

Band Theory of Solids

Some Unresolved Issues

Free electron theory tells gets rid of the specific heat problem, but

- **Why are carriers in Al positively charged?**
- **Why are there insulators?**
- Does Widemann-Franz law still hold?
- ...

Plan

- "Chemist's" view of bands "bonding"
- "Physicist's" view of bands "scattering"
- Wavefunctions and Bloch theorem

A Diatomic Molecule

- Why do two hydrogens form ^a bond?
- Simply put, electrons are delocalised and can reduce kinetic energy
- They have new states called molecular orbitals...how do we model this?
- Write a molecular orbital as ^a linear combination of atomic orbitals $\psi(\bm{r}) = a_1\psi_1(\bm{r}) + a_2\psi_2(\bm{r})$
- Determine a_1 and a_2 by using the fact that the ground state energy is minimum
- $E_q = \langle \psi | H | \psi \rangle$ subject to the condition that $\langle \psi | \psi \rangle = 1$

A Diatomic Molecule

Under "some assumptions" this reduces to ^a matrix equation

$$
\begin{pmatrix} E_0 & \Delta \\ \Delta & E_0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = E \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}
$$

 Δ is called "overlap" or "hopping" integral (roughly), that depends on the separation of the two atoms

- Two molecular orbitals with energy $E_0\pm\Delta$
- Bonding orbital, $E_b = E_0 \Delta$, $|\psi_b\rangle = \frac{1}{\sqrt{2}}(|\psi_1\rangle + |\psi_2\rangle)$
- Antibonding orbital, $E_a = E_0 + \Delta$, $|\psi_a\rangle = \frac{1}{\sqrt{2}} (|\psi_1\rangle - |\psi_2\rangle)$

VBS/MRC Two electrons occupy bonding orbital (Pauli to VBS/MRC
rescuel)

A Diatomic Molecule

A "Real" Diatomic Molecule

In a molecule like ${\sf N}_2$ or ${\sf O}_2$, s and p orbitals all overlap and one gets ^a host of molecular orbitals

A Model Solid

- A chain of atoms with s -orbital overlap
- "Bands" of energies

A Real Solid – "Chemist's" view

- Real solids have s,p,d overlaps
- One gets s -band, p -band etc...
- It is possible that the bands overlap...
- Possible that the bands do not overlap! Band gap!
- Further, two atomic orbitals of nearly equal energy can hybridise (say s, p)

Some Preliminaries

- Crystal defined by lattice vectors a_1, a_2, a_3
- Lattice point \boldsymbol{R} defined by integers $\boldsymbol{R}=n_1\boldsymbol{a}_1+n_2\boldsymbol{a}_2+n_3\boldsymbol{a}_3$
- Reciprocal lattice defined by vectors b_1, b_2, b_3 which satisfy $b_i \cdot a_j = \delta_{ij}$
- Reciprocal lattice vectors G defined by integers $\boldsymbol{G} = m_1\boldsymbol{b}_1 + m_2\boldsymbol{b}_2 + m_3\boldsymbol{b}_3$

Free Electron needs Repair

- Electrons are not really free!
- They move in a *periodic potential*

$$
V(\bm{r})=\sum_{\bm{R}}V_a(\bm{r}-\bm{R})
$$

■ Schrödinger equation

$$
\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi = E\psi
$$

- What are allowed E s and associated ψ s?
- What can we say without solving anything? (Stick to 1D)

1D Solid – Simple Arguments

- Solid with $V(r)$, $V(r+na)=V(r)$, a is lattice parameter
- Imagine that $V(r)$ is a perturbation on free electrons
- What effect does $V(r)$ have on the "free" electron?
- Well, it is like Bragg reflection!
- If the wavelength of the electron is related to the lattice parameter a , then the electron cannot "travel" through the crystal...Bragg reflection will make it ^a standing wave!
- This happens when the electron wavelength satisfies $n\lambda=2a$ or when electron wavevector satisfies $k=\frac{n\pi}{a}$!
!
- Clearly, the electron energies are also changed!

1D Solid – Simple Arguments

Since the state of the electron for $k = \frac{n\pi}{a}$ is not a propagating one, we can imagine it as ^a superposition of a forward moving wave and backward moving wave of amplitude to get two types of standing waves

$$
\psi_{+} = e^{ikx} + e^{-ikx} = 2\cos(kx),
$$

$$
\psi_{-} = e^{ikx} - e^{-ikx} = 2i\sin(kx)
$$

Note that these are $standing$ $waves!$

- What are (estimates of) E_\pm ?
- To get an idea, think of $|\psi_+|^2...$ it is the probability density...if the atomic potential V_a is attractive, then E_+ will be lower than E_- , since the electron in ψ_+ state is "located closer to the atom"!

1D Solid – Simple Arguments

Clearly, ψ_+ has lower energy (for the attractive atomic potential)

This implies for the same value of free electron wavevector k , there are two possible energy levels...in other words, energy values between these levels are not allowed...a band gap opens up!

1D Solid – A Simple Model

- 1-D solid with lattice parameter \it{a}
- **Smallest reciprocal vector** $G = \frac{2\pi}{a}$
- Simple model "ionic potential" $V(x) = 2V_G \cos Gx$ (Note that $V(x)$ is lattice periodic, V_G is the "strength" of the potential)
- What are eigenvalues and eigenstates of $\,H$ $H = - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$?
- We know from previous arguments that when $k\approx \frac{G}{2}$ we expect strong Bragg reflection of ^a plane wave state...based on this it is reasonable to take the energy eigenstate as ^a linear combination of the forward going wave and the reverse going wave $|\psi\rangle = C_k|k\rangle + C_{k-G}|k-G\rangle$, where C_k, C_{k-G} are

 VBS/MRC numbers that we need to determine... Band Theory - 13

1D Solid – A Simple Model

Determine C_k, C_{k-G} using $H|\psi\rangle = E|\psi\rangle$; a bit of algebra gives $\bm{(\epsilon(k)=\frac{\hbar^2 k^2}{2m})}$

$$
\begin{pmatrix}\n\epsilon(k) & V_G \\
V_G & \epsilon(k-G)\n\end{pmatrix}\n\begin{pmatrix}\nC_k \\
C_{k-G}\n\end{pmatrix} = E \begin{pmatrix}\nC_k \\
C_{k-G}\n\end{pmatrix}
$$

Energy eigenvalues are

$$
E_{\pm}(k) = \frac{\epsilon(k) + \epsilon(k - G) \pm \sqrt{(\epsilon(k) + \epsilon(k - G))^2 - 4(\epsilon(k)\epsilon(k - G) - V_G^2)}}{2}
$$

with associated eigenstates

$$
\psi_{\pm}(x) = \underbrace{(C_k^{\pm} + C_{k-G}^{\pm}e^{-iGx})}_{\text{#}}e^{ikx}
$$

 $u_{\pm}(x)$...lattice periodic

1D Simple Model – What is learned?

An energy gap opens up at $k=\frac{G}{2}$, $E_{+}-E_{-}=2V_{G}$ *bandpert.nb* 1

