APS March Meeting 2018

What Kind of Topological Phases can be Found in Fractals?

Adhip Agarwala, Shriya Pai and Vijay B. Shenoy

Department of Physics, Indian Institute of Science, Bangalore 560012 shenoy@iisc.ac.in

Based on arXiv:1803.01404

Acknowledgements

- Research funded by DST, India
- Key contributors:

Adhip Agarwala

Shriya Pai

Overview

- Brief review of non-interacting topological phases
- Question: Topological phases on fractals
- Model and results

Overview

- Brief review of non-interacting topological phases
- Question: Topological phases on fractals
- Model and results

Highlights (arXiv:1803.01404)

• Homogeneous fractals do not host gapped topological phases...

Overview

- Brief review of non-interacting topological phases
- Question: Topological phases on fractals
- Model and results

Highlights (arXiv:1803.01404)

- Homogeneous fractals do not host gapped topological phases...
- ...a new gapless phase dubbed as *fractalized metal*

Topological Insulators : Quick Review

- Early clues: quantum hall effect
- Current understanding based on band theory of periodic lattices

(Kitaev (2009), Ryu et. al. (2010), Ludwig:1512:08882)

- Ground state described by a set of filled band, can be viewed as a map from the *d*-dimensional Brillouin zone ($\equiv T_d$, *d*-torus) a Grassmanian manifold
- Topological phases exist if such maps can "twist and wind" (as characterized by the nontrivial groups)

Key Issue

- Topological phases: gapless edge states robust to disorder
- Quasicrystalline systems (Kraus et al., PRL (2012), Tran et al., PRB (2015), Fulga et al., PRL (2016), Bandres et al., PRX (2016)) can host topological phases
- ...and even amorphous systems (Agarwala and VBS, 1701.00374 o ⇒ PRL (2017))

Need generalization of Chern number - Bott index (Loring and Hastings, EPL (2010))

• Key point: Only the symmetry class and spatial dimension is crucial; related notion of *bulk* and *edge*

Key Issue

- Topological phases: gapless edge states robust to disorder
- Quasicrystalline systems (Kraus et al., PRL (2012), Tran et al., PRB (2015), Fulga et al., PRL (2016), Bandres et al., PRX (2016)) can host topological phases
- ...and even amorphous systems (Agarwala and VBS, 1701.00374 o => PRL (2017))

Need generalization of Chern number - Bott index (Loring and Hastings, EPL (2010))

• Key point: Only the symmetry class and spatial dimension is crucial; related notion of *bulk* and *edge*

Question

- What about systems where the notion of bulk and edge is not sharp? Example: fractal lattice
- Topological phases possible in fractal lattices?

Fractal Lattices

- Sierpinski gasket our workhorse Housdorff dimension = log 3/ log 2
- Build generation by generation starting from a triangular motif
- Identify *A* and *B* sites to realize a homogeneous fractal all sites are equally coordinated
- Number of sites *N* in generation *g*: $N = 3^{g+1}$
- Notion of bulk and edge is not sharp

 operating definition: sites of the
 latest generation are the bulk sites
 leads to N_e/N_b = 1/2
- Simple tight binding model (Domany et al., *PRB* (1983)) leads to a self similar spectrum with infinite number of band gaps in the thermodynamic limit

"Topological Hamiltonian" on Fractals

• Two orbital model inspired by BHZ (Bernevig, et al., Science (2006))

$$\mathcal{H} = \sum_{Ilpha}\sum_{Jeta} t_{lphaeta}(\pmb{r}_{IJ}) c^{\dagger}_{I,lpha} c_{J,eta}$$

$$t_{\alpha\beta}(\mathbf{r}=\mathbf{0}) = \text{Diag}\{2+M, -(2+M)\}, \quad t_{\alpha\beta}(\mathbf{r}\neq\mathbf{0}) = \begin{pmatrix} \frac{-1}{2} & \frac{-ie^{-i\theta}}{2} \\ \frac{-ie^{i\theta}}{2} & \frac{1}{2} \end{pmatrix}$$

 θ is the angle made by the bond with the *x*-axis

- Half-filling one fermion per site
- *M* is the mass parameter which can be tuned to change the topology
- On triangular lattice topological phases are realized for
 - $-3.5 \le M \le 1$

"Topological Hamiltonian" on Fractals – Ground State

⊲

0.001

4.5

5

5.5

g

6

6.5

7

- When *M* is in the "topological regime" $-3 \le M \le 0$, no gapped phase is found on the fractal
- For any *M* in this regime, energy gap goes to zero exponentially in increasing generation – system becomes gapless!

Nature of the Gapless State

- Low energy states "live" on "edges of different generations" with distinct spatial structure imbibed from the fractal
- In the thermodynamic limit there are low energy states live edges of "all" generations – fractalized metal
- These these give a finite density of states at the chemical potential

 Wave packets localized near "edges" of different generations comprised of low energy states have distinct "chiral" motion – quite different from a usual metal

Transport Properties of the Fractalized Metal

- Fractalized metal is topologically trivial (Bott index = 0)
- Two terminal transport is "nearly quantized", but not quite!

- Dips and fall arise from the fractalized nature...not all low energy states hybridize with the lead states very different from a usual metal
- Robust to Anderson on-site disorder

Do All Fractals Support Fractalized Metals?

- No!
- One can construct fractal like system which are inhomogeneous – not every site is similarly coordinated – the notion of bulk and edge becomes sharper in these systems and one obtains fully gapped topological phases
- Suggests a necessary condition for fractalized metal – homogeneous fractal!

"Higher Dimensional" Fractalized Metals

• Higher dimensional fractalized metals are also possible!

Summary

Question

• What kind of topological phases can be found in fractals?

Answer (1803.01404)

- Inhomogeneous fractals (where the definition of bulk and edge is sharper) may host usual gapped topological phases
- Key new finding: Homogeneous fractals do not support gapped topological phases

• A new *fractalized metal* is realized

Further work: properties of fractalized metals, effects of interaction $e_{14}c_{15}$

Robustness to Disorder

