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The Question
Several examples in condensed matter physics where non-Fermi
liquid/strange metal phases undergo instabilities to produce
interesting new phases...e. g., High Tc superconductors

(Vishik et al. (2015))

SYK (Sachdev-Ye-Kitaev) model(Sachdev and Ye (1994), Kitaev (2015)) – solvable
example of a non-Fermi liquid

Question
I Can the SYK model throw light on possible instabilities of non-Fermi

liquids?

I Phase transitions in (?between) non-Fermi liquids
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Recap of Essential Strong Correlation Physics
Fermionic systems with two spin flavors (paramagnetic metal
when interactions are absent)
Strong local repulsive interactions (e. g., Hubbard model) can lead
to interesting phases
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Mott insulator: Charge gapped; spins as low energy degrees of
freedom (at commensurate fillings) (Lee, Wen, Nagaosa (2005))

Half metal: One of the spin species is gapped, and the second one
is gapless with a net spin polarization (Galanakis and Dederichs (2015))
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Our Model: Interaction Coupled SYK Dots
SYK dots with arbitrary q-body interactions

....

.... ....

....

H = ∑
i1,...,iqc ,j1,...,jqc

Hc
i1,...,iqc ;j1,...,jqc

c†iqc
. . . c†i1

cj1
. . . cjqc

+
∑

α1,...,αqΨ ,γ1,...,γqΨ

Hc
α1,...,αqΨ;γ1,...,γqΨ

Ψ
†
αqΨ

. . .Ψ
†
α1

Ψγ1 . . .ΨγqΨ

+
∑

i1,...,ir,α1,...,αr

HcΨ
i1,...,ir;α1,...,αr c†ir . . . c†i1

Ψ
†
α1

Ψα1 . . .Ψαr + h. c..

Dot c with c-fermions, Nc sites, qc-body interactions described by
energy scale Jc.
Dot Ψ with Ψ-fermions, NΨ sites, qΨ-body interactions described
by energy scale JΨ (take qΨ ≤ qc)
Inter-dot r-body interaction described by energy scale V
Fraction of sites f = NΨ

Nc
⇐= key parameter

Case qc = 2, qΨ = 1 and r = 1 already considered (Banerjee and Altman (2017))
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Analytics
Large-N action at inverse temperature β,

S = NΞ =
N

1 + f

[
− 1
β

ln det[−G−1
c ]− f

β
ln det[−G−1

Ψ ] −
∑

s=c,Ψ

(−1)qs f
1−s

2
J2
s

2qs

∫ β

0
dτGqs

s (−τ)Gqs
s (τ)

−
∑

s=c,Ψ

f
1−s

2

∫ β

0
dτ Σs(τ)Gs(−τ) −(−1)r

√
f

V2

r

∫ β

0
dτGr

c(−τ)Gr
Ψ(τ)

]

τ–imaginary time, Gs – Green function, Σs – self energy
Self consistency condition

Σs(τ) =(−1)qs+1J2
s Gqs−1

s (−τ)Gqs
s (τ)

+ (−1)r+1(
√

f )sV2Gr−1
s (−τ)Gr

s̄(τ), s = c,Ψ

Use a “conformal ansatz” (Sachdev PRX (2015) and references therein)

Gs(τ) = −Cs
sgn τ
|τ |2∆s

, s = c,Ψ

τ – imaginary time, ∆s – fermion dimension, Cs – constant
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Analytics...contd.
Uncoupled dots V = 0

∆s =
1

2qs
≡ ∆0

s , C2qs
s =

1
J2
s

K(∆s), s = c,Ψ

K(x) = 1
π (1

2 − x) tan(πx)

Analysis for V � Jc, JΨ: crucial parameter

r? =
2qcqΨ

qc + qΨ

If r > r?, coupling V is irrelevant on both dots

∆s = ∆0
s , C2qs

s =
1
J2
s

K(∆s), s = c,Ψ

If r = r?, coupling V is marginal on both dots

∆s = ∆0
s , C2qs

s depends on Js,V and f
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Analytics...contd.
For qΨ < r < r?, V is relevant on one flavor and marginal on the
other depending on the value of f

f
∆c = ∆0

c, ∆Ψ = 1
r − ∆0

c

fh =
K( 1

r
−∆0

Ψ)

K(∆0
Ψ)

fl = K(∆0
c)

K( 1
r
−∆0

c)

Non-Fermi liquid Non-Fermi liquid

No conformal
solution

∆Ψ = ∆0
Ψ, ∆c = 1

r − ∆0
Ψ

I No conformal solution for fl ≤ f ≤ fh
I Can change the nature of the non-Fermi liquid by tuning f , but a

“non conformal phase” intervenes!
I Key question: What is the nature of the intervening non-conformal

phase?

For r < qΨ, V is relevant on both dots

K(∆c)
1
r −∆c

= f , ∆Ψ =
1
r
−∆c

fermion dimension is f dependent! (For further details see 1703.05111)
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Numerics

Numerical solution of the self consistency equations

Σs(τ) =(−1)qs+1J2
s Gqs−1

s (−τ)Gqs
s (τ)

+ (−1)r+1(
√

f )sV2Gr−1
s (−τ)Gr

s̄(τ), s = c,Ψ

Work at fixed chemical potential µ = 0
Quantities of interest

I Spectral function ρs(ω)
I Entropy S
I Number density n
I Polarization P = nc − nΨ

I Specific heat CV
I Compressibility κ
I “Magnetic susceptibility” χ
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Numerical Results
qc = qΨ = 3, r = 2, Jc = JΨ = V = 1
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High temperature phase is
strange metal with a large
entropy akin to usual SYK; here
n = 1,P = 0 independent of f

At a critical temperature Tc(f ), a
second order (Landau like)
transition occurs – instability of
the strange metal

Phase below Tc depends on f

For f � 1, a c-strange half metal
(c− SHM) emerges – c is
gapless, Ψ is gapped

For f ≈ 1, a Mott insulator (MI)
phase where both c and Ψ are
gapped occurs

A very low temperatures, a first
order transition separates the
c− SHM and MI; the first order
line end in a critical point

Other quantities calculated are
all consistent with this picture
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Physics of Instability

Insights by considering Jc = JΨ = 0,V 6= 0, whose free energy

Ξ =

√
f

1 + f
V2

r

∫ β

0
dτ Gr

c(β − τ)Gr
Ψ(τ)

For f = 1, a particle hole symmetric solution implies

Gs(β − τ) = Gs(τ) =⇒ ρs(−ω) = ρs(ω) s = c,Ψ

Interaction problem viewed as two “classical strings” with long
ranged interactions
Particle hole symmetric solution – good for entropy
Interaction energy is reduced by breaking particle hole symmetry
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A Variational Ansatz
Classical string analogy suggests a variational ansatz

Gvar
s (iωn) =

1
iωn + dsξ

; ds=c = −1, ds=Ψ = 1

Key results of variational study
I For r = 1 there is no instability; dots must be coupled by interactions

for the low temperature instability
I For Jc = JΨ = 0, f = 1, instability via second order phase transition for

r = 2, 3, but first order for r ≥ 4! (confirmed by full numerics)
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I Promises a very rich phase diagram for
qc = 7, qΨ = 3, r = 4, Jc = JΨ = V = 1 with a plethora of phases,
critical lines and multicritical points
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Numerical Results
qc = 7, qΨ = 3, r = 4, Jc = JΨ = V = 1
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Rich phase diagram
predicted by
variational study is
indeed found!
SHM and MI phases
appear at low
temperature
There are many phase
transitions, both
continuous and first
order, with multicritical
points
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Summary
What we study

Two SYK dots each with arbitrary q body interactions, coupled
with r body interactions; key parameter, ratio f of number of sites

What we learn (1703.05111)
Analytical result – possible to go from one type of strange metal to
another by tuning f
Numerics: The coupled strange metals are unstable at low
temperatures – giving way to new phase such as strange half
metals and Mott insulators

Physical insights from a variational approach
Future work: Realize such physics in lattice systems (see 1710.00842)
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