m∗ , (m∗ –

cyclotron mass)

Open surfaces: story is a bit more complicted...we
will not get into this
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BTE with Magnetic Field

We will work with closed Fermi surfaces in the weak
magnetic field regime τωc ≪ 1...an electron undergoes
many collisions before it can complete one orbit

Boltzmann equation becomes

− e(E + v × B) ·
∂f

∂k
= −

f − f0

τ

With a bit of (not-so-interesting) algebra (bB · E) = 0

f − f0 =
eτ

1 + (ωcτ)2

(
E + (ωcτ)B̂ × E

)
· v
∂f0

∂ε
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And we attain the “Hall of fame”!

Setting B = Bez, we get “in plane” response

(
jx

jy

)
=

σ0

(1 + (ωcτ)2

(
1 −ωcτ

ωcτ 1

)(
Ex

Ey

)

σ0 = ne2τ
m

In the Hall experiment, jy = 0, thus

jx = σ0Ex

Ey = −ωcτEx =⇒ RH =
Ey

jxB
= −

1

ne

Our model predicts a vanishing magnetoresistance!
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Magnetoresistance

There is weak magnetoresistance present even in nice
metals ∆ρ ∼ ρ(0)B2 (this form arises from time
reversal symmetry)

For nice metals there is something called the Koehler’s
rule

ρ(B, T ) − ρ(0, T )

ρ(0, T )
= F

(
ρrefB

ρ(0, T )

)

The key idea is that magnetoresistance is determined
by the ratio of two length scales – the mean free path
and the “Larmour radius”

For metals with open orbits etc. magnetoresponse can
be quite complicated!

Research problem: Magnetoresponse of high Tc normal
state!
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Manganites: Colossal Responses

Colossal magnetoresistance in LCMO!
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Magneto-Thermo-Galvano Transport

In general we can have both an electric field and
temperature gradient driving currents in presence of a
magnetic field

The general “linear” response is of the form

E = ρj +RHB × j +Q∇T +NB × ∇T

jQ = Πj +KB × j − κ∇T + LB × ∇T

Leads to many interesting “weak” effects

Magnetic field in the z-direction in the discussion
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Nernst Effect

A temperature gradient ∂T
∂x is applied along the

x-direction

jx = jy = 0 and
∂T

∂y
= 0

One finds an electric field in the y direction!

N =
Ey

B ∂T
∂x

There is a lot of excitement with the Nernst effect in
high-Tc...the pseudogap “phase” shows a large
anomalous Nernst effect in a certain temperature
range
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Righi-Leduc Effect

A temperature gradient is applied ∂T
∂x along the

x-direction

jx = jy = 0 and (jQ)y = 0

A temperature gradient ∂T
∂y develops

Response determined by

∂T
∂y

B ∂T
∂x

=
L

κ
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Ettingshausen Effect

Current jx flows, ∂T
∂x = 0 along the x-direction

jy = 0 and (jQ)y = 0

A temperature gradient ∂T
∂y develops

Response determined by Ettingshausen coefficient

∂T
∂y

Bjx
=
K

κ

K is related to the Nernst coefficient K = NT
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Thank You, Boltzmann!

This is how far we will go with Boltzmann theory...

Of course, one can do many more things...its left to
you to discover

...

Key ideas I : Distribution function, semiclassical
equation of motion, collision term,...

Key ideas II : Relaxation time, “quasi-Bloch-electrons”
life-time, transportation life-time

Boltzmann theory deals with “expectation value of
operators”, and does not worry about “quantum
fluctuations” – it of course takes into account thermal
fluctuations, but “cold shoulders” quantum
fluctuations

Our next task is to develop a fully quantum theory of



SERC School on Condensed Matter Physics ’06

VBS Transport Theory – 64

Quantum Transport Theory

There are many approaches...

Our focus: Green-Kubo theory

What we will see

Theory of the response function (Green-Kubo
relations)

Fluctuation-dissipation theorem

Onsager’s principle

Our development will be “formal” and “real
calculations” in this framework require (possibly)
“advanced” techniques such as Feynman diagrams



SERC School on Condensed Matter Physics ’06

VBS Transport Theory – 65

The System

Our system: A (possibly many-particle) system with
Hamiltonian H0

Eigenstates H0|n〉 = En|n〉

Time evolution: Schrödinger i
∂|ψ〉

∂t
= H0|ψ〉 (~ set to

1)

Also write as: |ψ(t)〉 = e−iH0t|ψ(0)〉

In presence of a perturbation (stimulus), Hamiltonian
becomes H = H0 + V

One can study the time evolution in different
“pictures” : Schrödinger picture, Heisenberg picture,
Dirac (“interaction”) picture
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Dirac (“interaction”) picture

State evolve according to |ψI(t)〉 = eiH0te−iHt|ψ(0)〉

Operators evolve according to AI(t) = eiH0tAe−OH0t

Time evolution: i
∂|ψI〉

∂t
= VI |ψI〉

Expectation value of operator A:
〈A(t)〉 = 〈ψI(t)|AI(t)|ψI(t)〉

Interaction picture reduces to the Heisenberg picture
when there is no stimulus!

...

Ok, how does one describe the thermodynamic
(possibly nonequilibrium) state of a quantum system?
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The Density Matrix

The “thermodynamic state” of a system can be
described by the following statement – the system is
in the state |α〉 with a probability pα

States |α〉 may not be the energy eigenstates

pα is the statistical weight or probability that the system
is in the state |α〉; clearly

∑
α pα = 1

Define a Hermitian operator ρ =
∑

α pα|α〉〈α| – the
density matrix! This operator describes the
“thermodynamic (possibly nonequilibrium) state” of
the system

The thermodynamic average of an observable
A = trρA =

∑
α pα〈α|A|α〉
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What about Equilibrium?

Well, “clearly” the equilibrium density matrix

ρ0 =
∑

n

e−βEn

Z
|n〉〈n|, partition function Z =

∑
n e

−βEn

Exercise: Work out expressions for internal energy, entropy, etc

So far –fixed particle number (canonical ensemble)

Treat |n〉 to count states with different particle
number – state |n〉 has Nn particles, and move over to
the grand canonical ensemble by introducing a
chemical potential µ

ρ0 =
∑

n

e−β(En−µNn)

Z
|n〉〈n|, Z =

∑
n e

−β(En−µNn)

Question: How does one get Fermi distribution out of this?
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Evolution of the Density Matrix

Suppose I know the density matrix at some instant of
time... what will it be at a later instance?

Now ρ(t0) =
∑

α pα|α〉〈α|...if there system where in the

state |α〉, it will evolve to |α(t)〉 = e−iH(t−t0)|α〉...This
means ρ(t) =

∑
α pα|α(t)〉〈α(t)|, or

ρ(t) = e−iH(t−t0)ρ(t0)e
iH(t−t0) =⇒ i

∂ρ

∂t
+ [ρ,H] = 0 !!!!

This is the “quantum Louisville equation”!

In thermal equilibrium (no perturbations), ρ0 is
stationary! Question: Why? – all this fits very well with our
earlier understanding
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Evolution of the Density Matrix

Time evolution in the interaction representation

i
∂ρI

∂t
+ [ρI , VI ] = 0

Perturbation was “slowly” switched on in the distant
past t0 → −∞

ρI = ρ0 + ∆ρI , the piece of interest is ∆ρI

Clearly, ∆ρI(−∞) = 0, and we have

∆ρI(t) = i

∫ t

−∞
dt′[ρ0, VI(t

′)]

We know the evolution of the density matrix to linear
order in the perturbation...we can therefore calculate
the linear response
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Linear Response

The “stimulus” V (t) = f(t)B where B is some
operator (e.g. for an AC electric potential
V (t) = −eφ(t)N where N is the number density
operator, φ(t) is a time dependent potential

Any response (observable) A of interest can now be
calculated

〈∆A〉(t) = tr(∆ρI(t)AI(t))

= i

∫ t

−∞
dt′tr([ρ0, BI(t

′)]AI(t))f(t′)

=

∫ ∞

−∞
dt′−iθ(t− t′)〈[A(t), B(t′)]〉0︸ ︷︷ ︸

χAB(t−t′)

f(t′)!

Note that we have dropped all the I’s in the last eqn.
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Linear Response

Completely solved any linear response problem – in
principle!

χAB(t− t′) = −iθ(t− t′)〈[A(t), B(t′)]〉0 is called
Green-Kubo relation

Key physical idea: Linear response to stimulus is
determined by an equilibrium correlation function
(indicated by subscript 0)

Causality is automatic!

In systems with strong interaction/correlations,
response calculation using Green-Kubo relation is a
difficult task
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Fluctuation Dissipation Theorem

The imaginary part of χ is related to the dissipation

Going back to the motivating “capacitor” example, the dielectric

response function will ǫ(t − t′) ∼ −iθ(t − t′)〈[N (t),N (t′)]〉0

The “leakage current loss” will be determined by the imaginary

part of ǫ(ω)

One can then go on to show that the imaginary part of χ(ω) is

directly proportional to the autocorrelator of the density operator

(i.e., FT of 〈{N (t),N (t′)〉}0) Exercise: Do this, not really difficult

The autocorrelator is a measure of the fluctuations in equilibrium

The key physical idea embodied in the Fluctuation Dissipation

Theorem: Fluctuations in equilibrium (how they correlated in time)

completely govern the dissipation when the system is slightly

disturbed
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Whats more?

Lots!

Semiconductors/Ionic solids

Phonon Transport

Disordered systems

Correlated systems

Nanosystems – Landauer ideas

...
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