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Preface

In this thesis I have studied three problems of current interest:

• Quantum Spin Hall Density Wave Insulator of Correlated Fermions,

• Higgs-Axion conversion and anomalous magnetic phase diagram in TlCuCl3, and

• Bosonic integer and fractional quantum Hall effect in an interacting lattice model

In the first piece of work, I present the theory of a new type of topological quantum order which

is driven by the spin-orbit density wave order parameter and distinguished by Z2 topological

invariant. The resulting quantum order parameters break translational symmetry but preserve

time-reversal symmetry. As a consequence, the system is inherently associated with a Z2

topological invariant along each density wave propagation direction which makes it a weak

topological insulator in two dimensions, with an even number of spin-polarized boundary states.

In the second work, I discuss the effect of the parent topological ground state on the local

order. In particular, I focus on a well-studied (experimentally) material TlCuCl3 and show

that it has unique unexplored topological properties which arise when a time reversal breaking

antiferromagnetic order parameter sets into the system and how they can explain the uncanny

properties of this material such as unconventional paramagnon lifetime, finite Higgs mass across

the phase transition, among other. In the last work, I discuss our attempt to confirm the presence
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of bosonic integer and fractional quantum Hall effect in an interacting lattice model. The model

consists of bosons spread over the honeycomb lattice with the nearest neighbor and next nearest

correlated hopping with π flux per hexagon. I provide evidence for the presence of integer as

well as fractional quantum Hall states and also a superfluid state, for different fillings and tuning

parameters.

I have used mean field theory and path integral methods as the theoretical tools to study the above

problems. Furthermore, I have also used numerical methods such as Density Functional Theory

(DFT, as implemented in VASP) and exact diagonalization (using Lanczos algorithm) where

appropriate. As I have shown in the thesis, a large number of interesting results emerge from

these studies, leading to a better understanding of the problems and uncovering some interesting

underlying physics.

This thesis is organized as follows. The first two chapters serve as an introduction. In Chapter 1,

I give an introductory overview of topological band theory and topological field theory keeping

in mind their relevance for the problems dealt with in the later chapters. In Chapter 2, I give a

brief introduction to the field theoretic methods that are used in the thesis.

In Chapter 3, I present the theory of a new type of topological quantum order which is driven by

the spin-orbit density wave order parameter and distinguished by a Z2 topological invariant. I

show that when two oppositely polarized chiral bands [resulting from the Rashba-type spin-orbit

coupling αk, where k is the crystal momentum] are significantly nested with a special nesting

wavevector Q ∼ (π, 0)/(0, π), this induces a spatially modulated inversion of the chirality

(αk+Q = α∗k) between different sublattices. The resulting quantum order parameters break

translational symmetry but preserve time-reversal symmetry. They are inherently associated

with a Z2-topological invariant along each density wave propagation direction. Hence it gives

rise to a weak topological insulator in two dimensions, with an even number of spin-polarized

boundary states. This phase is analogous to the quantum spin-Hall state, except here the time-

reversal polarization is spatially modulated, and thus it is dubbed quantum spin-Hall density
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wave (QSHDW) state. This order parameter can be realized or engineered in quantum wires, or

quasi-2D systems, by tuning the spin-orbit coupling strength and chemical potential to achieve

the special nesting condition.

In Chapter 4, I focus on the experimentally well-studied material, TlCuCl3 and ask the question:

what is so unique in TlCuCl3 which drives so many unique magnetic properties, such as a

massive Higgs mode at the magnetic critical point, long-lived paramagnons, and dimerized

antiferromagnetism? To answer these questions, I employ a combination of ab-initio band

structure, tight-binding parametrization, and an effective quantum field theory. Within a density-

functional theory (DFT) calculation, I find an unexpected bulk Dirac cone without spin-orbit

coupling (SOC). Tracing back its origin, I identify, for the first time, the presence of Su-Schrieffer-

Heeger (SSH) like dimerized Cu chains hidden in the 2D crystal structure. The SSH chains,

combined with SOC, stipulates an anisotropic 3D Dirac cone where chiral and helical states are

intertwined (namely, 3D SSH model). As a Heisenberg interaction is introduced, I show that the

dimerized Cu sublattices of the SSH chains condense into dimerized spin-singlet magnets. In

the magnetic ground state, I also find a naturally occurring topological phase, distinguished by

the axion invariant. Finally, to study how the topological axion excitations couple to magnetic

excitations, I derive a Chern-Simons-Ginzburg-Landau action from the 3D SSH Hamiltonian.

I find that axion term provides an additional mass term to the Higgs mode, and a lifetime to

paramagnons, which are independent of the quantum critical physics.

Finally, in Chapter 5, I numerically explore the presence of bosonic integer and fractional

quantum Hall effect in an interacting lattice model. Our model consists of bosons on a bipartite

honeycomb lattice with correlated next nearest neighbor hopping and π magnetic flux per unit

cell. I use Exact Diagonalization (ED), employing the Lanczos algorithm to calculate the ground

state as well as few excited states with an aim to characterize the different phases of the system

and to find preliminary evidence for integer as well as fractional quantum Hall effect of bosons.

I provide evidence to show that the ground state of the Hamiltonian can host a bosonic integer
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quantum Hall effect (BIQHE) as well as a bosonic fractional quantum Hall effect (BFQHE),

and also a superfluid (SF) phase, depending upon the parameter choice and the filling. The

most attractive property of our model is the presence of both a symmetry protected topological

(SPT) phase and a non-SPT phase at different fillings. Although the BIQH phase is an example

of symmetry protected topological (SPT) phase, the BFQH phase is not and hence it can host

fractional bosonic excitations as well. I have tried to establish this by explicitly calculating the

charge pump by threading a 2π flux through the central hexagon of the system.

In Chapter 6, I conclude the thesis by first summarizing the results that I have presented in the

thesis and then discussing their limitations. Later on, I comment on the possible directions for

future work to uncover more physics in the problems I’ve discussed and for getting a better

understanding of deeper problems.
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1
Introduction and Overview

Condensed matter physics is a branch of physics that provides a framework for describing the

physical properties of the phases of matter in the condensed form. The aim is to understand

these phases based on the known laws of physics, mostly considering the low energy properties

of the system. It is needless to mention that the number of degrees of freedom (∼ 1023) in the

system is too large to deal with individually[8]. We can, however, measure/calculate some of

the properties of the system (e.g., density, magnetization, response to the external field, etc.)

which can be used to characterize and distinguish the phases of the system. The general idea of

characterizing a phase is to find some kind of order parameter, e.g., charge density for charge

density wave, magnetization for ferromagnet, staggered-magnetization for anti-ferromagnet,

polarization for ferroelectric, etc. If the system posses finite expectation value of any of the

order parameters, it is classified into that phase. This way of classifying phases falls under the

well known Landau symmetry breaking paradigm [9]. Landau’s theory of symmetry breaking

provides a semi-phenomenological framework to explain the phase transition from a symmetric
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phase (such as at high temperature) to a less symmetric, broken symmetry phase (at extreme

conditions such as low-temperature) through a phase transition, accompanied by singular changes

in the thermodynamic entities. Such phase transitions can also occur (as the parameters in the

Hamiltonian are varied) at zero temperature and are dubbed quantum phase transitions.

However, in the last three decades or so, it has become clear that there are phases which do not

possess any local order, instead, they (sometimes) have (highly) non-local order. One of the

experimentally verified examples is the fractional quantum Hall (FQH) state which has a highly

non-local order which corresponds to annihilating an electron and unwinding a number of fluxes.

These phases are called “topological” phases without any local order. A general definition

of topological phase would be “a phase of matter characterized by a topological invariant (a

non-local order parameter) rather than a local order parameter” “a phase whose effective action

contains a topological term, i.e., a term that is invariant under smooth deformations of the

manifold.”. Recently, topological phases got a surge of attention because of the proposal of

“topological quantum computation” using non-abelian anyons of FQH states [10]. Since the

order is highly non-local in FQH, the information stored is less susceptible to local decoherence

processes [10, 11].

The area of topological insulators (TIs) started back in the 80s when von Klitzing et al.[1]

discovered the quantum Hall effect (QHE). Astonishingly, they found plateaus in the transverse

Hall conductivity (σxy) at high magnetic fields (Fig. 1.1) in a usual two-dimensional electron gas

(2 DEG) Hall device. Hall conductivity (same as conductance in 2-D geometry) is defined as

σxy =
jx
Ey
≡ 1

ρxy
, (1.1)

where jx is the current density along x direction and Ey is the electric field (developed) along y

direction, in the presence of a magnetic field applied in the z direction. In a classical picture, the

transverse resistivity, ρxy is proportional to the applied magnetic field B. On the contrary, for the

4



Introduction and Overview

Figure 1.1: Experimental plot showing the plateaus in ρxy and zeros of ρxx[1].For small magnetic
field, resistance grows linearly with B which corresponds to the classical Hall effect. In the intermediate
magnetic field, ρxx shows oscillation and this region correspond to the quantum oscillation regime. At the
high magnetic field, we see plateaus in ρxy, where ρxx → 0.

high magnetic field, transverse Hall conductivity was found to have a structure with steps (see

Fig. 1.1), with the flat plateaus exactly quantized as:

σxy = ν
e2

h
, (1.2)

where e is the electronic charge, h is Plank’s constant and ν is an integer. This phenomenon

was dubbed as the quantum version of the Hall effect or Quantum Hall Effect (QHE). 1 Later

on Thouless et al.[12] along with Simon [13] showed the connection between QHE and the

topology of Bloch wave functions. They showed that σxy is quantized as long as there exists an

1Essentially the Hall resistance data shown in Fig. 1.1 can be split into three regions, weak, intermediate and strong
magnetic field. In the weak field region, ρxy goes linearly with B and ρxx is constant, which is the classical Hall
regime. At strong magnetic fields, we see plateaus in ρxy with ρxx → 0, which is the Quantum Hall regime. In the
middle, we see oscillation in ρxx, which can be understood in a semi-classical approximation, where the density of
states at the Fermi level oscillates because of the crossing of Landau Levels across the Fermi-level.
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insulating gap in the bulk energy spectrum. ν (ν ∈ Z) is nothing but the first Chern number. In

1988, Haldane showed that one doesn’t even need an external magnetic field to observe QHE,

but breaking the time-reversal symmetry (TRS) is necessary[14], in addition to a non-trivial band

structure (defined later).

Since σxy 2 is odd under the time reversal (jx changes sign in Eq. (1.1) while Ey remains the

same), σxy vanishes in TRS systems and hence this classification is not applicable on TRS

systems. Later on, Kane and Mele showed that even in TRS systems, a distinct topological

invariant can be defined by subtracting the Hall conductance of the two copies of the Hamiltonian

which are time-reversal conjugate to each other, but individually they break TRS. This can be

conveniently done in spin-systems where spin is a good quantum number, and hence one obtains

quantum spin Hall (QSH) insulator in 2D[15]. Finally, a more general version of the topological

invariant was deduced for TRS systems in 2D and 3D where the Hall conductance was replaced

by the “TR polarization”, giving rise to a Z2
3 classification of the topological insulators. Both

2D and 3D TI’s were subsequently observed experimentally[16, 17, 18, 19, 20]

Using the von Neumann-Wigner classification[21] of level crossing, it can be shown that

fundamental time reversal breaking (TRB) insulators exist in 2+1 D (and are classified by the

first Chern number), whereas the fundamental TRS insulators exist in 4+1 D (and are classified

by the second Chern number). It turns out that all the TRS insulators in 1,2 or 3-D can be

understood from the 4+1 D Chern-Simons theory using a so-called procedure of dimension

reduction[22].

The purpose of this chapter is to serve as an introduction to and a brief review of the theoretical

concepts of topological band theory. The next chapter serves as an introduction to the Landau

kind of symmetry breaking phase transition, and some numerical tools which are used to study

2Strictly speaking, the Hall conductivity is (σxy − σyx)/2. If the lab axes are not aligned with the principal axes of
a lattice, σxy will have a symmetric part too, but this is even under time-reversal and non-topological.

3On the other hand the Chern number classifies insulators into an infinite number of topologically different classes
(ν ∈ Z).

6



Introduction and Overview

Figure 1.2: Schematic of the classical Hall measurement having a Hall bar of width W, length L and
thickness t (t<<W). A magnetic field Bz is applied perpendicular to the surface of the Hall bar and a
current I is made to flow along the length of the sample. An electric field, Ey and Hall voltage, VH is
developed along the width of the sample.

the problems discussed in the further chapters. There are many excellent books covering these

fields in much greater depths and details [23, 24, 25, 26].

The aim of this thesis is to combine the effects of interaction and topology, to address their

interplay and the resultant new states of matter. Here we deploy a number of analytical and

numerical techniques such as mean field theory, path-integral, DFT(as implemented in VASP),

numerical diagonalization, etc., to study this interconnection. There are already several known

examples of interaction-driven topological phases such as anti-ferromagnetic topological

insulator[27], topological Mott insulator[28], topological Kondo insulator[29], topological

superconductors[30, 31, 32], etc.
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1.1 Classical Hall Effect

In 1879, Edwin Hall found that when an electrical conductor is subjected to a perpendicular

electric and magnetic fields, it develops a voltage difference perpendicular to both the applied

fields [33]. Here we have electrons confined in two-Dimensions (2D) (say the x− y plane), and

we apply a constant magnetic field B along the ẑ direction (i.e., B = B0ẑ) and a current Ix is

made to flow along the x-direction by the application of an electric field Ex as shown in the Fig.

1.2. The magnetic field deflects the electrons due to Lorentz force, opposite charge accumulates

at the edges transverse to the current, leading an electric field (Ey) between the edges. In the

Drude picture, the equation of motion is given by

m
dv

dt
= −eE− ev ×B− mv

τ
, (1.3)

where τ is the relaxation time4. The equilibrium solution of the above equation (dv/dt = 0) is

v +
eτ

m
v ×B = −eτ

m
E. (1.4)

As the current density is given by

J = −nev = σE, (1.5)

where n is the density of the charge carrier and σ is the conductivity tensor. Eq. 1.4 can be

written as 1 ωBτ

−ωBτ 1

J =
e2nτ

m
E, (1.6)

4relaxation time (τ ) is the time duration between two subsequent collisions of the particles by the scatterer.
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where ωB = eB/m is the cyclotron frequency. From the above equation, we get

σ =
σDC

1 + ω2
Bτ

2

 1 −ωBτ

ωBτ 1

 , (1.7)

where σDC = ne2τ
m

is the DC conductivity in the absence of the magnetic field. Now we can

define the resistivity (ρ) by

ρ = σ−1 =
1

σDC

 1 ωBτ

−ωBτ 1

 =
m

ne2

 1
τ

ωB

−ωB 1
τ

 . (1.8)

The remarkable property of the above equation is the absence of τ in ρxy which means that it

doesn’t get affected by the disorder and captures some intrinsic properties of the material.

The potential drop (Vy) between the edges of the Hall bar is Vy = EyW (W is the width of the

Hall bar). The transverse resistance (Rxy) is defined as the ratio of the transverse voltage to the

electric current.

Ryx =
Vy
Ix

=
LEy
LJx

=
Ey
Jx

= −ρxy (1.9)

We can also define the Hall coefficient as

RH = − Ey
JxB

=
ρxy
B

(1.10)

which in Drude model gives

RH =
ωB

BσDC
= − 1

ne
(1.11)

The remarkable property of the above equation is that RH only depends on the carrier density

and the sign of its charge. Because of this property Hall measurement is commonly done to

determine the carrier density and carrier type (i.e., electron or hole) and sometimes they are also

used to measure the magnetic field as well.
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1.2 Quantum Hall Effect

When the electrons are confined in 2D5, the applied magnetic field is high and the sample is pure

enough6, von Klitzing et al.[1] found that ρxy develops plateaus as a function of B,

ρxy = − h

νe2
, (1.12)

where ν is an integer. This is contrary to the classical Hall effect (Eq. (1.9)) where ρxy changes

linearly with the applied magnetic field. In addition, ρxx (the longitudinal resistivity) vanishes at

these plateaus (Fig. 1.1). State-of-the-art experiments have confirmed the quantization of ν with

the accuracy of a part in a billion. As the name suggests, classical equations cannot explain this

phenomenon and we need to fully invoke quantum theory to solve this problem.

1.2.1 Landau Levels

The Hamiltonian of a free electron in the magnetic field is given by

H =
1

2m
(p + eA)2 =

1

2m
Π2, (1.13)

where m is the mass of the electron, p is the momentum, e is the electronic charge and A is

the vector potential. A solution of the above Hamiltonian can be reduced to the solution of a

degenerate set of harmonic oscillators7 and the discrete levels are commonly known as Landau

5We need the confinement along the z-direction to make sure that the discrete levels because of the “z” quantum
numbers (because of the confinement along z direction ) are well separated in energy and the higher ones can be
neglected. This can be achieved in many heterostructure which are commonly known as 2D electron gas (2 DEG)

6We need pure sample but a small disorder is always required to see the QHE, otherwise one is expected to see a
linear resistivity curve similar to the classical Hall resistivity in a pristine sample.

7One can easily see this by choosing a gauge, lets say Landau gauge (A = (−B0y, 0, 0)). Since H is now
independent of x, the solution to the Schrödinger equation will be a plane wave along the x−direction. Now the
Hamiltonian in Eq. (1.13) becomes

H =
1

2m
(~k − eB0y)

2
+

1

2m
p2
y

10
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Levels (LL) with the energy
(
n+ 1

2

)
~ωB where ωB = eB0/m is the cyclotron frequency. These

energy levels (Landau Levels) are highly degenerate with the degeneracy N = AB0/φ0, where

A is the area of the sample and φ0 = 2π~/e is the flux quanta. When the nth LL is completely

filled (filling factor, ν = n ), the Hall conductance is σxy = ne2/h. It turns out that these

quantized values of σxy are robust against weak disorder and interaction, and the accuracy of the

quantization is one part in a billion.

The relationship between the Hall conductivity and Bloch wave functions was famously

demonstrated by TKNN[12] along with Simon and co-workers[13, 34]. For a particle in a

periodic potential, the wave functions are given by

ψαk(r) = eik.ruαk(r), (1.14)

with uαk(r) being periodic over the unit cell (uαk(r + a) = uαk(r) where a is the lattice translation

vector) and α the band index. We can now describe the topology underlying the QHE but before

that, we need to satisfy the following three conditions:

• the Brillouin Zone (BZ) is a torus, T2. With some assumptions, this can be satisfied even in

the presence of magnetic field and consequently the energy levels of the system organize

themselves into energy bands8,

• electrons do not interact with each other9, and

• the system is an insulator.

Based on the above assumption and using the Kubo formula10, the transverse conductivity σxy

which is equivalent to the problem of a harmonic oscillator along the y−direction.
8As long as the ratio of the flux through a unit-cell to the flux quanta is a rational number, we can write φ/φ0 = p/q.
Hence making a super-cell of q unit cells, the flux through it becomes an integral multiple of φ0. This new unit-cell
is known as the magnetic unit-cell

9such that a single particle picture is valid but the idea can be generalized even for interacting electrons
10Kubo formula is used to calculate the linear response using correlation functions[35]
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Figure 1.3: (a) Cartoon showing the cyclotron orbits of electrons in the presence of perpendicular
magnetic field as well as a skipping orbit on the edge. (b-c) the density of states (DOS) in QH system (b)
in the absence of disorder and (c) in the presence of disorder.

can be shown to take the form [36]

σxy =
ie2

~
∑
α

∮
T 2

d2k

(2π)2
(〈∂yuαk|∂xuαk〉 − 〈∂xuαk|∂yuαk〉) . (1.15)

It turns out that the above integral is quantized[36] as long as the bulk gap remains (will show it

in the upcoming section) and it can be written as

σxy = − e2

2π~
∑
α

cα, (1.16)

where cα ∈ Z and α runs over the filled bands, although, unless the circumstances are such that

bands have non-trivial topology, the cα’s are all zero. This equation is interesting in many ways.

First of all, it doesn’t depend on the energy, except to determine which bands are to be summed

over (filled bands). That means small deformation to the Hamiltonian doesn’t affect σxy. As long

as the system is gapped, σxy is always quantized.

1.2.2 Gapless chiral edge states

How does an insulator give finite and precise conductivity? The answer to this question lies on

the edge of the system. Topological insulators, as opposed to trivial insulators, have conducting

12
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Figure 1.4: Cartoon picture of chiral edge states in the Quantum Hall system.

chiral edge states which are topologically protected. Here the chirality means that the states are

directional, i.e, particles in these states move in a particular direction. This can be understood

well in a semi-classical picture. At a high enough magnetic field, the cyclotron radius is small

enough such that the electrons in the bulk do not see the edge and are localized. For electrons

near the boundary, they collide with the boundary and move in “skipping orbits” which leads

to a current along the edge as shown in Fig. 1.3(a). The existence and chirality of the quantum

version of these, the edge states, are topologically protected, that means they are robust against

local interactions and disorder as long as the bulk is gapped. The reason behind this is quite

simple, each edge hosts edge states of same chirality that lie within the band gaps of the insulator

and hence decay exponentially into the bulk. Since the states of other chirality are physically

very far on the other edge, small local interaction and disorder cannot scatter them into each

other, and hence they are protected.

Most of the topological properties of the system show up in the edge states. This intertwining is

refereed to as “bulk-boundary correspondence” which says that while going from one topological

phase to another, the gap must close11 [37, 38, 39]. So, if we connect two Chern insulators with

Chern number ν1 and ν2 then we will have |ν1 − ν2| edge states at the interface[40, 41, 42, 43].

To explain the presence of topology and its connection to the plateaus in the transverse

conductivity, we need to first understand the non-trivial properties of the Bloch wave functions

11In other words, phases with different topological invariants constitute different quantum phases and going form
one quantum phase (say Hall insulator) to another (say vacuum) requires gap closing
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One of them is the non-dynamical phase12 acquired by the wave function while moving in the

parameter space13, known as Pancharatnam phase or Berry phase.

1.3 Pancharatnam phase or Berry phase

Pancharatnam phase or Berry phase is the phase acquired by a wave function of the system while

traversing a path in parameter space adiabatically. It results from the geometric properties14 of

the parameter space of the Hamiltonian [44]. The phenomenon was independently discovered by

Pancharantnam in 1956[45], and by Longuet-Higgins in 1958[46]. It was later on generalized by

Berry in 1984[47]. The Berry connection (Aα) and Berry phase (γα) of the αth band are defined

as15

Aα(k) = i〈ψαk |∇k|ψαk〉, γα =

∮
O
Aα.dk (1.17)

where O is a closed loop in k-space. It should be noted that Aα is a gauge-dependent quantity

but γα is not (in a closed loop). Under the gauge transformation, θ(k),

|ψαk〉 → eiθ(k)|ψαk〉, (1.18)

the Berry connection and Berry phase transform as:

Aα → Aα −∇kθ(k)

γα → γα − (θfinal − θinitial). (1.19)

As θ can only change by an integral multiple of 2π in a closed loop, γα can also change

by an integral multiple of 2π. Since the form of Berry connection resembles close to the

12Non-dynamical phase is the phase which is acquired by the wave function not because of the usual time evolution
but because of the other features such as geometry of the parameter space.

13Here it is the 2D Brillouin zone (BZ)
14Such as the geometry of the parameter space. In QHE, the parameter space is a 2-Torus, T2

15Detailed derivation is given in Appendix A
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electromagnetic vector potential, we can define a Berry field or curvature as

~Fα(k) = ~∇k × ~Aα, Faα(k) = −Im
[
εabc〈∂bψαk |∂cψαk〉

]
. (1.20)

Now we can define

να =
1

2π

∮
T 2

d2k.Fα =
γα
2π

(1.21)

where ν(∈ Z) is known as the first Chern number. On looking closely, it becomes evident that

cα in Eq. (1.16) is the same as ν defined above.

1.4 Topological phase in 1D: SSH model

The simplest example of a topological phase in 1D arises in the famous Su-Schrieffer-Hegger

(SSH) model for poly-acetylene [48]. Poly-acetylene is a 1D chain of C-atoms with staggered

hopping amplitude between nearest neighbor (NN) sites. This makes for a two sub-lattice unit

cell16 as shown in Fig. 1.5. The low energy Hamiltonian can be written in a “two-band” model as

HSSH =
N∑
i=1

tc†A,icB,i +
N−1∑
i=1

t′c†A,i+1cB,i + h.c. (1.22)

where c†α,i(cα,i) are the creation (anhilation) operator on the sub lattice α(= A,B) in the ith unit

cell, and t, t′ are the staggered hopping as shown in the Fig. 1.5.

On performing the Fourier transformation on the above Hamiltonian, in the k-space we get

HSSH =
∑
k

(t+ t′e−ika)c†A,kcB,k + h.c., (1.23)

16the reason why we have di-atomic chain is because of the Peierls instability. This instability arises because of the
diverging response of the Fermi sea to small perturbation in low dimensions. For details see dedicated texts such
as Grüner[49] for further readings.
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Figure 1.5: Cartoon showing the SSH model with staggered hopping

where a is the size of the unit cell and c†α,k(cα,k) are c†α,i(cα,i) equivalents in the momentum

space17. In the matrix form, the Hamiltonian looks

HSSH =
∑
k

(
c†A,k c†B,k

)
HSSH(k)

cA,k
cB,k


HSSH(k) =

 0 t+ t′e−ika

t+ t′eika 0

 =

 0 h(k)

h∗(k) 0

 = d(k).σ̂ (1.24)

where h(k) = t + t′e−ika, d(k) = (t + t′cos(ka),−t′sin(ka), 0) and σ̂ = (σx, σy, σz) are the

three Pauli matrices. Note that dx and dy are respectively the real and imaginary parts of h(k).

The eigenvalues ofHSSH(k) are given by

ESSH(k) = ±
√
t2 + t′2 + 2tt′cos(ka) (1.25)

1.4.1 Topological properties

As can be seen from the Eq. (1.25) and the band structure ofHSSH(k) in Fig. 1.6, the system is

gapped ∀t 6= t′. But d(k) does not behave the same way for |t| < |t′| and |t| > |t′|, as shown in

the Fig. 1.7. This tells us that there is something different in these two cases although the band

17Fourier transformation is defined as:
c†α,k =

1√
N

∑
i

e−ik.ric†α,i,

cα,k =
1√
N

∑
i

eik.ricα,i
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Figure 1.6: Figure showing the SSH model (a) with |t| = |t′| and (b) with |t| 6= |t′|.

structure looks exactly the same. From Eq. 1.17, we get

ν =
1

2πi

∫ π

−π
dk

d

dk
ln(h(k)) =

1

2πi

∮
dh(k)

h(k)
, (1.26)

where h(k) = dx(k)− idy(k) and the closed loop integral is over the circle shown in Fig. 1.7.

ν is known as the winding number, which counts the number of times d(k) circles around the

origin in dx−dy (or the complex h(k)) plane (when k changes from−π to π) as shown in the Fig.

1.7. The integrand in Eq. 1.26 has a pole at ~d→ ~0. Thus if the circle that ~d (or h(k)) traverses

encircles the pole at the origin, we obtain a finite residue, otherwise zero. This is reflected in the

results:

• |t| > |t′|, ν = 0

• |t| < |t′|, ν = 1

Here, the winding number ν can be regarded as a topological invariant.
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Figure 1.7: Variation of h(k) in the dx − dy [or equivalently, in the complex h(k)] plane for (a) with
|t| > |t′| and (b) with |t| < |t′|. If |t| < |t′|, h(k) encircles the origin, while if |t| > |t′| it doesn’t.

To support the point, it can be clearly seen in Fig. 1.8 (which shows the energy eigenvalues for a

finite system with open boundary condition) that these two limits are different. When |t| > |t′|,

there is no zero energy state but when |t| < |t′|, there are two zero energy states.

1.4.2 Topological phase in 2D: Chern Insulator

QHE is not just limited to the system with an applied magnetic field. In 1988 Haldane[14]

showed that an external magnetic field is not required but breaking TRS is necessary. The easiest

way to understand this is by an example. We will take an example of Chern Insulator (CI) on a

square lattice. Consider a model Hamiltonian for spin-less electrons in a two sub-lattice system

in 2D given by

HCI(µ) =
∑
k,α,β

hαβ(k)c†kαckβ

h(k) = [cos(kx) + cos(ky)− µ]σz + sin(kx)σx + sin(ky)σy (1.27)
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Figure 1.8: Spectrum of the finite SSH model when (a) |t| > |t′| and (b) |t| < |t′| and (c) as a function
of |t′|. Spectrum in (b) shows two zero energy states. These states are localized on the boundary of the
system as seen from (d) and (e).

where σ’s are the Pauli matrices (operating in the space of the two sub-lattice indices)18. Under

the time reversal operation, σx remain invariant while sin(kx) changes its sign; hence, the above

Hamiltonian explicitly breaks TRS. The Chern number of the above Hamiltonian (calculated

using Eq. 1.21) as a function of µ gives

18σ may represent spin or sublatice, in both the cases, HCI breaks TRS. If it represents spin,
(cos(kx) + cos(ky)− µ)σz breaks TRS while if it is sub-lattice sin(kx)σx breaks TRS. We stick to the sub-lattice
picture because we need spin later on for something else.
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Figure 1.9: Cartoon showing the edge states in the Quantum Spin Hall system, two different states on
each edge represents two different spin states of opposite chirality.

ν = −1, (0 < µ < 2)

= +1, (−2 < µ < 0)

= 0, otherwise. (1.28)

This example also tells us that TRS breaking is necessary but not sufficient to get non-zero Chern

number (∀|µ| > 2, ν = 0).

1.5 Quantum Spin Hall effect (QSHE)

As we have seen in the previous discussions, QHE arises because of the breaking TRS due to an

externally applied magnetic field but only TRS breaking is necessary to get QHE, a magnetic

field is not[14]. Now one can ask a question if we can have QHE in presence of TRS? The

answer is obviously no because σxy is odd19 under TR and hence for a TRS system, it must be

zero.

In 2005, Kane and Mele[15] came up with a model with TRS which has 2 copies of TRS

19σxy = jx/Ey , jx is odd under TR while Ey is even, so σxy is odd under TR
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breaking model which corresponds to two different spins. They showed that both of the copies

have opposite Chern number and hence the total Chern number is zero (as expected), but the

difference between the two is not zero. They called it “Spin Chern number”. This is the first

example of Quantum Spin Hall Insulator(QSHI). Since both the copies have opposite Chern

number, each edge hosts two counter propagating edge states. In contrast to the QHI, QSHI was

first predicted[15] and then observed later[50, 51].

1.5.1 An example of QSHE

We can easily demonstrate the idea of Kane and Mele[15] using the CI example used in the

previous section. We can make up a TRS Hamiltonian by using the simple trick, making the

Hamiltonian a 4× 4 matrix using two 2× 2 h(k):

HTRS(k) =

h(k) 0

0 h∗(−k)

 (1.29)

where h(k) (a 2× 2 matrix) is the same as in Eq. 1.27. h∗(−k) is the Hamiltonian we get upon

the action of TR on h(k). SinceHTRS contains both the copies (T 2 = −1), it is invariant under

TRS. Now if we calculate Chern number again using the Eq. 1.21, we will get 0 ∀µ (as expected)

but we have already seen that h(k) can have finite Chern number (depending on µ), so, we can

define a new topological invariant called “Spin Chern Number” which essentially takes the

difference of the Chern number of h(k) and h∗(−k). This will be finite for a certain range of µ

(|µ| < 2).
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1.6 Z2 Classification

The above description of the spin Chern number becomes inapt for those Hamiltonians where

spin is not a good quantum number. Such a case often arises in the spin-orbit coupled system.

In such a case a new and more generalized topological invariant was proposed by Kane and

Mele[15] in 2D and Fu, Kane and Mele[17] in 3D systems. Although the complete understanding

and derivation of this topological invariant is quite lengthy, some underlying concepts can be

obtained with an analogy to the previous concept of QHE. In a QH insulator, the bulk topology

characterized by the Chern number is equivalent to the charge polarization to the edges which

is a direct consequence of “bulk-boundary correspondence”. In a QSH insulator, the bulk

spin Chern number corresponds to spin polarization (without breaking TR symmetry) to the

edges. Based on these commonalities, Kane and Mele proposed that for TR invariant systems, a

mathematical quantity, namely, TR polarization is accumulated at the edge or surfaces. Such

TR polarization must correspond to a topological invariant (equivalent to the Chern number) in

the bulk. This topological invariant takes two values of 0 and 1 (corresponding to trivial and

non-trivial topological phases). Hence this TR invariant topological invariant is often termed

as a Z2 invariant. We can define the polarization for a band state |ψI(k)〉 and its time reversal

partner |ψII(k)〉 = |T ψI(k)〉 (where T is the time reversal operator (T 2 = −1)) as

PI = i

∫
〈ψI(k)|∇k|ψI(k)〉.dk

PII = i

∫
〈T ψI(k)|∇k|T ψI(k)〉.dk. (1.30)

Now, P = PI − PII is the measure of the TR polarization. After a lengthy derivation, it can be

shown that this is a Z2 invariant. It turns out that the topological invariant in case of QSHI counts

the number of times a band gets exchanged with its time reversal partner in one half of the BZ. It
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can formally be calculated by calculating the pfaffian20 of the ground state and counting its zeros

in the BZ.

I =
1

2πi

∫
C

dk.∇log(P (k)) (1.31)

P (k) = Pf [〈ui(k)|T |ui(k)〉] .

For the two bands spin full model, T = −iσyK where K is the complex conjugation operator.

If the system is parity invariant, the TR polarization can be easily evaluated by calculating

I =

occupied bands∏
α

N∏
i=1

δi,α, (1.32)

where δi’s are the parity eigenvalues at the TRI k-points, α is the band index, and N is the total

number of TRI k-points, N is 4 in 2D and 8 in 3D.

1.6.1 An Example of Z2 invariant Topological Insulator

To demonstrate how a Z2 invariant can emerge even when the spin Chern number is not defined,

we consider the same model discussed before but introduce a spin flip term ∆. The requirement

is that ∆ has to be TRI:

H′TRS(k) =

h(k) ∆

∆† h∗(−k)

 , (1.33)

20The Pfaffian of a 2n× 2n skew-symmetric matrix A = [aij ] is given by

Pf [A] =
1

2nn!

∑
σ∈S2n

sgn(σ)

n∏
i=1

aσ(2i−1),σ2i

where S2n is the symmetric group of the dimension (2n)! and sgn(σ) is the signature of σ.
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where ∆ is an adiabatic term which preserves the TRS and doesn’t close the gap. Here spin

is no longer a good quantum number but the Z2 invariant from Eq. 1.31 gives 1. In the above

Hamiltonian, the Z2 invariant (I) remains 1 as long as ∆ doesn’t close the gap for the proper

choice of µ.21

1.7 Topological Field Theory: Chern-Simons theory

Chern-Simons theory is a field theoretic approach for studying topological phases, or more

technically, it is a 3-dimensional “topological quantum field theory”. As shown in the previous

section, the first Chern number (Eq. 1.21) (in 2+1 D) is quantized for any continuous state

|αk〉 defined over the 2D BZ. The combination of quantum Hall current (ji = σHε
ijEj) and the

continuity equation (∂ρ
∂t

= −∇.j) leads to another equation

∂ρ

∂t
= −∇.j = −σH∇× E = σH

∂B

∂t
(1.34)

=⇒ ρ(B)− ρ(0) = σHB (1.35)

where ρ(0) is the charge density in the ground state. The above equations can be combined in a

covariant way as

jα =
C1

2
εαβγ∂βAγ, (1.36)

where α, β, γ = 0, 1, 2 are the temporal and spatial indices in 2+1 D and C1 is an integer known

as first Chern number (it is the same Chern number defined as να in Eq. 1.21 and cα in Eq. 1.16).

For the external gauge field Aα, the above response can be described by the so called topological

Chern-Simons field theory[52],

21the idea is to start with ∆ = 0 such thatH′TRS has non-trivial Spin Chern Number and crank up ∆ such that the
gap remains.
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Seff =
C1

4π

∫
d2x

∫
dtAαε

αβγ∂βAγ, (1.37)

from which the above responses can be recovered as δSeff/δAα = jα. It should be noted that

this topological action is gauge invariant22, although the integrand is not.

A straight forward generalization of the above 2+1 D Chern-Simons action in 4+1 D is given

by[22]

Seff =
C2

24π2

∫
d4xdtεαβγρτAα∂βAγ∂ρAτ , (1.38)

where α, β, γ, ρ, τ = 0, 1, 2, 3, 4 are again temporal and spatial indices in 4+1 D and C2 is an

integer also known as second Chern number and is given by

C2 =
1

32π2

∫
d4kεijkltr[fijfkl] (1.39)

fαβij = ∂ia
αβ
j − ∂ja

αβ
i + i[ai, aj]

αβ,

aαβi (k) = −i〈α,k| ∂
∂ki
|βk〉

where i, j, k, l = 1, 2, 3, 4. The responses are given in a similar fashion

jα(x) =
δSeff [A]

δAα(x)
. (1.40)

1.7.1 Axion Angle

In a 3D topological insulator, the electromagnetic response is described by Maxwell’s action

22this term is gauge invariant only on a closed manifold in space-time
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SEM =
1

8π

∫
d3xdt

(
εE2 − 1

µ
B2

)
, (1.41)

where ε and µ are the dielectric constant and magnetic permeability of the material and E and

B are the electromagnetic fields inside the insulator23. However, based on symmetry, it is also

possible to write another quadratic term in the effective action

Sθ =
θ

2π

α

2π

∫
d3xdtE.B (1.42)

where α = e2/~c is the fine structure constant and θ (axion angle) is the parameter which

characterizes the topological properties and is equivalent to the Z2 invariant in TRS systems.

Under periodic boundary conditions, the Lagrangian is invariant under the shift of θ by 2π, hence

θ is defined mod(2π).24 As E.B is odd under TR, θ can take values only 0 or π for TRS insulators

to keep Sθ TR invariant.25 It turns out that topological insulators are described by θ = π and get

connected to θ = 0 trivial insulators continuously on breaking TRS[22]. This effective action

has the form which implies that an electric field can induce a magnetic polarization and vice

versa.

The parameter θ depends on the band structure of the material and is given by[22]

θ =
1

4π

∫
d3kεijkTr

[
Ai∂jAk + i

2

3
AiAjAk

]
(1.43)

where A is the momentum space gauge field (Berry connection, defined earlier) of the occupied

23Frankly, this is the Lagrangian of EM field, it doesn’t changes based on whether the system is topologically trivial
or non trivial or even metal.

24This is the reason why θ is called as an “angle”
250 and π are equivalent to −0 and −π respectively.
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bands. It has been shown that the axionic field in a topological insulator gives rise to novel

physical effects such as the anyonic statistics and image monopoles[53].

Here we end our discussion of topological bands and field theory, and in the next chapter, we

will briefly discuss some of the field theoretic techniques employed in this thesis to study the

interplay of interaction and topology.
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In the last chapter we discussed the classification of the phases based on topological invariants

(non-local order), now we will discuss the classification of phases based on local order. We will

start with the use of spontaneous symmetry breaking (SSB) ideas to describe phase transitions.

2.1 Spontaneous Symmetry breaking

Spontaneous symmetry breaking (SSB) is a phenomenon in which the ground state has lower

symmetry than the parent Hamiltonian. Generally, such a symmetry breaking occurs upon tuning

some parameter, e.g., temperature, coupling constant, interaction, etc. Spontaneous in SSB refers

to the feature that the system has multiple choices for the ground state but chooses one partially

based on the instantaneous preference to one of them as shown in Fig. 2.1. On breaking the

symmetry, the system develops a local order parameter which is generally used to characterize

the phase. Common examples of SSB is the broken U(1) gauge symmetry in superconductors,
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Figure 2.1: Cartoon showing the spontaneous symmetry breaking: (a) in the unbroken phase, a vanishing
order parameter minimizes the free energy, (b) while in the broken symmetry phase, some finite value of
the order-parameter minimizes the free energy. It should be noted that the free energy minima is not a
point but a contour and hence there are an infinite number of possible ground states in the complex order
parameter space.

broken spin rotation symmetry (SU(2)) in case of ferromagnet or anti-ferromagnet, discrete

translation symmetry breaking in density waves, etc. In the sub-section below we will discuss

different approaches to address spontaneous symmetry breaking.

2.1.1 Mean field order parameter

Order parameter, as the name suggests, is a quantity (mostly physical) which quantitatively

captures the order in the system. It can be easily understood with the help of an example. Let’s

consider the attractive U Hubbard model. The interaction term is given by

Hint = −U
∑
i

ni↑ni↓, niσ = c†iσciσ
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where U > 0 and ciσ(c†iσ) are electronic annihilation (creation) operator. In the momentum space,

it becomes1

Hint = −U
∑
k,k′,q

c†k↑c
†
k′↓ck′+q↓ck−q↑. (2.1)

Under the mean field2 approximation, the term inside the summation breaks into3

c†k↑c
†
k′↓ck′+q↓ck−q↑ = 〈c†k↑c

†
k′↓〉ck′+q↓ck−q↑ + 〈ck′+q↓ck−q↑〉c†k↑c

†
k′↓ − 〈c

†
k↑c
†
k′↓〉〈ck′+q↓ck−q↑〉

(2.2)

where 〈, 〉 represents the ensemble average and the operators have their usual meanings. At zero

temperature, 〈c†k↑c
†
k′↓〉 acquires a finite value for k′ = −k. As can be easily seen, this breaks

the particle number conservation (U(1) gauge) symmetry4 of the system. Given the fact that the

mean-field order parameter goes into the Hamiltonian, and the expectation value of the same

order parameter can itself be calculated from the ground-state of the mean-field Hamiltonian,

these two are related in a self-consistent5 way. This means one has to determine the order

parameter self-consistently for each parameter choice of the Hamiltonian.

1Using the same transformation used before.
2as the name suggests, the mean field approximation neglects the effect of fluctuation and only take the average
(mean) value of the operators into account. It is defined as

AB
MF
= 〈A〉B +A〈B〉 − 〈A〉〈B〉

3It should be noted that this mean field decomposition is one of the many possible decompositions as we will see in
the later chapters. Generally, one of them has lower free energy than other and that decides the ground state. In the
present case it is the superconducting order parameter which has the lowest free energy.

4It can be easily seen that this mean-field Hamiltonian doesn’t remain invariant under the transformation ckσ →
eiφckσ. Also, the total number operator (n =

∑
kσ nkσ;nkσ = c†kσckσ) doesn’t commute with the mean-field

Hamiltonian and hence it is no longer a conserved quantity.
5Self-consistent equations are of the form ∆ = F(∆), one provides a ∆i as an input and gets another ∆f as the
output; upon iteration, the process often converges such that the input and output are same, whence self-consistency
is achieved.
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2.2 Field-theoretic approach

In this section, we discuss the field-theoretic approach to phase transitions and related areas.

We discuss (as an example) a continuum model with on-site attractive interaction. We start by

writing the Hamiltonian as

H =

∫
ddr

(∑
σ

c†σ(r)
p̂2

2m
cσ(r)− Uc†↑(r)c†↓(r)c↓(r)c↑(r)

)
(2.3)

where the operators have their usual meaning. The quantum partition function is given by

Z = Tre−β(Ĥ−µN̂) (2.4)

=

∫
ψ(β)=−ψ(0)

D(ψ̄, ψ)exp

(
−
∫ β

0

dτddr

[∑
σ

ψ̄σ

(
∂τ +

p̂2

2m
− µ

)
ψσ − Uψ̄↑ψ̄↓ψ↓ψ↑

])
,

(2.5)

where ψσ(r, τ), ψ̄σ(r, τ) (we have suppressed (r, τ) for brevity) denote Grassmann

(anti-commuting) fields6. Here we can use the famous Hubbard Stratonovich7 decoupling to

reduce the quartic term in the partition function to quadratic terms at the cost of introducing new

pairing fields (∆̄,∆) into the problem.

6for details regarding Grassmann variables (fields) and their algebra, readers are referred to dedicated references
such as Altland and Simons [23]

7Hubbard-Stratonovich transformation is an exact mathematical transformation given by:

exp
(
−a

2
x2
)

=

√
1

2πa

∫ ∞
−∞

exp

[
−y

2

2a
− ixy

]
dy

32



Introduction and Overview Cont...

eU
∫
ddrψ̄↑ψ̄↓ψ↓ψ↑ =

∫
D(∆, ∆̄)exp

(
−
∫
ddr

[
1

U
|∆(r, τ)|2 + (∆̄ψ↓ψ↑ + ∆ψ̄↑ψ̄↓)

])
(2.6)

Now the full partition function becomes

Z =

∫
D(ψ̄, ψ, ∆̄,∆) exp

[
−
∫
ddr
|∆|2

U

]
exp

[
−
∫
ddr(ψ̄↑, ψ↓)G−1(ψ̄↑, ψ↓)

†
]
,

(2.7)

G−1 =

[G(p)
0

]−1

∆

∆̄
[
G

(h)
0

]−1

 ,

where
[
G
p/h
0

]−1

= ∂τ ±
(

p̂2

2m
− µ

)
. Since the integral in Eq.( 2.7) is quadratic in fermion fields,

we can formally integrate8 them out to get

Z =

∫
D(∆̄,∆) exp

[
−
∫
dx

1

U
|∆|2 + ln det

(
G−1

)]
, (2.8)

=

∫
D(∆̄,∆) exp

[
−S

[
∆̄,∆

]]
. (2.9)

Now our partition function, Z , is written only in terms of the integral over Hubbard-Stratonovich

fields, and the free energy is given by

F = −kBT ln Z (2.10)

8using the identity
∫
D(ψ̄, ψ) exp

[
−
∫
ψ̄Âψ

]
= det Â = exp

[
ln det Â

]
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Figure 2.2: Cartoon to show the Mexican hat potential which is rotationally symmetric.

2.2.1 Saddle Point Approximation

Till now (Eq. 2.8), the theory is formally exact and no approximations have been made, but

it is hard to proceed further without making any approximation. The simplest approximation

involves finding the extremal pairing field, ∆0 that minimizes S
[
∆̄,∆

]
and then approximating

the partition function as

Z = exp
[
−S

[
∆̄0,∆0

]]
(2.11)

This saddle point approximation9 is easily shown to be equivalent to the mean field approximation

discussed in the previous section.

9valid only when T � Tc (Tc is the critical temperature for the phase transition), so that the fluctuations are weak
and do not contribute much.
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Figure 2.3: Figure showing a cut of the Mexican hat potential. Radial mode is the Higgs-mode while
the angular mode is the Goldstone-mode.

2.2.2 Ginzburg-Landau theory

A slightly better way to solve the problem is to use the Ginzburg-Landau theory. Here one

expands G−1 (and hence the effective action S) in a power series in |∆|. For rotationally invariant

problems, terms with odd powers of |∆| vanish and only the term with even powers survive.

Near the transition point, where ∆ is small and the correlation time is large compared to β

S[∆] =

∫
ddr
[
b|∆|2 +K|∂∆|2 + d|∆|4 + . . .

]
(2.12)

where b = 1/2g + Π(0, 0)/2, K = limq→0 ∂
2
qΠ(q, 0)/2 > 0 and d > 0. If one were to constrain

the functional integral to the neighborhood of a specific configuration of the pairing field, then

the free energy is given by

F [∆] = −kBT ln Z = −kBT ln e−S[∆]

F [∆] = kBTS[∆] = kBT

∫
ddr
[
b|∆|2 +K|∂∆|2 + d|∆|4 + . . .

]
(2.13)
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this is the famous Ginzburg-Landau free energy functional10. Let’s forget about the |∂∆|2 term

in the Eq. (2.13) for the time being. For b > 0 and d > 0, the free energy minimum lies at ∆ = 0

and hence the state of the system doesn’t break any symmetry. When b < 0 while d > 0, the

free energy minima lie at |∆| =
√
−b/2d, this leads a Mexican hat kind of free energy profile as

shown in the Fig. 2.2. In a 2nd order phase transition, it turns out that b goes from a positive value

to a negative value as one lowers the temperature. Hence, the system breaks the symmetry upon

lowering the temperature and since the order parameter developed continuously, this represents

a continuous or 2nd order phase transition. On the other hand, if the order parameter changes

discontinuously, the transition is 1st order.

2.2.3 Higgs and Goldstone modes

Since ∆ is a complex field, the low energy fluctuations are of two types, amplitude fluctuations

and phase fluctuations as shown in Fig. 2.3. We can calculate the mass of amplitude and phase

modes by taking ∆ = |∆0 + δ∆|eiφ+iδφ, where δ∆ and δφ are amplitude fluctuations and phase

fluctuations respectively, and substituting it into the Eq. (2.13). The coefficient of δ∆2 and

δφ2 are the masses of the amplitude (Higgs) and phase (Goldstone)11 modes. From Eq. 2.13

(ignoring the |∂∆| term), we get

F [|∆0 + δ∆|eiφ+iδφ] = b|∆0 + δ∆|2 + d|∆0 + δ∆|4, (2.14)

10Detailed derivation is given in the Appendix B.
11obviously mass of the phase mode is zero, Goldstone modes are massless. We can see it explicitly by calculating

the coefficient of δφ2
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which clearly shows that free energy doesn’t depend on ∂φ, hence the mass associated with the

Goldstone mode (phase fluctuation) is

Mphase =
∂2F
∂δφ2

∣∣∣∣
δφ=0

= 0. (2.15)

On the other hand,

Mamp. =
∂2F

(∂δ∆)2

∣∣∣∣
δ∆=0

= 2b+ 12d|∆0|2 (2.16)

2.3 Brief introduction to Exact Diagonalization

In the previous two sections, we discussed a few approximations for solving interacting problems.

ED is an accurate diagonalization of the Hamiltonian expressed in the entire Hilbert space of

a finite-sized sample of the given system. Clearly, this is a mammoth task especially in higher

dimensions as the Hilbert space dimension grows exponentially with the Dth power of the linear

system size; but one can use the technique quite well in 1D and sometimes in 2D as well.

There are broadly two ways of doing ED. One is to calculate all the eigenvalues and eigenvectors

of the Hamiltonian, and the other way is to calculate only a few of them. The former is required

when we are not only interested in the low energy states but also in high energy states, for

example in many body localization (MBL) problems where states of the system with a finite

energy density are studied, and hence all the states are required. While the latter ED method

is sufficient when we are only interested in the ground state and a few excited states. As one

can expect, the former one is more costly in terms of computation compared to the latter one for

given system size.

The procedure is to create a complete basis in the Hilbert space of the finite-sized system and

then diagonalize the Hamiltonian in that basis based on one of the approaches discussed above.
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As we are diagonalizing the full Hamiltonian which is of the dimension of the Hilbert Space,

there is an upper limit (usually very small) of the system size which can be handled using ED.

• Spin S=1/2 models:40 sites square lattice, 39 sites triangular, 42 sites star lattice at Sz=0,

64 spins or more in elevated magnetization sectors, with up to 1.5 billion (=109) basis

states with symmetries.

• t-J models: 32 sites checker board with 2 holes, 32 sites square lattice with 4 holes, with

up to 2.8 billion basis states.

• Fractional quantum Hall effect: different filling fractions ν, up to 16-20 electrons, with up

to 3.5 billion basis states.

• Hubbard models: 20 sites square lattice at half filling, 20 sites quantum dot structure,

22-25 sites in ultra cold atoms setting w.o. spatial symmetries, with up to 160 billion basis

states.

2.4 Overview of this Thesis

The remaining thesis is divided into three main chapters and one last sixth chapter which contains

the concluding discussion. In the next three chapters, we introduce three problems in the broad

area of topological insulator and attempt to address them in great detail using the analytical

and/or numerical techniques introduced above. Most of the questions addressed are motivated

primarily by theoretical interest but many of them have connections to material realizations as

well. Many of these open up ample opportunities for future work which we will briefly discuss

in the last chapter. Below I outline the new results obtained in this thesis which are discussed in

detail in the next three chapters.
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2.4.1 Quantum Spin Hall Density Wave Insulator of Correlated Fermions

In chapter 3, we present a Z2 type topological order parameter which is defined by spontaneous

translational symmetry breaking. We start with a Rashba-type spin-orbit coupled helical band

structure. We show that when the opposite chiral bands are significantly nested by a ‘magic’

Fermi surface nesting vectorQ ∼ (π, 0)/(0, π), the chirality between a momentum k, and that

at k + Q is completely reversed. This has a very intriguing consequence to the quantum and

topological properties of the system. Owing to the nesting driven Fermi surface instability, a new

class of quantum order parameter develops which we attribute as spin-orbit density wave. More

interestingly, due to the associated chirality inversion between the main and folded bands, which

manifests into chirality inversion between different lattice sites in the real space, modulated band

inversion occurs. The resulting insulating phase exhibits a quantum spin-Hall (QSH) effect, with

metallic Dirac excitation at the edge. Since the QSH effect is spatially modulated, and arises

from spontaneous translations symmetry breaking, while time-reversal symmetry is intact, we

call it a quantum spin-Hall density wave (QSHDW) state.

2.4.2 Higgs-Axion conversion and anomalous magnetic phase diagram in

TlCuCl3

In chapter 4, we have focused on the experimentally well-studied material TlCuCl3 and asked

the question: what is so special in TlCuCl3 which drives such a wide variety of unusual magnetic

properties in the same crystal? We looked at this problem with a combination of quantum field

theory, tight-binding model, and the DFT band structure calculations. In the DFT band structure,

we are surprised to find a Dirac cone in the bulk band structure without any spin-orbit coupling

or magnetism. We discover that the Dirac cone comes from a Su-Schrieffer-Heeger (SSH) like

dimer Cu-chain lying in the crystal structure. The SSH model was previously studied only in a
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1D polyacetylene chain in pursuit of solitons. We present TlCuCl3 as the first 3D bulk crystal

where such an SSH chain finds its inhabitance. The SSH chain produces a 3D Dirac cone in

the non-magnetic phase. As a Heisenberg type interaction is introduced, the two Cu-sublattices

of the SSH chain naturally forms a spin-singlet dimer. Such a dimerized magnetic state is

very different from the typical spin-density-wave order in other monoatomic antiferromagnetic

systems. Moreover, as we introduce the spin-orbit coupling (SOC), the SSH chain, dimerized

spin-singlet, and the SOC are intertwined to give a topological phase transition to an axion

insulator. Finally, to study the interplay between the magnetic excitations (Goldstone mode,

Higgs modes, and paramagnons) and the topological axion mode, we derive the Chern-Simons-

Ginsburg-Landau (CSGL) theory starting from the materials specific Hamiltonians. We showed

that the topological axion term gives an additional contribution to the Higgs mass, and hence

Higgs mode remains massive even at the quantum critical point, Secondly, we also showed that

axion term introduces a constant to the paramagnon lifetime near the critical point, prohibiting

the paramagnons to decay into the usual particle-hole continuum.

2.4.3 Bosonic Integer and Fractional Quantum Hall effect in an

interacting lattice model

Finally, in chapter 5, we explore the presence of bosonic integer, as well as the fractional quantum

Hall effect in an interacting lattice model. Our model is defined over bipartite honeycomb lattice

with π magnetic flux per unit cell and is populated by bosons with hardcore constraint. The

bosons can hop to the nearest neighbor (simple hopping) and to the next nearest neighbor

(correlated hopping). We use the Lanczos algorithm (Exact Diagonalization (ED)) to find the

ground state as well as a few excited states of the system with an aim to characterize the different

phases of the system. We have performed calculations for two different fillings and provide

evidence for the presence of the bosonic integer quantum Hall effect (BIQHE) and the bosonic
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fractional quantum Hall effect (BFQHE). We also show the phase transition from the bosonic

quantum Hall state to the superfluid (SF) state. We have also performed the adiabatic flux

threading to confirm the quantum Hall states.
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3
Quantum Spin Hall Density Wave Insulator of Correlated

Fermions

3.1 Introduction

In the previous chapters, we discussed the classification of the phases of condensed matter based

on the order parameter (either local, Landau Kind or non-local, Topological). In this chapter, we

will show how a local order can give rise to a non-local order. In other words, how a Landau

kind of symmetry breaking can lead to a topological transition in a quantum system.

A topological state of matter can arise when two bands with opposite chirality are inverted

across the Fermi level at an odd number of TR invariant momenta (TRIM). One possible route

of achieving a TR invariant topological state of matter is having band inversion(s) across the

Fermi level at an odd number of TR invariant momenta (TRIM).1 The band inversion needs
1band inversion is the phenomena in which the concerned bands (in momentum space) changes its characteristics
(such as parity, orbital weight, etc. while in the present case, chirality) rapidly with a small change in momentum.
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to happen in between the bands of opposite spin state or chirality [54, 55, 56]. One of the

prerequisites is thus to obtain a momentum dependence of the spin state or chirality, which is

often triggered by the SOC. The inversion of the chirality between the bulk conduction and

valence bands across the insulating band gap at the TRIM is protected by the TR symmetry,

leading to a Z2 TI. At the boundary, both helical states meet at the TRIM with gapless edge

or surface states. Within the Dirac Hamiltonian notation, the inverted bulk band gap (denoted

by m < 0) at the TRIM provides the negative Dirac mass, while with the associated gapless

boundary states.

While strong quantum fluctuations or disorder are often detrimental to the band topology, they

can conversely drive the inversion of the helical bands with non-trivial topological properties.

These states are not always defined by a Landau order parameter, rather they are distinguished

by a topological invariant of the correlated electronic bands. Examples of such states include

topological Mott[57, 58], Kondo[59], and Anderson[60] insulators. Antiferromagnetic order

parameter can give a distinct topological class which breaks TR and translation symmetries but

preserves their combinations[61]. To date, TIs have been realized in various non-interacting

systems including HgTe/CdTe[51, 50], InAs/GaSb [62] quantum wells for two-dimensional (2D)

TIs, and Bi-based chalcogenides for 3D TIs[63, 64, 65, 66, 67]. SmB6 [59, 68], and YbB6 [69]

have been extensively studied both theoretically and experimentally as potential candidates for

topological Kondo insulators.

In low dimensions, due to prominent Fermi surface nesting, interaction often leads to either

charge or spin density wave ground state[49, 70, 71]. In 2012, a new kind of density wave order

was proposed [72, 2] which is different from both spin and charge density wave, it is spin-orbit

density wave (SODW). It was experimentally confirmed in Pb nano wires[3] (Fig. 3.2). It arises

in the system with strong SOC as well as interaction.

This can be easily characterized by calculating the fidelity of the band which shows a sudden dip at the band
inversion point.

44



Quantum Spin Hall Density Wave Insulator of Correlated Fermions

Figure 3.1: Schematic to show the SODW phase in momentum space and real space. (a) We show the
two helical SOC coupled bands (thin blue and red lines, single particle) nested by Q (in light blue). In
SODW phase (represented by thick blue-red mixed lines), helicity of the bands gets mixed because of
the nesting. (b) Real space representation of the SODW phase. The SODW order parameter modulates
between the nearest neighbor atomic site because of the interaction V. Figure is taken from Ref. [2]. (c)
Real space representation of SODW in 2D. Blue and red color represent the helicity of the state. SODW
cause the helicity modulation along the nesting direction. The figure is taken from Ref. [3]

This emergent phase of matter can be understood starting from the non-interacting SOC

Hamiltonian. In 1D, the Fermi surface is just two points2. This leads to a logarithmic divergence

in the susceptibility[49] in the particle-hole channel, which in turn tell us that the system is

unstable against perturbations3. Now the question is, which pair of Fermi surfaces (or rather

2The Fermi surface has two points for a single band spin-less model and four points for single band spin-orbit
coupled model.

3Susceptibility calculates the the response of the system under small perturbation, if the susceptibility diverges, this
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Figure 3.2: Experimental data from ARPES in Pb atomic wire showing the change in the spin
polarization as a function of ML. Here ML stands for mono layer, and increasing ML causes the decrease
in interaction[3]. The figure is taken from Ref. [3]

points) will get nested to give rise to a density wave like ground state. It was shown in Ref [72],

that the ground state formed by the nesting of the Fermi surfaces of opposite helicity has lower

free energy compared to the ones with the same helicity.4 A schematic of the SODW phase in

momentum as well as in real space is shown in Fig. 3.1. λ is the SOC gap and V is the

interaction strength. This leads to a SODW gap ∆, due to the Fermi-surface nesting between the

bands of opposite chirality with nesting vector Q. This exotic state of matter was experimentally

means that the system is unstable against that kind of perturbation and these perturbation will destroy the ground
state of the system.

4The resultant order parameter looks like 〈c†kσck+Qσ′〉, where σ, σ′ represents the spin and Q is the nesting vector.
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verified in Pb atomic wire [3]. It was shown that the increase in mono layer (ML) causes a

decrease in the interaction strength which eventually destroys the SODW state as shown in Fig.

3.2.

In 2D, the Fermi surface consists of two co-centric circles of different spin helicity as shown

in Fig. 3.3(d). As the Fermi-surface nesting between the states of opposite chirality increases,

depending upon the Fermi-Surface topology, it gets unstable. To get rid of this instability, a

translational symmetry breaking order develops spontaneously to open up a gap in the system.

This state has a density wave order of helical states and hence results in the spatial modulation

of helicity depending upon the nesting wave vector Q as shown in Fig. 3.3(d). A real space

representation of SODW state in 2D is shown in Fig. 3.1 (c). In the present work, we will

discuss the similar kind of density wave in quasi 1D and show that the resultant ground state is

an insulator at half filling with Z2 topological invariant.

3.2 Proposal

We develop the theory of a Landau-type topological order parameter driven by staggered helical

band inversion. The order parameter arises from the translational symmetry breaking due to

Fermi surface (FS) nesting between Rashba-type SOC (RSOC) split bands. Such nesting between

opposite helical states may occur in 2D systems or quantum wires of Bi, Pb, Sb, and similar

elements in which both SOC and interaction are large.[73, 3] The nesting strength is enhanced

with reduced system dimensionality and thickness.[73, 3] Our theory relies on a particular nesting

vector Q ∼ (π, 0) or (0, π), where the helicity of the RSOC

αk = αR(sin ky − i sin kx) (3.1)

( αR being the RSOC strength, and kx, ky are the crystal momenta) is reversed to αk+Q = α∗k.
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Figure 3.3: (a-c) Non interacting Rashba SOC bands along with the spin weight plotted along different
directions. (d) Fermi surface of non-interacting Rashba SOC coupled bands with a green arrow showing
the nesting vector Q. (e) Real part of the Lindhard susceptibility as a function of qx and qy showing the
instability. The figure is taken from Ref. [4]

This is the key feature responsible for modulated helical band inversion. We find that as a

Landau-type order parameter develops due to this FS instability, it leads to a negative Dirac mass

and insulating band gap. Along the direction of the nesting, we find that correlated electronic

bands are associated with non-trivial Z2 invariant, with spin-polarized zero-energy boundary

states. Such a state can be compared with a non-interacting QSH insulator in 2D, with the

distinction that here every alternative atom possess opposite chirality in the same valence band,

owing to translational symmetry breaking, as illustrated in Fig. 3.4(b). Thus we call it a quantum
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Figure 3.4: Distinction between a QSH and QSHDW insulator in real space. (a) A typical QSH insulator
where all lattice sites have the same chirality in the valence band. (b) The QSHDW insulator where two
sub-lattice sites have the opposite chirality in the valence band.

spin-Hall density wave (QSHDW) insulator.

3.3 Theory of QSHDW

To develop the theory of QSHDW, we use a single band tight-binding model in a 2D lattice with

RSOC. The FS nesting is generally known to increase as the dimensionality is reduced. For this

reason, we use anisotropic tight-binding hoppings along the x- and y-directions (tx and ty), so

that the nesting at the wave vector Q = (π, 0) or (0, π) can be monitored by changing the ratio

tx/ty. The concept and formalism of the QSHDW is general for any dimension as long as the

corresponding nesting wave vector allows for the chirality inversion at all given dimensions. We

use a tight-binding dispersion with nearest neighbor hopping as

ξk = −2 [txcos(kxa) + tycos(kyb)]− ξF, (3.2)

where ξF is the chemical potential, and a and b are the lattice constants along the x- and

y-directions, respectively. For the RSOC αk we assume an isotropic SOC strength, αR for
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Figure 3.5: FS topology. (a) Non-interacting RSOC split bands are plotted along kx with ky = 0. Black
horizontal arrows show the nesting vectors. (b) We show the nesting on the quasi-1D FS.

simplicity.

The non-interacting dispersion with RSOC is shown in Fig. 3.5(a), with two horizontal arrows

dictating the Q nesting vectors connecting the two helical bands. For our numerical calculations,

we use ty/tx = 0.2, ξF = 0, and αR = −1.25/tx, which are realistic parameters for Bi-surface

state grown on Ag thin films.[72] For Bi- and Pb- atomic wires with one mono layer coverage,

the intrinsic value of the FS nesting is∼ (0.42π/a, 0)[72, 73]. Starting from this band parameter,

we estimate that the required chemical potential shift to obtain the (π, 0) nesting is about 1.74 tx,

which can be achieved with chemical doping or gating or varying thickness, among others.

The interaction term responsible for the emergence of the QSHDW can be sought from on-site

Hubbard, or Hund’s coupling or Heisenberg interaction, as shown explicitly in the upcoming

section. Here we use a generalized form as

Hint = g
∑

k1−k4,
σ1−σ4

c†k1,σ1
ck2,σ2c

†
k3,σ3

ck4,σ4 , (3.3)

where g is the strength of the on-site interaction. c†k,σ (ck,σ) is the creation (annihilation) operator

for an electron with Bloch momentum k, and spin σ = ±.
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We define a four-component Nambu-Gor’kov spinor Ψk = (ck,↑, ck,↓, ck+Q,↑, ck+Q,↓). For the

particular type of nesting depicted in Figs. 3.5(a-b), one singlet and two possible triplet order

parameters which can develop as:

Singlet:

〈O1〉 =
∑
k

〈Ψk |Γ1d1k|Ψk〉 , (3.4)

Triplet:

〈O2〉 =
∑
k

〈Ψk |Γ2d2k + Γ3d3k|Ψk〉 , (3.5)

〈O3〉 =
∑
k

〈Ψk |Γ4d4k|Ψk〉 , (3.6)

where the Dirac Γ-matrices have the representation

Γ(1,2,3,4,5,6,7) = (τy ⊗ σy, τx ⊗ σx, τx ⊗ σy, τx ⊗ σz, τz ⊗ I, I⊗ σx, τz ⊗ σy) (3.7)

in the same spinor Ψ. τi, and σi are the 2 × 2 Pauli matrices in the sub-lattice and spin basis,

respectively, and I is the 2×2 identity matrix. Except for Γ1 and Γ5, all other Γ matrices here are

odd under TR symmetry. Here, we are interested only in the TR invariant order parameters for

Z2 topological consequence. Therefore, the TR invariance of these order parameters requires

that the structure factor dik must complement the symmetry of the corresponding Γi matrices

under TR symmetry. Therefore d1k for singlet state must be even under TR symmetry, while

all three d2,3,4 for the triplet states must be odd under TR symmetry. In what follows, the order

parameters can be either even parity and spin singlet or odd parity and spin triplet. This is also

consistent with the fermionic antisymmetric property of the order parameters.

These order parameters introduce electronic gap terms as ∆i = g 〈Oi〉. All order parameters

govern the nontrivial topological phase as to be shown later. For the singlet case, we take
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∆1k = ∆10 (s-wave) without losing generality. For the triplet gaps ∆2,3, we find through a

self-consistent solution that ∆2 has higher prosperity propensity to form and possesses a larger

amplitude than the ∆3 term. Henceforth, we thus consider only the ∆2 term for the triplet case.

We consider a p-wave form factor for the odd parity term as ∆2k = ∆20 sin (kxa). We note that

the essential topological character deduced here does not depend on the form factor, which will

be clearer below. At Q = (π, 0) or (0, π), the mean-field Hamiltonian can be fully expressed in

terms of the Dirac matrices as (for singlet):

H1(k) = ξ+
k I4×4 + ξ−k Γ5 + α′kΓ6 + α′′kΓ7 + ∆10Γ1, (3.8)

and eigenvalues:

E1k = ξ+
k ±

√
(ξ−k ± |αk|)2 + ∆2

10, (3.9)

and for triplet:

H2(k) = ξ+
k I4×4 + ξ−k Γ5 + α′kΓ6 + α′′kΓ7 + ∆2kΓ2, (3.10)

and eigenvalues:

E2k = ξ+
k ± |αk| ±

√
(ξ−k )2 + ∆2

2,k. (3.11)

Here ξ±k = (ξk ± ξk+Q)/2, and α′k, and α′′k are the real and imaginary parts of the RSOC (αk).

In analogy with the Dirac Hamiltonian, we can easily recognize that ξ−k gives the Dirac mass

term which controls the topological phase transition, while ∆k helps open the electronic gap

between the opposite helical states.

3.3.1 Electronic insulator

For a pure 1D case (ty/tx → 0), any infinitesimally small value of ∆ produces an insulating

band gap. As the FS warping increases with increasing ty/tx, some parts of the FS (which are
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not nested by Q) remain ungapped for small values of ∆ (topological invariant may still be

defined for the cases with small FS pockets, giving rise to QSHDW semimetals). With larger

∆, the insulating gap appears. The critical value of ∆ required for the insulating state increases

with increasing ty/tx.

In Figs. 3.6(a-b), we demonstrate the electronic dispersion for a QSHDW triplet (singlet) insulator.

The vertical width of each line in Fig. 3.6(a-b) dictates the electronic weight associated with

the main bands (thickness of the line corresponds to the contribution from first reduced BZ

(RBZ)). As the main and shadow bands possess different spin-orbit chirality (due to αk+Q = α∗k),

the emergence of QSHDW order is naturally accompanied by chirality inversion at the TRS

momenta. In the present QSHDW theory, due to non-collinearity of the spins coming from the

SOC, the spin expectation value of two different bands at each sub-lattice cancels each other,

and no magnetic order develops in this ordered phase.

3.3.2 General Interaction Hamiltonian

Hint = g
∑

k1−k4,
σ1−σ4

c†k1,σ1
ck2,σ2c

†
k3,σ3

ck4,σ4 , (3.12)

where g is U for Hubbard interaction, J for Heisenberg interaction and JH for Hund’s coupling.

The momentum and spin conservations imply that k1 + k3 = k2 + k4, and σ1 + σ3 = σ2 + σ4,

with σ = ±. For Hubbard interaction, we obtain σ1 = σ2 = −σ3 = −σ4, while for Hund’s

coupling and Heisenberg interaction with in-plane spin, we get σ1 = −σ2 = σ3 = −σ4. For

the non-interacting RSOC bands Fig. 2(a), the FS nesting Q between the two helical states

further constraints the momentum, and spin indices to be k1 = k2 = k, k3 = k4 = k + Q, and

σ3 = −σ2 = σ, and σ1 = −σ4, and the choice between σ1 and σ2 is subjected to the interaction

term and does not impact the result.

53



Quantum Spin Hall Density Wave Insulator of Correlated Fermions

3.4 Topological properties

For the calculation of topological invariants in a single particle picture (also applicable to mean

field electronic bands), we use the TR invariant formula discussed in Chapter 1.

In the present 1D case, the helicity or the TR polarizability is reversed along the direction of

the nesting. For both singlet and triplet cases, we find that Pf[w] changes sign when going from

kx = 0 to kx = π, and it vanishes at kx = π/2, but not in the perpendicular directions. Therefore,

the system possesses a strong Z2 topological invariant (ν1 = 1) along this direction (in 1D), but

a weak topological insulator in 2D with invariants (0:10). This behavior also makes our model

distinct from the Kane-Mele model of the QSH insulator in graphene which is defined by Z2

invariant (1:00). Since our model is invariant under parity, we can calculate the Z2 invariant

using the eigenvalues of the parity operator as discussed in Chapter 1. It turns out that the party

eigenvalue is given by

δkx,ky = sign(ξk − ξk+Q) = sign(−4txcos(kxa)) (3.13)

which gives

δ0,0 = −1, δπ,0 = 1, δπ,π = 1, δ0,π = −1

=⇒
∏
TRIM

= 1 = (−1)0 (3.14)

(3.15)

while ∏
along kx

= −1 = (−1)1 and
∏

along ky

= 1 = (−1)0 (3.16)

hence, the system can be classified as a weak topological insulator in 2D with invariants (0:10).
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Figure 3.6: Electronic dispersion and Edge states in quasi-1D strip geometries.(a-b) We plot the
Electronic band structure at ky = 0 for singlet and triplet states, respectively. The width of each line
dictates the corresponding Electronic weight in the QSHDW state. The vertical dashed lines give the RBZ
boundaries.(c-d) Edge states in quasi-1D strip geometries for the singlet and triplet state, respectively. We
show the spectrum of the interacting quasi-1D QSHDW in a strip geometry (inset).

3.5 Boundary state

Due to the bulk-boundary correspondence, non-trivial Z2 invariant implies the existence of

zero energy edge states as long as the TR symmetry is held. The present system resembles a

Su-Schrieffer-Heeger [48] type model in 1D if we map the two atoms with opposite chirality in

the larger unit cell as two sub-lattices. Therefore, the topological invariant in the bulk dictates

a single end state inside the gap. The end state is localized at the two ends of the lattice in the

nesting direction (here x-direction) but disperses along the y-direction. They are further split by
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the RSOC.

To show the behavior of these edge states, we investigate a strip geometry, see inset to

Fig. 3.6(d), with open boundary condition along the x-direction while keeping the periodic

boundary condition along the y-direction. Splitting the corresponding (triplet) Hamiltonian into

three parts as Hstrip = H1 + H2 + H12, where H1 and H2 are the non-interacting terms in the

first and second RBZ, while H12 is the interaction term, we get

H1 =

′∑
ky ,j,σ

[
−2ty cos (ky)c

†
ky ,j,σ

cky ,j,σ − txc
†
ky ,j,σ

cky ,j±1,σ

+αR sin (ky)c
†
ky ,j,σ

cky ,j,σ̄ − λ
αR
2
c†ky ,j,σcky ,j+λ,σ̄

]
, (3.17)

Hs
12 = ∆10

′∑
ky ,j.σ

[
eiQxjc†ky ,j,σcky ,j,σ̄ + e−iQxjc†ky ,j,σcky ,j,σ̄

]
, (3.18)

H t
12 = −i∆20/2

′∑
ky ,j,σ

[
e−iQx(j+1)c†ky ,j,σcky ,j+1,σ̄

−e−iQx(j−1)c†ky ,j,σcky ,j−1,σ̄ + h.c.
]
. (3.19)

Here H2 = H1(k→ k + Q). The index λ = ±1 takes care of the fact that for the RSOC, the

nearest neighbor (spin-flip) hopping along ±r directions have opposite sign. j is the lattice site

index along the x-direction, and prime over summation indicates that it is restricted within the

corresponding RBZ. H t/s
12 corresponds to the triplet/singlet case. Also, 1st ‘c’ operator in Ht/s

12

belongs to k sub lattice while 2nd ‘c’ operator belongs to (k +Q) sub-lattice. The eigenvalues

of Hstrip are plotted in Fig. 3.6(c-d) with ∆0 = 1.48tx(3.3tx) for triplet (singlet) case. This gap

value requires an interaction strength of g ≈ 3.3tx(5.0tx). It should be noted that the interaction

strength chosen to show the edge state is much higher than the value required to open the

insulating gap. For each 1D strip, ν1 = 1 invariant dictates zero energy end states (Zak phase).

The nearest neighbor end states are coupled to each other by RSOC, and thus are split at all ky

56



Quantum Spin Hall Density Wave Insulator of Correlated Fermions

values except at the TR invariant points. Since the bulk system is a weak topological insulator,

the boundary states are not immune to perturbations, as also evident from the presence of an

even number of Dirac nodes in the BZ.

3.6 2D extension

We discuss the possibility of extending the QSHDW state to 2D systems. Here we explicitly

include both nestings Qx = (π, 0), and Qy = (0, π), which makes the Hamiltonian in Eq. [3.8

& 3.10] a 6 × 6 one. In such a case, the topological properties become difficult to deduce

analytically. Numerically, we find that Pf[w] changes sign every time while going from one

TRIM point to another, in both x, and y-directions, giving rise to the weak Z2 invariant (0:11), a

2D QSHDW insulator.

3.7 Conclusions

We presented the theory of a new state of matter, called QSHDW state, which is a spontaneous

symmetry breaking quantum phase associated with a non-trivial Z2 invariant. Designing and

synthesis of quasi-2D atomic quantum wires have become a routine laboratory exercise, and

it has been extensively shown that both intrinsic and extrinsic tunings of electronic properties,

SOC and Coulomb interaction are very easy in such geometry.[3] In fact, the FS nesting between

different helical states is observed in a number of quasi-1D,[73] and 2D systems.[74] Moreover,

it is shown that the FS nesting properties, RSOC as well as the charge screening process can be

monitored by varying sample thickness and substrate.[73, 74] In this connection, ferroelectric or

polar substrates can also have a versatile role to enhance SOC and interaction strength.

Few remarks are in order about why the present mean-field model gives the correct result in such
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quasi-1D systems. In quasi-1D systems, one may expect that a Luttinger liquid theory might be

more appropriate. However, experimentally it is demonstrated that at finite temperature and in

the presence of impurity scattering, the quantitative difference between the Luttinger liquid and

Fermi liquid behavior is small and often undetectable.[75] Therefore, a Fermi liquid-like physics

with mean-field order parameter can be used here. Moreover, in the weak coupling region,

quantum fluctuations are Fermi liquid like, i.e. it scales quadratically with energy. Such weak

fluctuations only become appreciable near the quantum critical regime where the gap becomes

small. Away from the critical region, the QSHDW order is robust against quantum fluctuations.

1D SOC is recently observed in optical lattice, where our idea can also be explored with the

existing setups. From a theoretical perspective, the generalization of the proposed topological

phase to higher dimensional FS’s with the same nesting condition along all directions is possible.

For example, non-centrosymmetric heavy-fermion materials would be potential candidates to

explore large SOC and interaction. Therefore, we envision that the emergence of QSHDW

insulator may open a new area in the field of interaction-induced TIs.
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4
Higgs-Axion conversion and anomalous magnetic phase

diagram in TlCuCl3

4.1 Introduction

In the previous chapter, we saw how a local order gives rise to a novel Z2 topological phase.

In this chapter, we reverse the order and see how an intrinsic topological order can affect the

properties of local order. The main things we are concerned about is the order of phase transition,

the mass of the Higgs and the Paramagnon1 modes and their lifetime among others. The study

was done mainly to explain some of the unresolved properties of a well studied (experimentally)

material TlCuCl3 , but the results presented are quite general and are applicable to a wide range

of materials.

TlCuCl3 has maintained a steady theme of research interests for more than two decades due to

1Paramagnons are the Higgs equivalent mode in the paramagnetic phase.
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its unconventional magnetic properties. This material simultaneously accommodates several

unusual magnetic properties, which are either individually present in other magnetic systems,

or even absent. TlCuCl3 is paramagnetic at ambient condition but undergoes a quantum phase

transition to an antiferromagnetic (AFM) state with small pressure[76, 5](Fig. 4.1), or with

magnetic field[77, 78]. (a) The AFM phase of TlCuCl3 arises from the formation of nearest

neighbor quantum dimer − a spin-singlet excitation often seen in spin-liquid systems, and

it does not necessarily break the translational symmetry. (b) TlCuCl3 is one of the earlier

systems where a Higgs mode was observed in the AFM phase, in addition to the usual Goldstone

modes. (c) According to basic quantum field theory, the Higgs mass disappears at the quantum

critical point.[79] But in TlCuCl3, one of the Higgs mode remains massive across the AFM

critical point.[80](Fig. 4.2) (d) Paramagnons, gapped magnetic excitations in the non-magnetic

phase, usually have a short lifetime, as they decay into the particle-hole continuum. But in

TlCuCl3, paramagnons have an equally large lifetime as that of the Higgs mode across the

critical point.[6](Fig. 4.3) (e) In this material, Bose-Einstein condensation of magnons was

experimentally achieved.[77] So, what is so special in TlCuCl3 which drives such a wide variety

of unusual magnetic properties in the same crystal?

Considerable experimental and theoretical studies have been devoted to understand these usual

magnetic properties of TlCuCl3 [81, 80, 6, 76, 5, 77, 78, 82, 83, 79, 84, 85, 86, 87, 88]. In the

theoretical models, mainly the Heisenberg type spin-spin interaction is considered via various

models[82, 83]. These models consistently explain the formation of spin-singlet dimers and

reproduce the experimental spin-wave dispersion[76, 5, 77]. Within the so-called φ4-theory, one

can also obtain a characteristic scale of the Higgs mode’s lifetime[82, 83, 79].

To look into these questions from a materials specific, microscopic perspective, we investigate

the magnetic properties of TlCuCl3 constrained by its DFT band structure. To our surprise,

we find that there exists an isolated Dirac cone in the bulk band structure, even in the absence

of spin-orbit coupling (SOC) and magnetism. The origin of such a Dirac cone is traced back
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Figure 4.1: Phase diagram of TlCuCl3 as a function of pressure. Below the critical pressure pc=1.07
kbar, the system is in the spin liquid phase with the spin excitation gap ∆(p). Above the critical pressure,
the system turns into an antiferromagnet with the Neel temperature TN (p). The figure is taken from the
Ref. [5]

to the presence of a Cu-chain along the c-direction, which is reminiscent of the celebrated

Su-Schrieffer-Heeger (SSH) chain, so far known in 1D poly-acetylene chain.[48] The SSH chain

can produce a 1D Dirac-like degenerate point at kz = ±π/c. However, the DFT result shows a

single band crossing point at k = (0, 0,±π/c). We develop a 3D SSH model for this system,

which reproduces the anisotropic 3D Dirac cone with chiral (sublattice-momentum locking)

states along the kz-direction and helical (spin-momentum locking) state in the basal plane.

As the AFM order turns on, we find that the spin-singlet dimers are formed between the nearest

neighbor Cu-sublattices of the SSH chain. This causes an inversion of the helicity between

the two Cu-sublattices, driving a topologically non-trivial phase, as distinguished by a finite

axion-angle (θ) within the Chern-Simon theory. The interplay between the topological excitations

(axions) and magnetic excitations (Goldstone, Higgs, paramagnons modes) is studied here within

a microscopically derived Chern-Simons-Ginzburg-Landau (CSGL) model. We find that the CS
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Figure 4.2: Gap of all the three triplet excitation measured using inelastic neutron scattering (INS) as a
function of pressure at 1.85 K temperature. The figure is taken from the Ref. [5]

term characteristically modifies the magnetic phase transition. In addition, the axion term gives a

new contribution to the Higgs mass term which is independent of the magnetic order parameter,

and hence Higgs mode remains massless across the AFM critical point. This explains why

the Higgs modes remain indifferent to the magnetic critical point, and the Higgs-paramagnon

conversion becomes independent of the magnetic order parameter.

4.2 DFT Results

TlCuCl3 crystallizes in the monoclinic P21/c space group, with 4 formula units per unit cell. We

use the experimental lattice constants of a = 14.144 Å, b = 8.890 Å, and c = 3.983 Å, and α =

96.32◦. The top view in Fig. 4.4(a) shows a rectangular projection of the unit cell on the a− b

plane. Each formula unit contains two inequivalent SSH chains along the c-axis as shown in
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Figure 4.3: Magnon and paramagnon energies as a function of temperature (a) Energy gap of magnon
as a function of temperature at 1.75kbar pressure. Red dots show the Higgs magnon-gap below the
Neel temperature (TN ) while the blue dots represents paramagnon gap for the temperature above Neel
Temperature. (b) The ratio of magnon lifetime (Γ) to the magnon gap (∆) as a function of temperature.
Red triangle corresponds to the Higgs magnon below the Neel temperature while the blue triangles
correspond to the paramagnon modes above the Neel temperature. The figure is taken from Ref. [6]

Figure 4.4: Top (a) and side (b) views of TlCuCl3 unit cell. Each unit cell contains two SSH chain of
Cu-atoms (red symbols), which are mutually rotated by 90o. (b) Shown a single SSH chain, with in-plane
spin-polarization in the AFM phase.

Fig. 4.4(b), at the center and corners of the rectangle. Because of different Cl-environments, the
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two nearest neighbor hoppings between Cu-Cu atoms become slightly different resulting in an

SSH structure.

We compute the DFT band structure using the Local Density Approximation (LDA) exchange-

correlation as implemented in the Vienna ab-initio simulation package (VASP)[89, 90]. LDA+U

(U = 4 eV) method is used to deal with the strong correlation features on Cu-3d orbitals. The

non-magnetic DFT band structure in Fig. 4.6(a) shows four bands near the Fermi level (EF ),

stemming from the d-orbitals of the Cu-atoms. Each SSH chain is individually responsible

for forming a 1D Dirac cone at the kz = ±π/c-point. The inter-chain hopping breaks the

degeneracy of the bands, resulting in two gapped bands, and one single Dirac cone. The Dirac

cone formation in the non-magnetic state is robust to various values of U and DFT functionals.

While the band degeneracy kz = ±π/c is guaranteed by the chiral symmetry of the SSH chain, in

the absence of SOC, there is no reason that the two sub-lattice bands must also be degenerate only

at kx = ky = 0. However, thanks to the crystal symmetry and the crystal field splitting, TlCuCl3

obtains a unique combination of the hopping integrals such that the bands are non-degenerate

at every other k-points, except at k∗ = (0, 0, π/c). Our DFT band structure agrees well with a

previous LMTO calculation[91], and is also reproducible with other DFT functionals.

4.2.1 DFT calculation W/ SOC

We again compute the DFT band structure using the Local Density Approximation (LDA)

exchange-correlation as implemented in the Vienna ab-initio simulation package (VASP)[89].

The results remain characteristically the same for the GGA and other functionals. The DFT band

structure also agrees well with a previous LMTO calculation. In our LDA+U calculation, the

electronic wave function is expanded using plane wave up to a cutoff energy of 500 eV. Brillouin

zone sampling is done by using a (8× 8× 8) Monkhorst-Pack k-grid. Projected augmented-wave

(PAW) pseudo-potentials are used to describe the core electron in the calculation[90].
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Figure 4.5: Computed ab-inito band structure of TlCuCl3 in the presence of spin-orbit coupling (a) with
magnetism and (b) without magnetism.

We found in the DFT band structure that the magnetic gap (∆ ∼ 1.3 eV) is larger than the

crystal field splitting (CFS) (Fig. 4.5),2 and thus one obtains a band insulating behavior in the

electronic properties. As one approaches the magnetic critical point, the magnetic gap takes over

for ∆ < ∆CFS.

4.3 Tight-binding model

Our main interest is to study the topological properties arising from the bulk Dirac cone. Since

there is only one band crossing in the bulk state at EF , the minimal model required to capture the

essential topological properties is a two-band model forming the Dirac cone. We, therefore, start

with a two-band tight-binding model, coming from the Cu-sublattices in a given SSH chain, and

allow inter-chain hoppings in all three dimensions. We may refer to the corresponding model as

a 3D SSH model.

In what follows, we work in a single Cu-chain per conventional unit cell, as indicated in

2We again compute the DFT band structure using the Local Density Approximation (LDA) exchange correlation as
implemented in the Vienna ab-initio simulation package (VASP)[89, 90]. LDA+U (U = 4 eV) method is used to deal
with the strong correlation features on Cu-3d orbitals and the spins were allowed to align anti-ferromagnetically.
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Fig. 4.4(a). We express the corresponding Hamiltonian in a 2-component spinor as Ψ(k) =

(ψA(k), ψB(k))T , where ‘A’, and ‘B’ stand for two Cu-atoms, as

H0 =
∑

k,ij∈(A,B)

[
ξijk ψ

†
i (k)ψj(k)− µψ†i (k)ψi(k)

]
. (4.1)

Here ξAA
k = ξBB

k , and ξAB
k are the intra-, and inter-sublattice dispersions, respectively.

4.3.1 SSH term

The expression for SSH like term in our 3D model looks like

HAA = C10 cos((kx + kz)/2) + C11 cos(ky) + C12 cos((kx − kz)/2) + C13 cos(2ky)

+C14 cos(kx) + C15 cos(kz) + C16 cos(kx + kz) + C17 cos(kx − kz) + C18

(4.2)

HAB = eikz/2
(
C0 + C1e

−ikz +
(
C2 + C3e

−ikz
) (
C4e

i(kx+ky)/2 + C5e
−i(kx+ky)/2

)
(4.3)

+
(
C6 + C7e

−ikz
) (
C8e

i(kx−ky)/2 + C9e
−i(kx−ky)/2

))
where C’s are the TB parameters. The above equation for inter-sublattice hopping can be

rewritten in the form,

HAB = eikz/2Tk⊥(1 +
T ′k⊥
Tk⊥

eikz) (4.4)

where

Tk⊥ = C0 + C2C4e
i(kx+ky)/2 + C2C5e

−i(kx+ky)/2 + C6C8e
i(kx−ky)/2 + C6C9e

−i(kx−ky)/2

T ′k⊥ = C1 + C3C4e
i(kx+ky)/2 + C3C5e

−i(kx+ky)/2 + C7C8e
i(kx−ky)/2 + C7C9e

−i(kx−ky)/2

(4.5)
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Figure 4.6: DFT band structure of TlCuCl3, plotted along
Γ(0, 0, 0), B(0, π, 0), D(0, π, π), Z(0, 0, π), Y (−π, 0, 0), A(−π, π, 0), E(−π, π, π). Blue and red
colors depict the bands without and with SOC respectively. Since SOC is of the order of 5 meV, the band
splitting is not visible in this energy scale. Inset: Fittings of the 2D SSH model near the Dirac cone.

The TB parameters are C0−18 = [0.156, 0.209, -0.076, 0.223, -0.135, -0.325, 1.466, -0.019,

-0.030, 0.045, 0.002, -0.033, -0.003, 0.027, -0.002, 0.095, -0.105, -0.019] in eV.

The energy eigenvalues of the Hamiltonian in Eq. 4.1 are E±k = ξAA
k ± |ξAB

k |. The two bands

meet at the locii of |ξAB
k | = 0, while ξAA

k gives an overall shift of the degenerate points in energy.

In the case of an isolated 1D SSH chain, ξAB
kz

is often described by ξAB
kz
→
(
t+ t′e−ikz

)
(we

set a = b = c = 1 for simplicity), where t, and t′ are the inter-sublattice hoppings along the

±z-direction, respectively [see Fig. 4.4(b)]. A Dirac cone forms at kz = ±π when t′ = t. In the

same spirit, we can cast the Hamiltonian in Eq. 4.1 into a 3D SSH model as

ξAB
k = Tk⊥ + T ′k⊥e

−ikz , (4.6)

where k⊥ = (kx, ky). T ′k⊥ , and Tk⊥ have the same meanings as t′, and t defined above, but due

to inter-SSH chain hoppings, they acquire in-plane dispersions. ξAA
k , Tk⊥ , and T ′k⊥ are expressed
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Figure 4.7: Figure showing effective hopping in (x+y,z) plane. Here C
′
0, C

′′
0 , C

′
1 and C

′′
1 correspond to

C2C4, C2C5, C3C4 and C3C6 respectively. We have similar kind of hopping term in (x-y,z) plane as well.

in terms of the Slater-Koster tight-binding (TB) hopping integrals between intra-, and inter-chain

hoppings.

Following the DFT result, we fit the TB dispersions to the DFT band with the constraint that

T ′k∗ = Tk∗ only at k∗ = (0, 0, π). Hence we reproduce a 3D Dirac cone, with linear dispersion

in qz, and quadratic dispersion in (qx, qy), where q = k∗ − k and q << 1 (see inset to Fig. 4.6).

4.3.2 Spin-Orbit coupling (SOC)

Although SOC is weak here, however, it is sufficient to introduce a chirality in the very low

energy spectrum across k∗. Due to anisotropy between the ab-plane and the c-axis, we can
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conveniently split the SOC Hamiltonian into in-plane and out-of-plane, as

HSO =
∑

i,j∈(A,B)

∑
k,ss′

[
ψ†i,s(k)

(
αij

k × σss′
)
ψj,s′(k)

+ ψ†i,s(k)
(
βijk · σ

z
ss′

)
ψj,s′(k)

]
. (4.7)

In the first term, the in-plane spin is locked to its transverse velocity matrix αij
k , while the

out-of-plane spin is locked to the longitudinal one βijk . The components of the velocity operators

are

αij
k = αij0

(
−∂ξ

ij
k

∂ky
,
∂ξijk
∂kx

, 0

)
, βijk = βij0

(
0, 0,

∂ξijk
∂kz

)
. (4.8)

αij0 , and βij0 are the corresponding SOC strengths. Eq. 4.7 allows several SOC terms, however,

fitting to DFT results indicate that βij0 → 0, implying that the spins are aligned perpendicular

to the SSH chain. αAA
0 is the second nearest neighbor SOC term and is negligibly small, while

αAA
0 = 0.05 eV.

4.3.3 Dirac Hamiltonian

Combining Eqs. 4.1, and 4.7, the full non-magnetic Hamiltonian can be expressed in terms of a

spinor Ψ(k) = (ψA↑, ψB↑, ψA↓, ψB↓)
T as:

H(k) = ξAA
k 14×4 +

5∑
i=1

di(k)Γi. (4.9)

where Γ = (σx ⊗ 1, σy ⊗ 1,12×2 ⊗ τx,12×2 ⊗ τy, σz ⊗ τz), where σ, and τ are the Pauli

matrices in the spin and sub-lattice basis, respectively. The components of the d-vectors are d

= (α′AA
x ,−α′′AA

y ,ξ′AB, ξ′′AB,0). The Hamiltonian is invariant under time-reversal symmetry and

parity operation. The parity operation constitutes of k↔ −k, and A↔B.
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4.3.4 AFM calculations

Next, we have performed non-collinear, spin-polarized DFT calculations with and without the

SOC. We find an AFM ground state with antiparallel spin between ‘A’ and ‘B’ sub-lattices of

the SSH chain3. We find that the spins are quantized in the ab plane, as seen in experiment[6,

76, 5, 77], and the easy axis is almost along the diagonal direction in this plane. The DFT

predicted magnetic moment along the z-direction is negligibly small, and that in the ab-plane are

mA,B = ±0.43 for the two Cu atoms, respectively. The magnetic band structure shows insulating

behavior with a band gap of ∼ 1.3 eV.4 From the band gap and magnetic moment, we estimate

the AFM coupling to be around J ∼ 1.5 eV, which is close to the value estimated in neutron

scattering measurement.[92, 93]

Since the magnetic moment is small, we can treat the magnetic ground state within a mean-

field order approximation. We start with the nearest neighbor spin interaction term HI =

J
∑
〈i,j〉∈(A,B) Si.Sj , where Si is the spin operator. Guided by the DFT results, we consider

only the spin-spin interaction along the spin-quantization axis, and between the nearest ‘A’ and

‘B’ sub lattices only. The AFM order parameter is defined as φ = (mA −mB)/2, where the

magnetization is mA/B = 〈Sz
A/B〉. The excitation energy gap in the band structure is ∆ = Jφ.

Such an order parameter have been used earlier in TlCuCl3 and is found via self-consistent

calculation to define the AFM ground state.[88] Using Hubbard-Stratonovic decomposition of

3In the DFT calculation, we used experimental lattice constant which produces a small pressure 0.5 GPa in the unit
cell, and thus it mimics the experimental condition of pressure tunned AFM transition.

4The magnetic state represents a non-trivial topological axion insulator in the small magnetic moment region near
the critical point. However, owing to the loss of time-reversal symmetry, the surface state does not host any gapless
state. We do not expect to observe any edge state in the DFT calculation.
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Figure 4.8: (a) Computed values of the axion angle θ as a function of the magnetic order parameter
φ. (b) The color plot depicts values of magnetization as a function of the GL coefficient α, and the CS
coefficient γ from Eq. 9. We set β > 0. Horizontal arrow (green) indicates a second order phase transition
line where the order parameter decreases continuously, while the vertical arrow dictates the first-order
line.

the HI, we obtain the magnetic perturbation

HI ≈ J
∑

〈i,j〉∈(A,B)

(〈Si〉.Sj + Si.〈Sj〉 − 〈Si〉.〈Sj〉) (4.10)

≈ J
∑

〈i,j〉∈(A,B)

(
mAS

z
j +mBS

z
i −mAmB

)
(4.11)

assuming mB = −mA for the anti-ferromagnetic case and dropping mAmB in the above

equation, we get

HI ≈ J
∑

〈i,j〉∈(A,B)

φ
(
Szj − Szi

)
(4.12)

which, in momentum space becomes

HI(k) ≈ JφΓ5 = d5Γ5. (4.13)
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4.3.5 Helicity inversion and topological axion insulator

The AFM order introduces a crucial change in the SOC Hamiltonian in Eq. (4.7). Since the spin

polarization is fully reversed between the ‘A’ and ‘B’ sub-lattices, the corresponding SOC is

also reversed, i.e., αAA
k = −αBB

k . This induces an inversion in the helicity between the ‘A’ and

‘B’ sub-lattices, i.e., if the up spin is right moving in the ‘A’ sub-lattice, it becomes left moving

in the ‘B’ sub-lattice, and vice versa. This helicity inversion endows the system to acquire

a non-trivial topological phase.[94, 72, 54] Within the above Hamiltonian we incorporate the

helicity inversion by changing Γ1,2 → σx ⊗ τz, σy ⊗ τz.

The topological invariant of the 3D AFM insulator cannot be defined by the usual Z2 invariant or

Chern number, but by an ‘axion’ invariant θ[95, 96, 97, 98]. The axion invariant (θ) is precisely

the Z2 invariant (multiplied by π) for a time-reversal invariant system and vanishes continuously

as the magnetization increases spontaneously[96, 97, 99]. The axion invariant is the solid angle

enclosed in the d-space as one encircles the entire 3D Brillouin zone.[99, 98] Reminiscence to

the topological phase transition in a single SSH chain, we also find here that θ becomes finite

when the zeros of d3(k) = ξ′AB
k lies inside the solid angle, giving the condition that Tk⊥ ≤ T ′k⊥ ,

for k ∈ BZ. Having a Dirac cone in the SOC band structure, we ensure that such a condition is

automatically satisfied in the non-interacting phase. For φ→ 0, we obtain θ = π.

For finite |φ| > 0, we numerically find that θ decreases exponentially as shown in Fig. 4.8a,

using the formula[99]

θ =

∫
BZ

d3k

4π

2|d|+ d4

(|d|+ d4)2|d|3
εijkldi∂kxdj∂kydk∂kzdl. (4.14)

as

θ = πe−λ|φ|, (4.15)
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where λ ∝ J , is a fitting parameter, obtained to be λ =220. Owing to time-reversal symmetry

breaking, the corresponding topological axion phase does not exhibit any gapless edge state.5

4.4 Chern-Simons-Ginzburg-Landau analysis

Finally, we discuss the implications of the topological excitations to the magnetic properties.

The topology induced axion excitations are described by a Chern-Simons (CS) term in the

effective Lagrangian.[95, 96, 97] On the other hand, the interaction induced magnetic

excitations are captured within the Ginzburg-Landau (GL) theory. The field-theory description

of the competition between electronic interaction and topological responses due to probe

electromagnetic fields (A0,A) is developed earlier in the context of fractional quantum Hall

effect,[100, 101, 102, 103, 104, 105] and is termed as Chern-Simons-Ginzburg-Landau (CSGL)

theory. In addition to probe fields, there may arise intrinsic ‘statistical’ gauge fields (a0, a).

Thanks to the linear combination form of the intrinsic and probe gauge fields in the Lagrangian,

we can combine their effects in a total gauge field as A0 = a0 + A0, and A = a + A. The full

Lagrangian density can be split into four parts6 [100, 101, 102, 103, 104, 105]

Ltotal = LKE + LMW + LGL + LCS. LKE is the kinetic energy term which arises from the space

and time-dependent parts of the field φ, and θ (LKE = 1/2(∂µφ)(∂µφ)). LMW is the Maxwell

term due to EM fields. These two terms do not contribute to the magnetic phase diagram and

Higgs mode we set out to discuss below and thus are not included henceforth. The remaining GL

and CS terms can be derived using the path integral description of coherent states of the total

Hamiltonian H0 + HSOC + HI, and then integrating out the fermionic degrees of freedom

(Grassman variables) to obtain an effective CSGL theory.

5The magnetic state represents a non-trivial topological axion insulator in the small magnetic moment region near
the critical point. However, owing to the loss of time-reversal symmetry, the surface state does not host any gapless
state. We do not expect to observe any edge state in the DFT calculation.

6Additional CS terms related to anyons,[100, 101, 102, 103, 104, 105] and the Maxwell terms are not included
since they do not directly impact the field φ in the lowest orders.
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4.4.1 Ginzburg-Landau theory

Here we develop the GL theory of our Hamiltonian around the AFM order parameter. We write

the partition function for the total Hamiltonian, H +HI written in terms of the Dirac matrices in

Eq. (4.9) as

Z =

∫
D[ψ, ψ̄] exp

−∫ β

0

dτ

ψ̄(∂τ I4×4 −Hk)ψ − J
∑
〈i,j〉

Si.Sj

 , (4.16)

where ψ are 4 component Grassman variables ψ = (ψA↑, ψB↑, ψA↓, ψB↓)
T (same as the Dirac

spinor used in the main text), and ψ̄ is the conjugate of ψ. i,j denote ‘A’, ‘B’ sub-lattices. Si’s

are the corresponding spin operators. We orient the spin-quantization axis along σz, i.e., we only

consider Szi component. We define the AFM field as φ = (SzA − SzB) /2. Using the Hubbard

Stratonovich transformation for HI in terms of the FM fields in the last term of Eq. (4.16), we

obtain∫
D[ψ, ψ̄] exp


−J∑

〈i,j〉

Si.Sj

 =

∫
D[ψ, ψ̄, φ, φ̄]

× exp

[
−Jφ(SzA − SzB)− φ2

4J

]
. (4.17)

Now we express Szi in terms of the Grassman variables as Szi = (ψ̄i↑ψi↑− ψ̄i↓ψi↓)/2. In doing so,

we can write the AFM term in terms of the Grassman spinor φ as Jφ(SzA − SzB) = ψ̄ (JφΓ5)ψ,

where Γ5 = σz ⊗ τz, as defined in the main text. Substituting this identity in Eq. (4.17), and then

inserting it back to Eq. (4.16), we get

Z =

∫
D[ψ, ψ̄, φ, φ̄] exp

[
−
∫ β

0

dτψ̄
(
G−1

0 (τ,k)−M(φ)
)
ψ

]
. (4.18)

Here we have defined the non-interacting Green’s function matrix G−1
0 (k, τ) = ∂τ I4×4 −Hk,

and the magnetization matrix as M(φ) = JφΓ5. Now we can go to the Matsubara frequency iωn
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domain and integrate out fermion variables (ψ, ψ̄) to get the effective Lagrangian density as

L = Log

[
Det

(∑
iωn,k

G−1
0 (iωn,k)−M(φ)

)]
− φ2

4J
. (4.19)

Under the saddle point approximation around the AFM, using the identity Log[Det[..]] =

Tr[Log[..]] and Log[1 + x] = −
∑∞

n=1(−1)nxn/n, we get the GL Lagrangian potential

LGL = α|φ|2 + β|φ|4 +O(|φ|6), (4.20)

where

α = − 1

4J
+ Tr

∑
k,k′

G0(k)Γ5G0(k′)Γ5, (4.21)

β = Tr
∑

k,k′,k′′,k′′′

G0(k)Γ5G0(k′)Γ5G0(k′′)Γ5G0(k′′′)Γ5, (4.22)

where we define k = (k, iωn). Exact computation of α and β variables are difficult, but we can

already grasp the essence that β > 0, and α→ 0 when the particle-hole bubble compensates the

interaction terms. These results are typical for the GL theory.

4.4.2 The Chern-Simons term

Chern-Simons term arises in the presence of electromagnetic (EM) fields. In addition to probe

fields, there may arise intrinsic ‘statistical’ gauge fields (a0, a) due to fluctuations of the bosonic

fields φ. This can be seen easily. The statistical gauge field arises due to fluctuations of the order

parameter, so we can write a0 ∝ ∂t(δφδφ), and a ∝ ∇(δφδφ), where δφ is the fluctuation of the

AFM field around its saddle point φ0. Such intrinsic gauge clearly arises from the |φ|4 term in

the GL potential in Eq. (4.20), and persists above the AFM critical point. We are not particularly

interested in the details of the origin of the intrinsic gauge field, except it conveys an important

message that such due to spin-fluctuations in space-time dimensions, there can be CS term even
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in the absence of any external EM field. Readers interested in the details of the origin of such

statistical gauge field can refer to Refs. [106, 107, 98] and references therein

Due to the total EM field, we have a typical Maxwell term (LMW), and the Chern-Simons θ term

LCS as defined in 3+1 dimensions as[95, 96, 97, 108, 109, 110, 111]

LMW = −1

4
FµνFµν −AµJ µ, (4.23)

LCS = θ
~

Φ2
0

εµνστ∂µAν∂σAτ −AµJ µ. (4.24)

where the Einsteins summation convention is implied. Fµν = ∂µAν − ∂νAµ, current density J µ

is included by conservation principles and can be eliminated for the Lagrangian minimization

problem of our interest. θ is the axion angle which is related to the momentum-space non-Abelian

Berry connection A st
µ = −i〈usk|∂kµutk〉, where |usk〉 is the sth-eigenstate of the mean-field

Hamiltonian, as

θ =
1

4π

∫
BZ

d3kεµνσTr

[
Aµ∂νAσ + i

2

3
AµAµAµ

]
. (4.25)

By evaluating the eigenvectors of our Hamiltonian in the main text, we can obtain an algebraic,

gauge independent form of the axion angle can be deduced to be:

θ =

∫
BZ

d3k

4π

2|d|+ d4

(|d|+ d4)2|d|3
εijkldi∂kxdj∂kydk∂kzdl. (4.26)

where |d|2 =
∑5

i=1 |di|2, and d5 = Jφ, and i, j, k, l runs from 1,2,4,5. The above integral

evaluates the solid angle enclosed in the d-space as one encircles the entire 3D Brillouin zone in

the k-space. Reminiscence to the topological phase transition in a single SSH chain, here also

show that θ acquires finite value where the zeros of d3(k) term lie inside the solid angle, giving

the condition that Tk⊥ ≤ T ′k⊥ , for k ∈ BZ. Having a Dirac cone in the SOC band structure,

we ensure that such a condition is automatically satisfied in the non-interacting phase (d5 = 0).

Axion angle is calculated numerically (see below).
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4.4.3 Chern-Simons-Ginzburg-Landau theory

The kinetic energy term due to the AFM field

LKE = iφ∗D0φ+
1

2m
φ∗D2φ. (4.27)

Here the covariant derivative operators are D0 = ∂t + ieA0, and D = i∇ + eA. Therefore the

total Lagrangian density becomes[108, 109, 110, 111, 106, 107] Ltotal = LKE + LMW + LGL +

LCS + LAN. Here LAN represents the contribution from anyons arising from the fluctuation of

the order parameters. The Maxwell term does not involve the order parameter or axion term, and

thus also can be neglected. Neglecting space-time dependence of the order parameter, we obtain

the effect GL and CS term in terms of the AFM field φ as

LGL = α|φ|2 + β|φ|4, LCS = θ
~

Φ2
0

E ·B, (4.28)

Apparently, there is no direct coupling between the scalar field φ and the pseudo-scalar axion

mode θ, rather the axion field θ directly stems from the scalar field φ, Eq. (4.15).We are interested

in studying the behavior of θ as a function AFM field φ, which yields an exponential function

πe−λ|φ|, where λ is a fitting parameter. For both signs of φ, φ decreases from π at φ → 0.

Absorbing the remaining factors in the CS term into γ = π~
Φ2

0
E · B, we obtain LCS = γe−λ|φ|.

γ > 0 (γ < 0) if E and B are parallel (antiparallel) to each other. Substituting for θ in Eq. (4.28),

we get LCS = γe−λ|φ|, where γ = π~
Φ2

0
E ·B is a variational parameter. γ > 0 (γ < 0) if E and B

are parallel (antiparallel) to each other, and otherwise zero. Neglecting the irrelevant space-time

dependence of the order parameter, we arrive at the CSGL term, expressed exclusively in terms

of the AFM field φ as

LCSGL = α|φ|2 + β|φ|4 + γ(e−λ|φ| − 1). (4.29)
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(We have added a constant term −γ to shift the Free energy (∝ L) minimum to zero at φ = 0).

The magnetic phase transition and magnetic excitations can now be studied as a function of four

variational parameters α, β, γ, and λ.

4.4.4 Magnetic phase diagram

Minimization of LCSGL at a finite value of φ = φ0 is obtained by solving the equation

∂F [φ]

∂φ

∣∣∣∣
φ0

= 0 (4.30)

which gives the following secular equation:

2
(
α + 2β|φ0|2

)
|φ0| = γλe−λ|φ0|. (4.31)

A solution of the Eq. 4.31 is non-trivial to manage analytically. For γ → 0, we recover the

typical GL result of |φ0| =
√
−α/2β, giving a second order phase transition as α becomes

negative (with β > 0).

For small λ in Eq. 4.31, we can expand the exponential up to third power in φ to get

α|φ|0 + 4β|φ|30 − λγ(1− λ|φ|+ λ2|φ|2

2!
− λ3|φ|3

3!
) = 0. (4.32)

It turns out that any arbitrarily small value of γ, this leads to a minima in free energy away from

φ = 0 but very close. At high temperature, it goes arbitrarily close to 0.

Since we are in the vicinity of a second order phase transition, we set β > 0, and λ = 220 (from

Fig. 4.8 (a)). We study the solution of φ0 as a function of α and γ, as given in Fig. 3b. For

γ > 0 region, we find that φ0 decreases continuously to zero, suggesting a second order phase
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transition as a function of both α, and λ. On the other hand, for γ < 0, we notice that the phase

boundary from finite φ0 to zero is discontinuous, implying that the phase transition becomes first

order. To understand this behavior, we expand the CS term in the leading order in |φ| as −γλ|φ|.

So, for γ > 0, LCSGL decreases with increasing |φ|, and hence its minima continuously move

from φ = 0 to |φ0| > 0 − a second order phase transition. While for γ < 0, the increases with

increasing |φ|, and then a second minima occurs at a finite |φ0| > 0. Since |φ0| minima are now

disjointed from the φ = 0 minima, we have a first order phase transition.

In both cases, we also observe that the phase boundary shifts from the GL limit of α = 0 line to

finite values of ±α in the two cases, respectively. This has implications to the values of the Néel

temperature and the Higgs mass.

If we assume TN,0 to be the Néel temperature without the axion term, then for a second order

phase transition, we can write

α = a0(1− T/TN,0), (4.33)

where α0 > 0 is a constant. This coefficient is modified to 7

α′ = α + γλ2/2 (4.34)

α′ = 0 gives the AFM transition. Therefore, the phase transition condition becomes

α0

(
1− TN

TN,0

)
+ γλ2/2 = 0, (4.35)

which gives

TN = TN,0

(
1 +

γλ2

2α0

)
. (4.36)

TN increases (decreases) for γ > 0 (γ < 0). This means, TN increases (decreases) as the applied

7By adding the quadratic term of the CS free energy from Eq. 4.29
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magnetic and electric fields are parallel (antiparallel), which provides a unique testbed to verify

the topological nature of this magnetic ground state.

4.4.5 Magnetic excitations

Finally, we study the interplay between the magnetic and topological excitations. We expand

the order parameter near its expectation value as φ = |φ0 + δφ(x)|eiη(x), where δφ, and η are

the corresponding amplitude, and phase fluctuations, respectively. In Eq. (4.28), we find that

LCSGL depends on the amplitude |φ| only, and thus the phase, η, fluctuations remain gapless

(Goldstone modes) even in the presence of the axion term [In fact, the Goldstone modes can be

gauged out by a suitable gauge transformation of the electromagnetic fields A]. Substituting

φ = |φ0 + δφ(x)| in Eq. (4.28), we can estimate the mass of the amplitude mode as

M =
1

2
∂2
δφL|δφ=0. (4.37)

After substituting Eq. (4.31) at the saddle point of the Lagrangian, we obtain the Higgs mass as

M = α + λα|φ0|+ 6β|φ0|2 + λβ|φ0|3. (4.38)

For γ → 0, we recover the GL value of M = 4β|φ0|2 vanishing at the critical point where

φ0 → 0. However, in the present case, we find that there is a finite Higgs mass even above the

critical point and eventually vanishes only when α = 0. On the other hand, for γ > 0, we notice

in Fig. 3b, that a continuous phase transition can occur at α > 0, giving a non-vanishing Higgs

mass at the critical point, which may be called ‘topological paramagnons’. For γ < 0, we have a

first order phase transition at α < 0, where the order parameter is discontinuous, and thus also

the Higgs mass must vanish discontinuously.

Calculation of Higgs mode’s lifetime is rather cumbersome. One source of Higgs lifetime is

the quartic term in the Lagrangian. In this spirit, the leading term in the inverse lifetime (τ )
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is proportional to the coefficient of the δφ3, which can be obtained from ∂3LCSGL/∂δφ
3|δφ=0,

leading to

1

τ
∝ 2(12β − αλ2)|φ0| − 4λ2β|φ0|3. (4.39)

The result suggests that Higgs lifetime rather decreases near the critical point for γ 6= 0, while

away from the critical point, as the second term becomes dominant, it tends to increase. Hence we

can argue that the ‘topological paramagnons’ have much-reduced decay rate, and is topologically

protected.

4.5 Conclusions and outlook

In the present model, axion is a pseudo-scaler, and there is only one Higgs mode. Therefore,

the axion-Higgs coupling can be captured well within the proposed CSGL theorem, and the

corresponding Lagrangian resemblance that of the Standard Model of the particle physics. It is

known that in the case of a Higgs doublet, there arises axion-Higgs cross term in the Lagrangian,

and the system loses its CSGL symmetry, and one obtains a so-called Peccei-Quinn (PQ)

symmetry, which violates the Standard model.[112, 113] However, the predicted Higgs doublet

is yet to be observed. Based on the above analysis, we anticipate that our work will stimulate

research for the realization of PQ symmetry in condensed matter systems where topological

axion and Higgs terms are intertwined.[112, 113]

81





5
Bosonic Integer and Fractional Quantum Hall effect in an

interacting lattice model

Topological states of matter have recently got a surge of attention due to their non-trivial

properties and unconventional behavior like the presence of edge states, the non-trivial signature

of quantum entanglement, among others. Furthermore, Bosonic systems with non-trivial

topological states have also gained a lot of attention in the last few years. Since bosons tend to

condense without interaction, we need interaction between bosons to stabilize any topological

phases in the system, unlike the fermionic counterpart which can host (symmetry protected)

topologically non-trivial ground states even in the absence of interaction. This makes the study

of the topological phases intrinsically non-trivial in bosonic systems.

Recently an idea for realizing the bosonic integer quantum Hall effect (BIQHE) was proposed by

Senthil and Levin [114] as an example of an interacting symmetry protected topological (SPT)

phase for bosons where the boson number conservation can stabilize the topological phase in

absence of time reversal symmetry. The proposal contains two flavors of bosons (say b1 and
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b2) and by attaching a mutual flux of one species of boson with another (using flux attachment

Chern-Simons theory)1, it was shown that the system can host a BIQH ground state. A lattice

realization of similar kind of state was demonstrated by He,et. al, [7]. In a subsequent work[115],

using bosonization techniques within a coupled wire construction, it was proposed that the same

model can also host bosonic fractional quantum Hall (BFQH) ground state at 1/3 filing and is

described by the Halperin [221] state. In our present work, we explore the presence of BIQH

as well as BFQH states in the same model as used in Refs. [7] and [115] at 1/2 and 1/3 filling

respectively using exact diagonalization calculations and present preliminary evidence for such

phases. The model consists of hard-core bosons spread over honeycomb lattice with the nearest

neighbor and correlated next nearest neighbor hopping. There is also a background gauge flux

which explicitly breaks the time reversal symmetry. We have found unique ground states of the

system on a finite honeycomb lattice at both the fillings for open boundary conditions.

Although the BIQH phase is an example of symmetry protected topological (SPT) phase, the

BFQH phase is a symmetry enriched topologically ordered state2 that can host fractional bosonic

excitations whose signatures are revealed in a charge pumping experiment. We adiabatically

insert 2π flux through the center of the system and observe a charge flow of 2/3, which is a

signature that the ground state has a quantized charge conductance, σxy = 2/3[116]. We have

also looked at the excitation spectrum to confirm the presence of chiral edge modes.

1Mutual flux attachment is achieved by the following transformation:[114]

b̃1(x) = e−i
∫
d2x′Θ(x−x′)ρ2(x′).b1(x), and

b̃2(x) = e−i
∫
d2x′Θ(x−x′)ρ1(x′).b2(x)

2topologically ordered states are the one which doesn’t need any symmetry protection per say and classified by
topological order but in presence of symmetry, there is a finer scale of classification and is characterized by the
”symmetry enriched topological order”
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Figure 5.1: Figure showing bipartite honeycomb lattice along with one of the possible gauge choice
having π flux per plaquette. The figure is taken from the Ref. [7]

Figure 5.2: System used to perform exact diagonalization calculations at 1/2 filling and 1/3 filling. This
system has C6 rotation symmetry along with two reflection planes. It consists of 24 sites and BIQH and
BFQH calculations were performed with 12 and 8 particles respectively.

5.1 Model

We work on a specific model proposed earlier to verify the presence of Bosonic Integer and

Fractional Quantum Hall Effect (BFQHF)[7, 115]. Our system consists of hardcore bosons on
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a honey-comb lattice with nearest neighbor (NN) and correlated next nearest neighbor (NNN)

hopping described by the Hamiltonian

H =
∑

<<i,j>>

eiAij
(
2nbk − 1

)
a†iaj + h.c.

+
∑

<<k,l>>

eiAkl
(
2naj − 1

)
b†kbl + h.c. (5.1)

+ λ
∑
<i,k>

eiAika†ibk + h.c.

where a(a†) and b(b†) are bosonic creation (annihilation) operators on different sub-lattices with

hard core constraint such that

(a†i )
2 = (b†j)

2 = 0, (5.2)

n
a(b)
i = a†iai(b

†
ibi) is the particle number operator of the bosons of species a(b), Aij is the Pierls

phase to incorporate the presence of a magnetic field in the system, “<,>” and “<<,>>”

denotes NN and NNN respectively and λ is a tuning parameter. The first two terms are correlated

hopping, i.e, hopping between A sub lattices depends on the occupation of intermediate B

sub-lattice while the last term is a normal hopping between A and B sub-lattices. In this model,

the two sub lattices behaves as two component bosons and the correlated hopping implements

the flux attachment picture discussed in Appendix E. This can be understood in the following

way: na(b)
i can take values either 0 or 1, hence we can write

(2nαi − 1) = −eiπnαi (5.3)
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(where α = a/b is the sub-lattice index), hence the Hamiltonian in Eq. 5.2 becomes

H = −
∑

<<i,j>>

eiAijeiπn
b
ka†iaj + h.c.

−
∑

<<k,l>>

eiAkleiπn
a
j b†kbl + h.c. (5.4)

+ λ
∑
<i,k>

eiAika†ibk + h.c.

in the above Hamiltonian, it is easy to see that if a particle is present at an intermediate site, the

next nearest neighbor hopping term will acquire an extra phase of π while if there is no particle

present at an intermediate site, no extra phase will be acquired by the next nearest neighbor

hopping term. This is equivalent to the mutual flux attachment of one species of boson onto

another.

At λ = 0, the system has U(1)×U(1) symmetry, i.e., particle number on both the sub-lattices are

conserved individually (na and nb both are conserved). In other words, the charge (na + nb) and

the pseudo spin (na − nb) both are individually conserved. For any finite value of λ, tunneling

between the sub-lattices is allowed and hence the U(1)× U(1) breaks down to the global U(1)

symmetry (only the total charge, na + nb is conserved).

5.2 Limiting cases

In this section, we will study two limiting cases of the Hamiltonian in Eq. [5.2]: (i) when λ = 0

and (ii) when λ→∞

5.2.1 λ = 0

when λ = 0 the Hamiltonian in Eq. 5.2 reduces to
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H =
∑

<<i,j>>

eiAij
(
2nbk − 1

)
a†iaj + h.c.∑

<<k,l>>

eiAkl
(
2naj − 1

)
b†kbl + h.c. (5.5)

this Hamiltonian is known to host BIQHE at half filling [7]. At filling ν = 1/3, this system was

proposed to host BFQHE as well[115]. In the later sections, we will provide evidence for the

presence of BIQH as well as BFQH ground states of the system at different fillings.

5.2.2 λ→∞

When λ→∞, the Hamiltonian (normalized with λ) in Eq. [5.2] reduces to

H =
∑
<i,k>

eiAika†ibk + h.c. (5.6)

This can be easily mapped to theXY−model by mapping the creation (a†i and b†i ) and annihilation

(ai and bi) operators to spin lowering (S−i ) and raising (S+
i ) operators respectively. It can

be shown by using mean field theory as well as other more sophisticated methods that the

Hamiltonian in Eq. [5.6] possess an SF ground state. We have calculated the super-fluid

density (by calculating σx − σx correlation functions) for the Hamiltonian in Eq. [5.6] to verify

the presence of super-fluid ground states. As the magnetic flux is π through each hexagon,

the magnetic unit cell contains 2 conventional unit cells. Hence, for a single particle, the

Hamiltonian becomes a 4× 4 matrix having extremal eigenvalues at wave vectors ±(π/6, π/2)

and ±(5π/6, π/2)[117] and the soft modes are supposed to lie around these points.
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5.3 Bosonic Integer Quantum Hall Effect: ν = 1/2

In this section, we will study the ground state and a few excited states of the Hamiltonian

presented in Eq. 5.2 on a finite honeycomb lattice shown in Fig. 5.2 using exact diagonalization

(using Lanczos algorithm). The total number of sites is 24 and we fix the particle number to be

12 such that the filling ν = 1/2. We fix the flux through each hexagon to be π. More information

about the gauge choice can be found in Appendix F. It should be noted that due to the π flux

through each hexagon, the magnetic unit cell becomes twice (4 sites) that of the primitive unit

cell (2 sites).

5.3.1 Phase diagram

This model is supposed to possess a BIQH ground state(GS)[7] for small λ when the flux per

plaquette is set to π at half filling. Here we try to confirm the presence of the BIQH GS using

exact diagonalization on a small system. We calculate the ground state fidelity [Fig. 5.3 (a)] and

fidelity susceptibility [Fig 5.3 (b)] to characterize the different phases of the system[118, 119].

Fidelity (which comes from a concept in quantum information) is the overlap of the two ground

states |ψ(λ)〉 and |ψ(λ+ δλ)〉[120, 121, 122]

F(λ, λ+ δλ) = |〈ψ(λ)|ψ(λ+ δλ)〉| (5.7)

The fidelity susceptibility is defined as

χ(λ) = lim
δλ→0

−2lnF(λ, λ+ δλ)

(δλ2)
(5.8)

Any non-analyticity in χ(λ) is a signature of qualitative difference in the two ground states across

a quantum phase transition[123]. Therefore QPTs can be characterized by χ[119, 123, 124, 125,

126, 127, 128, 129]. We find that for λ >> 1 the system has a super-fluid GS. We observe only
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Figure 5.3: (a) Fidelity and (b) fidelity susceptibility showing the phase transition as a function of
λ for 12 particles (i.e, ν = 1/2) in the Hamiltonian in Eq. 5.2. Two phase transitions happen at
λ ∼ 0.5 and λ ∼ 1.2. The first phase transition at λ ∼ 0.5 is an artifact of the finite system as discussed
in a later section and is expected to go away in the thermodynamic limit.

two phase transitions (with the help of χ), at λ ∼ 0.5 and λ ∼ 1.2. Below λ ∼ 0.5, the GS is

a BIQH state and above λ ∼ 1.2, the GS is a super-fluid. The phase in between λ ∼ 0.5 and

λ ∼ 1.2 is also a BIQH state in the bulk. Due to the instability of higher angular momentum

states on the edge, a state that is adiabatically connected to an edge excitation at λ = 0 becomes

the ground state of the system for 0.5 < λ < 1.2 (as shown in the Fig. 5.7). This instability is

discussed in detail in a later section.
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5.3.2 Superfluid Density

As mentioned earlier, we can map the hard-core boson model to a spin model by using the

transformation

ai(bi) = S−i,a(b), a
†
i (b
†
i ) = S+

i,a(b) (5.9)

such that

a†iaj + hc = Sxi,aS
x
j,a + Syi,aS

y
j,a, and (5.10)

a†iai =

(
1

2
+ Szi,a

)
. (5.11)

Now the model Hamiltonian in Eq. 5.2 can be transformed into the spin XY Hamiltonian. The

superfluid phase can be characterized by calculating the superfluid density (ρSF ) given by

ρSF(i, j) = 〈Sxi Sxj + Syi S
y
j 〉, (5.12)

which is equivalent to the calculation of 〈a†iaj + a†jai〉 in the equivalent hard core boson model.

The super-fluid density shows a dramatic change across the phase transition around λ = 1.2

which is demonstrated in Fig. 5.4.

5.3.3 Charge Pump

Charge pumping is a unique property of a quantum Hall system and is often used to characterize

the quantum Hall state. It is expected from a quantum Hall system that an extra flux threaded

through the system will cause charge pumping to the edge and its magnitude will depend on the

strength of the applied magnetic field as well as the Chern number. To explore the presence of

BIQHE we added an extra B1δ(~r) flux in the system [Fig 5.6]. This extra flux, upon changing by

2π, causes a spectral flow to the edge from the bulk (or from the edge to the bulk) and leads to
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Figure 5.4: Figure to show ρSF (1, i) correlation on the lattice at (a) λ = 0, (b) λ = 1 and (c) λ→∞.
The thickness of the red line between sites i and j shown corresponds to the magnitude of ρSF (i, j).

Figure 5.5: Plot to show (a) ρSF (1, i) and (b)
∑24

i=1 ρSF (1, i) as a function of λ( λ = 0 to λ = 3). The
sudden jump in ρSF (1, i) corresponds to the transition to a superfluid phase.
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Figure 5.6: Figure showing (a) charge pumping, (b) evolution of low energy states and (c) fidelity of
the ground state as a function of the threaded flux B1. There is a jump in the charge pump because of an
unavoidable phase transition happening in the system as demonstrated in (b) and (c).

charge pumping. The charge pump is defined as

Charge Pump =
′∑
i

〈a†iai〉B=B0 − 〈a
†
iai〉B=0 +

′∑
j

〈b†jbj〉B=B0 − 〈b
†
jbj〉B=0, (5.13)

where the restricted summation runs over the edge of the system. The quantity of charge pumped

is exactly the same as the transverse conductivity, σxy.

93



Bosonic Integer and Fractional Quantum Hall effect in an interacting lattice model

5.3.4 Excitation Spectrum

The existence of excitations on the edge is also a hallmark of quantum Hall states. A unique

degeneracy pattern can be derived for any given K-matrix. In the present case, the K-matrix[7]

is given by3

K =

0 1

1 0

 , (5.14)

We calculate the spectrum of eigenstates to check the degeneracy of the first excited state [Fig

5.7 (a)] and the gap between the ground state and the first excited state [Fig. 5.7 (b)]. The first

excited state is four-fold degenerate at λ = 0 as expected from the edge theory shown in the

Appendix G.

The K-matrix has a lot more information about the quantum Hall state than just the edge

excitation spectra. The absolute value of the determinant of the K-matrix gives the degeneracy

of the GS on a 2-Torus and the sign of the eigenvalues of it gives the directionality of the modes.

In the present case, Det[K] = −1 and the eigenvalues are ±1, which means that the ground

state is not topologically ordered, it is an integer quantum Hall state and there are two counter

propagating edge modes[130].

3One can write down the effective theory for the most general Abelian quantum Hall state by introducing N
emergent gauge field aiµ, with i = 1...N as

SK [ai, A] =

∫
d3x

1

4π
Kijε

µνρaiµ∂νa
j
ρ +

1

2π
tiε

µνρAµ∂νa
i
ρ

where K-matrix specifies the various Chern-Simons couplings and ti specifies the linear combinations of currents.
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Figure 5.7: Plot showing (a) Exact eigenstate spectrum and (b) gap to the first excitation as a function
of λ. Four-fold degeneracy of the first excited (indicated by a1) state is consistent with the edge theory
presented in Ref. [7]. a2 indicates the crossing of the ground state and the first excited state at λ ∼ 0.5.

5.4 Bosonic Fractional Quantum Hall Effect: ν = 1/3

In this section, we again study the ground state and a few excited states of the Hamiltonian

presented in Eq. 5.2 on a finite honeycomb lattice shown in Fig. 5.2 but fix the particle number

to be 8 such that the filling ν = 1/3. The flux through each hexagon is still π and the gauge

choice is still the same (see Appendix F).
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5.4.1 Phase Diagram

This model (Hamiltonian in Eq. 5.2) was proposed to possess a BFQH ground state(GS)[115]

for ν = 1/3 when the flux per plaquette is set to π. Here, again we try to confirm the presence of

BFQH GS using exact diagonalization on a small system (Fig. 5.1). We calculate the fidelity

(F) and the fidelity susceptibility (χ) [Fig 5.8 (a-b)] to characterize the different phases of the

system. We find that for λ >> 1 the system has a super-fluid GS. We again observe only two

phase transitions (with the help of F and χ), at λ ∼ 0.2 and λ ∼ 1.2. Below λ ∼ 0.2, the GS is

a BFQH state and above λ ∼ 1.2, the GS is a super-fluid. The phase in between λ ∼ 0.2 and

λ ∼ 1.2 is also a BFQH state in the bulk, but due to the instability of higher angular momentum

states on the edge, a state that is adiabatically connected to one of the edge excitations at λ = 0

becomes the ground state of the system for 0.5 < λ < 1.2, similarly to the half-filled case

discussed earlier.

5.4.2 Charge Pump

To confirm the presence of BFQHE we again added an extra B1δ(~r) flux in the system. It is

expected for a fractional quantum Hall system that this extra flux will cause charge pumping to

the edge and its magnitude will depend on the strength of the applied magnetic field [Fig 5.9].

5.4.3 Excitation Spectrum

The BFQH state can be described by the Halperin [221] state[115] having K-matrix given by

K =

2 1

1 2

 (5.15)
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Figure 5.8: (a) Ground state fidelity and (b) fidelity susceptibility showing phase transitions as a function
of λ for ν = 1/3. Again the phase transition at λ ∼ 0.2 is due to the instability at the edge as discussed in
a later section and is expected to go away in the thermodynamic limit. (c) gap to the first excitation as a
function of λ.

having Det[K] = 3 and eigenvalues 1 and 3 which means that the ground state is topologically

ordered having 3 fold degeneracy on a 2-Torus and there are two co-propagating chiral

modes[130]. Thus the behavior of its edge modes is similar to the ones of FQH states, whose

effective Lagrangian is:

L = − 1

4π
(Kαβ∂tφα∂xφβ + Vαβ∂xφα∂xφβ) (5.16)
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Figure 5.9: (a) Charge pump and (b) evolution of the first five states as a function of threaded flux.
Charge pump of around 2/3 is the direct consequence of σxy = 2/3. It is not exactly 2/3 because edge
states protrude a little into the bulk.

5.5 Stability of the First phase transition

Here we look at the stability of the “extra” phase transition happening at λ ∼ 0.5 at ν = 1/2

and λ ∼ 0.2 at ν = 1/3. We find that these are very susceptible to the variation of the nearest

neighbor term on the edge while the other phase transitions are not (Fig. 5.10). This can be

understood in the following way: The hopping term in the Hamiltonian with λ > 0 would like

to stabilize the higher angular momentum state while the correlated hopping tries to stabilize

the 0 angular momentum state. This leads to a competition between them. On the edge, the
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Figure 5.10: Eigen-spectrum as a function of λ for different values of NN hopping on the edge. The
crossing (avoided) at λ ∼ 0.5 is more susceptible to the perturbation on the edge (marked by blue circles)
compared to the crossing (avoided) at λ ∼ 1.2 (marked by red circles).

effectiveness of nearest neighbor hopping increases over the correlated hopping (because of

the broken bonds on the boundary)4, and leads to instability on the edge to stabilize the higher

angular momentum state even though the bulk still has a stable 0 angular momentum state.

5.6 Conclusions

In summary, we have presented numerical evidence for the presence of integer as well as

fractional quantum Hall effect of bosons on a honeycomb lattice with the nearest neighbor and

correlated next nearest neighbor hopping in the presence of π flux per hexagon. We found the

presence of a unique ground state for fillings ν = 1/2, 1/3 in the Hamiltonian in Eq. 5.2. We

also verified the presence of low energy edge excitations with degeneracies in agreement with

the edge theory. Furthermore, we performed the flux threading experiment to measure the charge

4In the bulk, there are six NNN and three NN bonds, while on the edge, there are only 3-4 NNN bonds (depending
upon the edge site) but there are 2-3 NN bonds. So, effectively NN hopping fraction increases on the surface and
the phase transition on the edge occurs before the phase transition in the bulk.
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pumping to the surface as a function of the threaded flux.
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6
Conclusion and future outlook

Here we first summarize the results presented in the previous Chapters and then we discuss some

relevant future directions on these topics.

We started this thesis with a broad introduction to the field of topological insulator when it

was first discovered and the future development in the field, trying to keep the chronological

order in mind (with some hiccups here and there). We discussed the classification of topological

insulators based on Berry phase and equivalent topological quantum numbers. Then we moved

on to discuss the basic concepts of field theory used in condensed matter physics while keeping

in mind their relevance in the upcoming chapters.
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6.1 Summary of the results

In Chapter 3, we discussed the emergence of a Z2 type of topological order due to the development

of a symmetry breaking field (spin-orbit density wave, SODW) in the system. A quasi 1D system

with a strong Rashba SOC tends to get unstable towards a SODW ground state. We showed

that at a magic nesting of Q = (π, 0)/(0, π), the helicity gets inverted on different sub-lattices

(αk+Q = α∗k). The resultant quantum order parameter breaks translation symmetry, but preserves

time reversal symmetry and is inherently associated with a Z2 type of topological order along

each density wave direction. Hence it is a weak topological insulator in 2D with an even number

of spin-polarized edge states. This phase is analogous to quantum spin-Hall state, except for

the fact that the TR polarization is spatially modulated. This state should be realizable in many

systems including thin atomic wires and 1D optical lattices where interaction and SOC can be

tuned independently.

In Chapter 4, we discussed the unique topological and magnetic properties of an experimentally

well studied magnetic material, TlCuCl3. TlCuCl3 has many unique properties such as a

massive Higgs mode at the magnetic critical point, long-lived paramagnons and dimerized

antiferromagnetic ground state. To study these properties, we performed DFT (as implemented

in VASP) calculations and found the presence of an isolated dirac cone. The dirac cone is

a direct consequence of the presence of a 1D chain like structures equivalent to SSH chains

stacked in 3D. The SSH chains, combined with SOC, give rise to an isolated anisotropic 3D dirac

cone where chiral and helical states are intertwined. As we turn on the Heisenberg interaction,

we show the formation of AFM ground state. In the magnetic ground state, we also find a

naturally occurring topological phase, distinguished by the axion angle. Finally, we derived a

Chern-Simons-Ginzburg-Landau (CSGL) action to study the coupling of magnetic excitation

and topological axion excitations. We find that the extra topological term provides an additional

mass to the Higgs mode and a lifetime to paramagnons.
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In Chapter 5, we performed ED studies on an interacting lattice model of bosons to explore the

presence of integer as well as fractional quantum Hall effect of bosons. The model consists of

hard core bosons on honeycomb lattice having π flux per unit cell with the nearest neighbor and

correlated next nearest neighbor hopping. We provided preliminary evidence for the presence

of integer as well as fractional quantum Hall ground state. Although the BIQH phase is an

example of symmetry protected topological (SPT) phase, BFQH phase is a symmetry enriched

topologically ordered state that can host fractional bosonic excitations whose signatures are

revealed in a charge pumping calculation. We adiabatically insert 2π flux through the center of

the system and observe a charge flow of 2/3, which is a signature that the ground state has a

quantized charge conductance, σxy = 2/3. We also looked at the excitation spectrum to confirm

the presence of chiral edge modes.

6.2 Outlook for future studies

The approaches discussed above can be extended to infer more testable and measurable results.

Below, we discuss some natural avenues in which one can pursue this goal.

We proposed a topological transition driven by quantum phase transition in Chapter 3 in a quasi

1D system. The most straight forward generalization would be to study the same in higher

dimensions i.e, in 2D and 3D. In that case, one will be required to introduce nesting along all

the direction ((π, 0) and (0, π) in 2D and (π, 0, 0), (0, π, 0) and (0, 0, π) in 3D). This will lead

to a 6× 6 (8× 8) Hamiltonian in 2D (3D). It would also be very interesting to study the effect

of fluctuations on the top of the mean field results. Another possibility would be to study the

interacting Hamiltonian presented using non-perturbative techniques such as bosonization and

coupled wire construction[131, 132].

The model presented in Chapter 4 deals with axion angle, a pseudo scalar topological term along
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with a single Higgs mode. This leads to axion-Higgs coupling accessible within the prepared

CSGL term. The corresponding Lagrangian shares some common features with the Standard

Model of particle physics. In the case of a Higgs doublet, an axion-Higgs cross term arises in

the Lagrangian which breaks the CSGL symmetry and leads to a so-called Peccei-Quinn (PQ)

symmetry, which violates the Standard model[112, 113]. However, the predicted Higgs doublet

is yet to be observed. This could be a very fruitful study as the real material hosts two Higgs

mode. It will also be interesting to derive an analytical expression for the θ term near the phase

transition. Again, it will be interesting to see the effect of fluctuations on top of the mean field

analysis presented, especially how the topological axion term affects the critical exponents.

Although we have provided preliminary evidence for BIQHE and BFQHE in Chapter 5, we

would like to resolve the issue of phase transition happening while threading the flux through the

central hexagon. Apart from that, the correlated hopping plays an essential role in stabilizing

BIQHE and BFQHE (which naively can be thought of as a mutual flux attachment). It will

be interesting to see if this kind of correlated hopping can stabilize other SPT and non-SPT

phases such as phases with σxy = ±4,±4/3, .. by adding more complicated background gauge

flux and/or different fillings. Another interesting possibility would be to study the competition

between different BQHE phases or between the BQHE phase and topologically trivial phases

as it is known that some repulsive interaction in the present model can lead to a topologically

trivial Mott phase[133, 134]. It will also be very interesting to develop a microscopic theory for

general filling apart from the perturbative approach.
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A
Pancharatnam phase or Berry phase

In this Appendix, we will derive the Berry phase expressions and related quantities. We start

with a time-varying HamiltonianH(R(t)) with

H(R)|n(R)〉 = En(R)|n(R)〉 (A.1)

where R(t) is a (vector) time-dependent parameter of the Hamiltonian and |n(R)〉 is the

instantaneous eigenstate ofH(R). The requirement is that the adiabaticity should be followed,

i.e., the rate of change of the Hamiltonian should be much slower than the gap in the system1.

The time evolution of the system is given by

H(R)|ψ(t)〉 = i~
d

dt
|ψ(t)〉 (A.2)

1this means that the system need to have finite gap for excitations
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for |ψ(t)〉 = e−iφ(t)|n(R(t))〉, the above equation becomes

En(R)|n(R)〉 = ~
(
d

dt
φ(t)

)
|n(R)〉+ i~

d

dt
|n(R)〉 (A.3)

hitting the above Eq. with 〈n(R)| we get

En(R)− i~〈n(R)| d
dt
|n(R)〉 = ~

(
d

dt
φ(t)

)
(A.4)

we can now solve for φ by integrating the above equation

φ(t) =
1

~

∫ t

0

En(R(t′))dt′ − i
∫ t

0

〈n(R(t′))| d
dt
|n(R(t′))〉dt′ (A.5)

as we can easily recognize, the first part on the right of the above equation is the conventional

dynamical phase while the other part is the negative of the Berry phase1. We can now write

|ψ(t)〉 = exp

(
− i
~

∫ t

0

En(R(t′))dt′
)
exp (iγn) |n(R(t))〉 (A.6)

where

γn = i

∫ t

0

〈n(R(t′))| d
dt′
|n(R(t′))〉dt′ (A.7)

1in-spite of having an i, berry phase is a real number because 〈n(R)| ddt |n(R)〉 is always imaginary
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which over a closed cycle, becomes

γn = i

∫ tclosed cycle

0

〈n(R(t′))|∇R|n(R(t′))〉dR
dt′

dt′ = i

∫
C
〈n(R)|∇R|n(R)〉dR (A.8)

the above equation can also be written as

γn =

∫
C
dR.An(R) (A.9)

where An(R) = i〈n(R)|∇R|n(R)〉 is called the Berry connection or Berry vector potential

(analogous to the electromagnetic vector potential)2. Since the Berry phase is a real number, we

can write the above equation as

γn = −Im
∫
C
〈n(R)|∇R|n(R)〉 (A.10)

applying Stokes theorem to the above equation gives

γn = −Im
∫
dS. (∇× 〈n(R)|∇R|n(R〉) = −Im

∫
dS. (〈∇n(R)| × |∇n(R〉) (A.11)

where 〈∇n(R)| × |∇n(R)〉 is the Berry curvature.

2it should be noted that although the Berry phase is a gauge invariant quantity, one needs to fix the gauge for
numerical calculations which, sometimes, becomes hard. For better understanding, one should consult the dedicated
references such as B.A. Bernevig[36].
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B
Ginzburg-Landau Theory

In this Appendix, we will derive the Ginzburg-Landau free energy functional discussed in

Chapter 2. Since the free energy changes continuously near the transition point, we can expand

it (Eq. 2.10) for small ∆. The inverse of the Greens function can be written as

Ĝ−1 = Ĝ−1
0

1 + Ĝ0

 0 ∆

∆̄ 0

 (B.1)

where Ĝ0 ≡ Ĝ(∆ = 0) is the non-interacting greens function. Now we can expand

ln det (G−1[∆]) (using the identity ln det(A)= tr ln(A)1) as

1this can be easily shown by going to the diagonal basis of A, i.e., ln det(A)=ln det(AD)=ln Πiλi =
∑
i lnλi =

tr ln AD = tr ln A
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ln det Ĝ−1 = tr ln Ĝ−1 = tr ln Ĝ−1
0 −

1

2
tr

Ĝ0

 0 ∆

∆̄ 0

2

+ . . . (B.2)

the first term in the above equation is the contribution of the non-interacting part. Using the

identity

1 =
∑

k≡k,ωn

|k〉〈k|,

∆k =
1√
βLd

∫
dxeik.x∆(x)

the second term can be written as

tr Ĝ(p)
0 ∆Ĝ

(h)
0 ∆̄ =

∑
k,k′

G
(p)
0 (k)〈k|∆|k′〉G(h)

0 (k′)〈k′|∆̄|k〉

q = k − k′
=

∑
q

∆q∆̄−q
1

βLd

∑
k

G
(p)
0 (k)G

(h)
0 (k + q) (B.3)

which on combining with the non-interacting term, we get

Z =

∫
D
[
∆̄,∆

]
e−S[∆̄,∆]

S
[
∆̄,∆

]
=

∑
ωn,q

[
1

g
+ Π(ωn.q)

]
|∆ωn,q|2 +O(∆4) (B.4)

where

Π(ωn.q) =
1

βLd

∑
k

G
(p)
0 (k)G

(h)
0 (k + q)

now, one can do the gradient expansion of Π(ωn, q) as

Π(ωn, q) = Π(0, 0) +
q2

2
∂2
qΠ(ωn, q)|(0,0) +O(ωn, q

4) (B.5)
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which gives

S[∆] =

∫
ddr
[
b|∆|2 +K|∂∆|2 + d|∆|4 + . . .

]
(B.6)

where b = 1/2g+Π(0, 0)/2, K = limq→0 ∂
2
qΠ(q, 0)/2 > 0 and d > 0. The effective free energy

functional is given by

F [∆] = −kβT ln e−S[∆]

F [∆] = kBTS[∆] = kBT

∫
ddr
[
b|∆|2 +K|∂∆|2 + d|∆|4 + . . .

]
(B.7)

this is the famous Ginzburg-Landau free energy functional.
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C
Derivation of the order parameter

The order parameter discussed in Chapter 3 can possibly arise from many types of interaction,

here we have shown some cases 1 from where these order parameters can arise. Let’s start with

the most common approximation of the Coulomb interaction, the Hubbard interaction.

C.1 Hubbard Interaction

Hint =
U

N

∑
i

ni↑ni↓ =
U

N

∑
i

c†i↑ci↑c
†
i↓ci↓, (C.1)

1these are commonly used interactions in condensed matter physics
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where i, j are the site index and N is the total number of sites. Taking the Fourier transformation

to the momentum space, we get

Hint =
U

N

∑
i

(
1

N2

∑
k,k′,k′′,k′′′

ei(k−k
′+k′′−k′′′).ric†k↑ck′↑c

†
k′′↓ck′′′↓

)
,

=
U

N2

∑
k,k′,k′′

c†k↑ck′↑c
†
k′′↓ck′′′↓

∣∣∣∣∣
k′′′=k−k′+k′′

(C.2)

(1) For k′ = k, and k′′ = k +Q we get

H1
int = g

∑
k

c†k↑ck↑c
†
k+Q↓ck+Q↓, (C.3)

where g = U/N2. Using the fermionic anti-commutation relations we can rearrange the operators

in Hint to get

H1
int = g

∑
k

(
c†k↑ck↑ − c

†
k↑ck+Q↓c

†
k+Q↓ck↑

)
. (C.4)

The first term gives the Hartee interaction which is neglected here (usually density-functional

theory based calculation incorporates this term). Expanding the Hamiltonian in terms of the

mean-field order parameter ∆1, we get

H1
int = −g

∑
k

(
〈c†k↑ck+Q↓〉c†k+Q↓ck↑

+c†k↑ck+Q↓〈c†k+Q↓ck↑〉 − 〈c
†
k↑ck+Q↓〉〈c†k+Q↓ck↑〉

)
.

(C.5)

(2) If we take k′and k′′=k +Q in Eq. (S2), we get

H2
int = g

∑
k

c†k↑ck+Q↑c
†
k+Q↓ck↓, (C.6)
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Expanding the Hamiltonian in terms of the mean-field order parameter ∆2, we get

H2
int = g

∑
k

(
〈c†k↑ck+Q↑〉c†k+Q↓ck↓ + c†k↑ck+Q↑〈c†k+Q↓ck↓〉−

〈c†k↑ck+Q↑〉〈c†k+Q↓ck↓〉
)
.

(C.7)

C.2 Heisenberg Interaction

Hint = JSi.Sj, (C.8)

where i, j are site index and

~Si = c†i~σci,

Six = c†i↑ci↓ + c†i↓ci↑,

Siy = −i
(
c†i↑ci↓ − c

†
i↓ci↑

)
,

Siz = c†i↑ci↑ − c
†
i↓ci↓,

(C.9)

This gives

Hint = J(2c†i↑ci↓c
†
j↓cj↑ + 2c†i↓ci↑c

†
j↑cj↓ − c

†
i↑ci↑c

†
j↓cj↓ − c

†
i↓ci↓c

†
j↑cj↑), (C.10)

as seen in the Hubbard term, the above terms will also lead to similar terms on taking the Fourier

transformation and hence leads to similar type of order parameter.
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C.3 Hund’s Coupling

Hint = JHS
α
i .S

β
j , (C.11)

where α, β are band indices and i, j are the site indices. Since Hund’s coupling is very much

similar to Heisenberg interaction hence this will also lead to similar type of order parameters.
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D
Self-consistent gap equations

In this section we will show how the two gap terms (∆1,2) changes with the interaction strength

by solving for them self-consistently. The mean-field Hamiltonians corresponding to the two

order parameters are

H1 =


ξk αk 0 ∆1

α∗k ξk ∆1 0

0 ∆1 ξk+Q α∗k

∆1 0 αk ξk+Q

 ,

H2 =


ξk αk ∆2 0

α∗k ξk 0 −∆2

∆2 0 ξk+Q α∗k

0 −∆2 αk ξk+Q

 .

So we can evaluate ∆1(2) self-consistently by finding out the expectation value of Γ1 (Γ3), i.e,∑
n 〈n|Γ1 |n〉 (

∑
n 〈n|Γ3 |n〉) where |n〉 are the eigenstates of H below the Fermi level. The
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corresponding result is shown in Fig. D.1.

Figure D.1: We show the variation of order parameter ∆1 and ∆2 (defined in Eq. 1 in the main text) as
a function of interaction strength g. Orange curve shows the order parameter ∆1 while green curve shows
that for ∆2.
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E
Bosonic Integer Quantum Hall

In this appendix, we will discuss the theory of Bosonic integer Quantum Hall Effect (BIQHE).

Let’s consider a two-component bosonic system which might be a bilayer system or a bosonic

spinor for instance. In the presence of magnetic field, the Hamiltonian can be written as[114]

H =
∑
I

HI +Hint (E.1)

HI =

∫
dxa†I

(
−(~∇− i ~A)2

2m
− µ

)
aI (E.2)

Hint =

∫
d2xd2x′ρI(x)VIJ(x− x′)ρJ(x′) (E.3)

where aI(a
†
I) are the bosonic annihilation(creation) operators of species I = 1, 2 and ρI = a†IaI

is the density operator. Now we define new bosonic operators based on flux attachment Chern-
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Simons theory as:

ã1(x) = e−i
∫
d2x′Θ(x−x′)ρ2(x′).a1(x) (E.4)

ã2(x) = e−i
∫
d2x′Θ(x−x′)ρ1(x′).a2(x) (E.5)

where θ(~x) gives the angle of ~x. This is an implementation of the flux attachment which attaches

one flux quanta of one species to the other. At ν = 1 filling, this cancels the externally applied

field in the mean field approximation. Now, an effective Chern-Simons Ginzburg-Landau theory

can be written in terms of these new bosons (composite bosons)

L =
∑
I

LI + Lint + LCS (E.6)

LI = iã∗I

∂0 − iAI0 + iαI0ãI −
|~∇ãI − i

(
~AI − ~αI

)
ãI |2

2m

+ µ|ãI |2 (E.7)

Lint = −VIJ |ãI |2|ãJ |2 (E.8)

LCS =
1

4π
εµµλ(α1µ∂να2λ + α2µ∂να1λ) (E.9)

where two gauge fields α1/2 have been introduced to implement the flux attachment. As there is

no magnetic field for composite bosons, they can condense to lock the external gauge field to the

internal gauge field which gives an effective Lagrangian for the external probe field 1

Leff =
1

4π
εµνλ (A1µ∂νA2λ + A2µ∂νA1λ) (E.10)

we can now introduce two new probe gauge fields

Ac =
A1 + A2

2
(E.11)

As =
A1 − A2

2
(E.12)

1Canceling the internal gauge field with the external gauge field in Eq. E.7 requires AI = αI . Putting this in Eq.
E.9 results in Eq. E.10.

120



Bosonic Integer Quantum Hall

which couples to the charge and pseudospin currents respectively. Now, the effective Lagrangian

becomes

Leff =
1

4π
εµνλ (Acµ∂νAcλ − Asµ∂νAsλ) (E.13)

which represents an incompressible Quantum Hall state with Hall conductivity σcxy = +2 and

pseudospin Hall conductivity of σsxy = −2.
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F
Gauge fixing

In this appendix, we will discuss the fixing of the gauge in Chapter 5 for performing exact

diagonalization. Here we choose symmetric gauge because it preserves the C6 rotation symmetry

of the system. In symmetric gauge, the vector potential looks like

~A = −B0

2
(−y, x, 0) (F.1)

such that

~B = ~∇× ~A = B0ẑ (F.2)

where B0 (the magnetic field strength) is chosen such that the flux through each hexagon is π.

The advantage of choosing the symmetric gauge is the presence of C6 rotation symmetry in the

Hamiltonian, which helps in characterizing different eigenstates of the system (by assigning

different “angular momentum” quantum number).
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G
Excitation Spectrum/Edge theory

The BIQH state discussed in Chapter 5 can be described by an Abelian Chern-Simons theory

with the K-matrix[7]

K =

0 1

1 0

 . (G.1)

Thus the behavior of its edge modes is similar to the ones of FQH states, whose effective

Lagrangian is:

L = − 1

4π
(Kαβ∂tφα∂xφβ + Vαβ∂xφα∂xφβ) (G.2)

where α, β = A,B and (1/2π)∂xφα gives the density of the corresponding species of bosons,

and Vαβ is the velocity matrix. To diagonalize the above Lagrangian, we introduce the charge

and (pseudo) spin modes φc(s) = (φa ± φb) /
√

2
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We can now obtain the edge Hamiltonian and the corresponding momentum operator:

H =
2π

Ly
(vcL

c
0 + vsL

s
0) , and (G.3)

P =
2π

Ly
(Lc0 − Ls0) (G.4)

with

L
c(s)
0 =

(∆Na ±∆Nb)
2

4
+
∞∑
m=1

mnc(s)m (G.5)

Here,Ly is the length of the 1D edge; ∆Na(b) is the change in the particle number of a(b) boson

relative to the ground state;nc(s)m is the set of non-negative integers describing oscillator modes.

These oscillator modes exhibit the well-known 1, 1, 2, 3,... degeneracy pattern.
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Güdel, S. N. Gvasaliya, H. Mutka, and M. Boehm. Quantum magnets under pressure:

Controlling elementary excitations in tlcucl3. Phys. Rev. Lett., 100:205701, May 2008.
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[77] Thierry Giamarchi, Christian Rüegg, and Oleg Tchernyshyov. Bose–einstein condensation

in magnetic insulators. Nature Physics, 4(3):198, 2008.

[78] O. Vyaselev, M. Takigawa, A. Vasiliev, A. Oosawa, and H. Tanaka. Field-induced

magnetic order and simultaneous lattice deformation in tlcucl3. Phys. Rev. Lett.,

92:207202, May 2004.

[79] S Sachdev. Quantum phase transitions cambridge univ. Press Cambridge Google Scholar,

1999.
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