APS March Meeting 2018

Strange Half-Metals and Mott Insulators in SYK Models

Arijit Haldar and Vijay B. Shenoy

Department of Physics, Indian Institute of Science, Bangalore 560012 shenoy@iisc.ac.in

Based on arXiv:1703.05111

Acknowledgements

Generous research funding: DST, India

• Key contributor:

Arijit Haldar

Overview

- Review and motivation
	- \triangleright Quick recap of half-metals and Mott insulators
- Our model: Two SYK dots coupled via *interactions*
- Analysis and results

Overview

- Review and motivation
	- \triangleright Ouick recap of half-metals and Mott insulators
- Our model: Two SYK dots coupled via *interactions*
- Analysis and results

Highlights (arXiv:1703.05111)

- Low temperature instabilities of coupled SYK dots
- Strange metal gives way to new phases strange half metals, and Mott insulators in a rich phase diagram

The Question

Several examples in condensed matter physics where non-Fermi liquid/strange metal phases undergo instabilities to produce interesting new phases...e. g ., High T_c superconductors

(Vishik et al. (2015))

• SYK (Sachdev-Ye-Kitaev) model(Sachdev and Ye (1994), Kitaev (2015)) – solvable example of a non-Fermi liquid

Ouestion

- Can the SYK model throw light on possible instabilities of non-Fermi liquids?
- ^I Phase transitions in (?between) non-Fermi liquids

Recap of Essential Strong Correlation Physics

- Fermionic systems with two spin flavors (paramagnetic metal when interactions are absent)
- Strong local repulsive interactions (e. g., Hubbard model) can lead to interesting phases

- Mott insulator: Charge gapped; spins as low energy degrees of freedom (at commensurate fillings) (Lee, Wen, Nagaosa (2005))
- Half metal: One of the spin species is gapped, and the second one is gapless with a net spin polarization (Galanakis and Dederichs (2015))

Our Model: Interaction Coupled SYK Dots

SYK dots with arbitrary *q*-body interactions

- \bullet Dot *c* with *c*-fermions, N_c sites, q_c -body interactions described by energy scale *J^c* .
- Dot Ψ with Ψ-fermions, *N*_Ψ sites, *q*_Ψ-body interactions described by energy scale J_{Ψ} (take $q_{\Psi} < q_c$)
- Inter-dot *r*-body interaction described by energy scale *V*
- Fraction of sites $f = \frac{N_{\Psi}}{N_c} \Longleftarrow$ *key parameter*
- Case $q_c = 2$, $q_{\Psi} = 1$ and $r = 1$ already considered (Banerjee and Altman (2017))

Analytics

• Large-*N* action at inverse temperature β ,

$$
S = N\Xi = \frac{N}{1+f} \left[-\frac{1}{\beta} \ln \det[-G_c^{-1}] - \frac{f}{\beta} \ln \det[-G_{\Psi}^{-1}] - \sum_{s=c,\Psi} (-1)^{q_s} f^{\frac{1-s}{2}} \frac{f_s^2}{2q_s} \int_0^{\beta} d\tau G_s^{q_s}(-\tau) G_s^{q_s}(\tau) \right]
$$

$$
- \sum_{s=c,\Psi} f^{\frac{1-s}{2}} \int_0^{\beta} d\tau \Sigma_s(\tau) G_s(-\tau) - (-1)^r \sqrt{f} \frac{V^2}{r} \int_0^{\beta} d\tau G_c^r(-\tau) G_{\Psi}^r(\tau) \right]
$$

τ–imaginary time, *G^s* – Green function, Σ*^s* – self energy

• Self consistency condition

$$
\Sigma_s(\tau) = (-1)^{q_s+1} J_s^2 G_s^{q_s-1}(-\tau) G_s^{q_s}(\tau) + (-1)^{r+1} (\sqrt{f})^s V^2 G_s^{r-1}(-\tau) G_s^r(\tau), \quad s = c, \Psi
$$

Use a "conformal ansatz" (Sachdev *PRX* (2015) and references therein)

$$
G_s(\tau) = -C_s \frac{\operatorname{sgn} \tau}{|\tau|^{2\Delta_s}}, \quad s = c, \Psi
$$

 τ – imaginary time, Δ ^{*s*} – fermion dimension, C ^{*s*} – constant

Analytics...contd.

• Uncoupled dots $V = 0$

$$
\Delta_s = \frac{1}{2q_s} \equiv \Delta_s^0, \quad C_s^{2q_s} = \frac{1}{J_s^2} K(\Delta_s), \quad s = c, \Psi
$$

 $K(x) = \frac{1}{\pi}(\frac{1}{2} - x) \tan(\pi x)$

Analysis for $V \ll J_c, J_\Psi$: crucial parameter

$$
r_{\star} = \frac{2q_c q_{\Psi}}{q_c + q_{\Psi}}
$$

• If $r > r_{\star}$, coupling *V* is *irrelevant* on both dots

$$
\Delta_s = \Delta_s^0, \quad C_s^{2q_s} = \frac{1}{J_s^2} K(\Delta_s), \quad s = c, \Psi
$$

• If $r = r_*$, coupling *V* is *marginal* on both dots

$$
\Delta_s = \Delta_s^0
$$
, $C_s^{2q_s}$ depends on J_s , V and f

Analytics...contd.

• For q_Ψ < *r* < *r*_★, *V* is *relevant* on one flavor and *marginal* on the other depending on the value of *f*

- ► No conformal solution for $f_l \leq f \leq f_h$
- \triangleright Can change the nature of the non-Fermi liquid by tuning f , but a "non conformal phase" intervenes!
- \triangleright Key question: What is the nature of the intervening non-conformal phase?
- For $r < q_{\Psi}$, *V* is *relevant* on both dots

$$
\frac{K(\Delta_c)}{\frac{1}{r} - \Delta_c} = f, \quad \Delta_{\Psi} = \frac{1}{r} - \Delta_c
$$

fermion dimension is *f* dependent! (For further details see 1703.05111)

Numerics

Numerical solution of the self consistency equations

$$
\Sigma_s(\tau) = (-1)^{q_s+1} J_s^2 G_s^{q_s-1}(-\tau) G_s^{q_s}(\tau) + (-1)^{r+1} (\sqrt{f})^s V^2 G_s^{r-1}(-\tau) G_s^r(\tau), \quad s = c, \Psi
$$

- Work at fixed chemical potential $\mu = 0$
- Ouantities of interest
	- **F** Spectral function $\rho_s(\omega)$
	- \blacktriangleright Entropy *S*
	- \blacktriangleright Number density *n*
	- Polarization $P = n_c n_{\Psi}$
	- \blacktriangleright Specific heat C_V
	- \triangleright Compressibility κ
	- \blacktriangleright "Magnetic susceptibility" χ

Numerical Results

- **•** High temperature phase is strange metal with a large entropy akin to usual SYK; here $n = 1, P = 0$ independent of *f*
- \bullet At a critical temperature $T_c(f)$, a second order (Landau like) transition occurs – instability of the strange metal
- \bullet Phase below T_c depends on f
- For $f \ll 1$, a *c*-strange *half* metal (*c* − SHM) emerges – *c* is gapless, Ψ is gapped
- For $f \approx 1$, a Mott insulator (MI) phase where both *c* and Ψ are gapped occurs
- A very low temperatures, a first order transition separates the *c* − SHM and MI; the first order line end in a critical point
- Other quantities calculated are all consistent with this picture 11 / 15

Physics of Instability

• Insights by considering $J_c = J_\Psi = 0, V \neq 0$, whose free energy

$$
\Xi = \frac{\sqrt{f}}{1+f} \frac{V^2}{r} \int_0^\beta d\tau \, G_c^r(\beta - \tau) G_\Psi^r(\tau)
$$

• For $f = 1$, a particle hole symmetric solution implies

$$
G_{s}(\beta-\tau)=G_{s}(\tau)\Longrightarrow \rho_{s}(-\omega)=\rho_{s}(\omega) \quad s=c,\Psi
$$

- Interaction problem viewed as two "classical strings" with long ranged interactions
- Particle hole symmetric solution good for entropy
- Interaction energy is reduced by breaking particle hole symmetry

A Variational Ansatz

Classical string analogy suggests a variational ansatz

$$
G_s^{\text{var}}(\mathbf{i}\omega_n) = \frac{1}{\mathbf{i}\omega_n + d_s\xi}; \quad d_{s=c} = -1, d_{s=\Psi} = 1
$$

- Key results of variational study
	- For $r = 1$ there is no instability; dots must be coupled by *interactions* for the low temperature instability
	- For $J_c = J_\Psi = 0, f = 1$, instability via second order phase transition for *r* = 2, 3, but *first order for r* \geq 4! (confirmed by full numerics)
(a) *P* [*J_c*=*J_w*=0, *f*=1.0] (b) *P* [*q_c*=7, *q_y*=3, *r*=4]

 \triangleright Promises a very rich phase diagram for $q_c = 7, q_{\Psi} = 3, r = 4, J_c = J_{\Psi} = V = 1$ with a plethora of phases, critical lines and multicritical points

Numerical Results

- Rich phase diagram predicted by variational study is indeed found!
- SHM and MI phases appear at low temperature
- There are many phase transitions, both continuous and first order, with multicritical points

Summary

What we study

Two SYK dots each with arbitrary *q* body interactions, coupled with *r* body interactions; key parameter, ratio *f* of number of sites

What we learn (1703.05111)

- Analytical result possible to go from one type of strange metal to another by tuning *f*
- Numerics: The coupled strange metals are unstable at low temperatures – giving way to new phase such as strange half metals and Mott insulators

- Physical insights from a variational approach
- Future work: Realize such physics in lattice systems (see 1710.00842)