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Preface

The world of many-body physics, encompassing both classical and quantum systems, is a
breeding ground for novel phases of matter. Recent attention revolves around exotic phases
characterized by fractionalized particles, emergent gauge fields, and long-range entanglement
that hold immense potential for applications in quantum computing, information processing,
and advanced sensing. Spin liquids (SLs) are a prime example, where the local spins exhibit
neither a long-range order nor a complete disorder but rather a unique correlation structure with
long-range entanglement. In the quantum SLs, gauge fields emerge at low energies, potentially
interacting with the (fractional) particle-like excitations. Despite extensive research, numerous
puzzles remain unsolved across quantum and classical SLs (Q/CSLs), such as understanding the
dynamics of different gauge degrees of freedom, their influence on the dynamics of particle-like
excitations, and their unique statistical properties. The present thesis delves into the study of
the QSLs and CSLs in corresponding frustrated systems.

In the first project, I investigated the 2D Kitaev SL model via the Density-Matrix Renor-
malization Group (DMRG) study. The Kitaev model, one of the very few exactly solvable
lattice models in 2D, predicts an interplay between Majorana fermions and Z2 gauge fields.
The ground state consists of uniform zero fluxes with gapped or gapless Majorana dispersions
depending on parameters. A magnetic field along the [111] direction disrupts this uniformity,
and the model becomes not exactly solvable. Within DMRG calculations, I identify five phases
with distinct gauge sectors. The phases are uniform zero-flux, π-flux gas, amorphous π-flux
crystal, a novel quantum glass, and a ferromagnet. Intriguingly, the origin of this glassiness
arises from the restricted dynamics of excitations such as Majorana-flux or flux-flux pairs
connected by finite-length strings, but not from conventional disorder or conserved quantities.

In the next project, I explore periodic arrangements of π-fluxes in the Kitaev model and
their impact on the low-energy Majorana dispersions. By tuning the π-flux pair length and the
coupling constants, I observe nearly flat-band Majorana dispersions with gaps and gap-less
linearly dispersing Dirac points and tunable bandwidth and gaps. These gapped bands possess
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non-trivial Chern numbers and quantum metrics, meeting the criteria for ideal fractional Chern
insulators. In the presence of interactions, these bands give the fractional Chern insulator phase
for the Majorana fermions. I study the fractional Chern insulator phase with the mean-field
theory involving density-wave orders. I systematically construct a low-energy tight-binding
model via the Wannierization technique to describe the Majorana fermions in the presence of Z2

gauge fields. This model introduces a gauge potential through a superexchange-like interaction.
In the third project, I explore CSLs. CSLs are cooperative paramagnets that have extensive

degeneracy and finite zero-temperature entropy, in contrast to QSLs with zero entropy. Gauge
theories also emerge here, but for different reasons. In recent years, significant interest in
CSLs has been spurred by the emergence of higher-rank gauge theories and fragmentation
properties. Traditionally, CSLs are studied using models like the spin-ice rule or the Luttinger-
Tisza approximation. I developed a group theoretical method based on forming a vector space
representation for spins within a plaquette of the lattice. The key to this method involves the
decomposition of the spin vector into irreducible representations of point-group symmetry.
The on-site unit-length spin constraint and frustration play pivotal roles in the emergence
of CSLs. This method has been verified with the experimentally relevant XXZ model with
Dzyaloshinskii-Moriya (DM) interaction. Among various interesting findings, I observe AFM-
vortex/Anti-AFM-vortex-like structures in the ordered phases, a fragmented phase due to the
coexistence of ordered phase and disordered CSLs. The group theoretical method helps unify
all these phases into a single picture. Notably, the method allows us to quantify the exact ratio
of order to disordered components in the case of classical continuous spins.
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1
Introduction: Spin liquids

In the realm of condensed matter physics, from the microscopic world of atoms and molecules
to the macroscopic scale, many-body physics provides invaluable insights into the complexities
of nature. Studying many-body systems is a cornerstone for understanding collective behaviors
arising from interactions between an Avogadro number of particles. These interacting systems
at zero temperatures exhibit properties and behaviors that cannot be understood with individual
constituents; this is the concept of emergence coined by P.W Anderson [1]. Despite the
simplicity of their individual constituents, many-body systems exhibit remarkably diverse
emergent properties. These range from the intricate phenomena of quantum entanglement at
the microscopic scale to behaviors reminiscent of the physics governing massive black holes
on galaxy scales.

The exotic phases in the quantum many-body systems include simple metals to instances
where the metals defy the single particle picture, termed as ’non-fermi liquids.’ In the strong
interaction limit at half-filling, insulators with significant charge gaps show intriguing phenom-
ena, for example, ’spin liquids.’ [2] In these instances, the spin degrees of freedom govern the
low-energy physics. One seminal example that catalyzed the exploration of these concepts and
paved the way for modern research topics is the study of Mott insulators. The Mott insulators
initially emerged as the parent state for the high Tc superconductor compounds like La2Cuo4
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[3]. The Hamiltonian that describes these materials is typically the Hubbard model on a square
lattice with strong on-site interaction U:

H = −t ∑
⟨i j⟩,σ=↑,↓

c†
i,σ c j,σ +h.c+Uni↑ni↓ (1.1)

Here, t is the nearest neighbor hopping strength, ciσ is the electron annihilation operator with
spin σ , and their corresponding number operator niσ = c†

iσ ciσ . At half-filling, for U = 0,
the ground state is a simple metal, while for U = ∞, the ground state is an ordered anti-
ferromagnet. The double occupancy is restricted at U =∞, leading to a scenario where spins
dominate physics. The half-filled states at finite but large U limit are described by an effective
spin-exchange Heisenberg model [4]:

H = J∑
⟨i j⟩

Si ⋅S j, (1.2)

where J ∼ 4t2/U . When frustration, like the next-nearest neighbor hoping in a square lattice,
is present, the ordered state is no longer the ground state. The state is given by a ’spin liquid’
where the spins neither do order nor completely disordered but have a non-trivial correlation
with entanglement.

In this chapter, I aim to elucidate the intricacies of spin liquids in the quantum regime.
Since quantum spin liquids have been in active research for the past few decades, my discussion
will be concise, primarily focusing on theoretical advancements. Additionally, in Chapter 2, I
discuss the classical analogs of spin liquids, also known as cooperative magnets [5], exploring
various theoretical perspectives.

1.1 Quantum Spin Liquids

Quantum spin liquid (QSL) is a non-magnetic phase where spins do not order even at zero
temperature. QSLs naturally occur in low-dimensional systems like in 1D and 2D (also 3D
in a few materials) where quantum fluctuations due to frustration are predominant, making
the spins not ordered. In general, the paramagnetic phase is also not ordered. However, it is a
trivial state, meaning the ground state and the excitations are deterministically unique- where
the spins at different sites are uncorrelated. On the other hand, the QSL state is a superposition
of all possible spin configurations and hence has finite entanglement and correlations with
topologically non-trivial excitations (both abelian and non-abelian). QSLs may look featureless
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if we look at individual spins like a paramagnet. However, differences lie in features like
ground-state degeneracy, exotic fractional excitations, and entanglement [6].

Frustration plays a crucial role in realizing QSLs. A simple model showcasing frustration is
the antiferromagnetic Heisenberg spin-1/2 model on a triangular lattice [7]. In any given triangle,
there’s always at least one site that fails to align antiferromagnetically with its neighboring
sites—a phenomenon termed frustration. Consequently, the probable scenario for the ground
state involves superpositioning all possible spin configurations across all sites.

A contemporary definition of QSLs is that it is a phase with long-range entanglement and
emergent excitations with fractional statistics- a topological ordered phase [6, 8]. The gauge
symmetry emerges in QSLs, and the type of emergent gauge theory present in the QSLs is
used for their nomenclature, i.e., for example, a phase with emerging U(1) gauge theory1 is
called U(1)-spin liquid. Wen et al. [9] proposed the concept of topological order for phases
that do not have Landau local order parameters. A topological order is defined by a state
with ground state degeneracy (which is D2) that depends on the number of quasiparticle types
present in theory (D). For example, D = 2 in Z2 spin liquids corresponding to two types of
quasiparticles, which are called ’e’ and ’m’ excitations. This degeneracy leads to an intrinsic
entropy that is independent of the system size and manifests as a universal long wavelength
correction in bipartite-entanglement entropy called the topological entanglement entropy (TEE).
The corresponding details are discussed in the following sections.

The structure of this chapter is as follows. The early mechanisms of QSLs based on
RVB states by Anderson for understanding the phase diagram of high-Tc superconductor
La2CuO4 is discussed in Sec. 1.1.1. Sec. 1.1.2 discusses the extension of RVB ideas of QSLs to
effective field theory descriptions using parton mean-field theories and emergent gauge fields
and fractionalization. In Sec. 1.1.4 and Sec. 1.1.3 I summarize existing materials proposed to
exhibit QSLs and their experimental signatures, respectively.

1.1.1 Early mechanisms of Spin Liquids: Resonating Valence Bond the-
ory

RVB theory is one of the early mechanisms of QSLs and was introduced by P.W. Anderson [10]
as a proposal to explain the unconventional superconductivity in copper oxide compounds [11].
The idea of resonating valence bonds (RVB) was originally proposed to describe the quantum
mechanical resonance of covalent bonds in unsaturated benzene molecules. Then, Pauling
generalized this idea to 2D graphite and metals [12]. Later, Anderson applied the RVB concept
to the family of spin-half Mott insulators, particularly in situations where the anticipated long-

1Precisely, the invariant gauge group of the projective symmetry group
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range antiferromagnetic order was absent due to frustration [13]. The variational analysis done
in Ref. [13] on a 2D triangular lattice of spin-1/2 Heisenberg antiferromagnet demonstrated that
a state characterized by coherent superposition of spin-singlets formed between nearest neighbor
sites yielded a ground state more favorable than the long-range ordered antiferromagnet. The
stability of the RVB state was attributed to the movement or resonance of singlet pairs. The
RVB trail wavefunction, as commonly depicted, following discussion from Ref. [14], is

ψRVB = Pd
⎛
⎜
⎝
∑
i j

φi jb
†
i j

⎞
⎟
⎠

N/2

∣0⟩,

where Pd =∏i(1−ni↑ni↓) is the Gutzwiller projection operator restricts the double occupancy
on each lattice site of the Mott insulator, and b†

i j =
1√
2
(c†

i↑c†
j↓− c†

i↓c†
j↑) creates a singlet pair on

sites i and j. The factor φi j characterizes the RVB state, which depends on the lattice and the
kind of spin liquid of interest. On a square lattice, only the nearest neighbor pair has non-zero
contributions.

The Gutzwiller projection operator Pd constrains the allowed Hilbert space to single oc-
cupancy at each site. In general, a projection operator on wavefunctions allows correlations
between the constituent particles, even if the particles are non-interacting before the projection.
This is a complex problem to implement analytically. Various Monte Carlo techniques are often
used. The essence of the projection becomes evident in capturing the topological excitations, as
demonstrated in Ref. [15–17] for the RVB states. Subsequently, the topological entanglement
entropy is calculated using the variational Monte Carlo method [18–20] in the triangular lattice.
The U(1) gauge field emerges in the theory on triangular lattice [21, 22], which reduces into
the Z2 theory under the relevant spinon pairing. An elaborate discussion on this is presented in
the next section.

Furthermore, the excitations in the system exhibit fractional statistics. One notable excita-
tion is the spinon, a neutral spin-1/2 particle. Creating a pair of spinons involves breaking a
singlet bond. Additionally, a single spinon can move through the lattice by breaking nearby
singlet bonds and rearranging others, leaving behind an unpaired spinon. This movement
results in the formation of a string connecting the two unpaired spinons. [23, 24] The other
gaped excitations, known as visons in Z2-spin liquids, correspond to the creation of fluxes.
When a spinon is braided around a vison, the wavefunction acquires sign change (-1) [25, 26],
leading to Semion statistics. The statistics of these excitations are equivalent to those of the
bosonic fractional quantum hall state, as demonstrated in Ref. [27].

In further developments, the dimer models were introduced [28, 29] to better describe RVB
states and illustrate how the RVB state is a true ground state of a local Hamiltonian. Each
configuration of the dimer coverings is orthogonal to each other, which is not the case in the
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general RVB state, and this made the dimer models easy to tackle. This feature of dimer
models made it possible to create a variational tensor product state for RVB states [30–32].
These RVB-states as variational wavefunctions ansatz, prove to be successful in simulating
topological ordered phases via most of the modern numerical techniques like tensor networks
[33–36]. It remains an active research topic, see for example Ref. [37].

The RVB state and that obtained from an effective theory (to be discussed below), are
equivalent in case if the visons and spinons are gaped in the Z2 spin liquid state2 [38, 39].
This state is a short-range RVB state [40, 41]. On the other hand, the long-range RVB states
3 [44] have spinons with gapless nodal points and small Vison gap [45]. This state is created
by using Gutzwiller projection on d-wave BCS wavefunctions on a square lattice and also on
the other bipartite lattices where the Marshal sign rule plays a significant role [46]. Later, this
construction generalized to non-bipartite lattices. In such scenarios, the RVB states do not
correspond to the ground state obtained from mean-field analysis. Usually, these states are
unstable and are called algebraic spin liquids. A brief summary of the intricacies of algebraic
spin liquids is presented in Sec. 1.2.

1.1.2 Parton Mean Field theory: Emergent Gauge fields, Fractionaliza-
tion

In this section, I discuss the effective field theory approach for studying QSLs. This method
offers a clearer analytical framework than the variational approach. Here, the emergence of
gauge theory as a low-energy description of QSLs and the fractional statistics exhibited by
excitations become transparent.

The key idea behind this formalism, mainly developed by Baskaran [21, 47], Sachdev
[38] and Wen [9], is that spin-1/2 degrees of freedom are decomposed into some fractional
particles with up and down spins, called Partons. The partons can be fermions or bosons.
This increases the Hilbert space dimension. The physical Hilbert space spanning spins is
recovered by imposing a local constraint on the enlarged Hilbert space. 4 The extra dimensions
of the enlarged Hilbert space do not affect the physical observables. Hence, those extra
degrees of freedom behave like a gauge sector, just like the gauge freedom in Maxwell’s theory.
Surprisingly, these extra gauge degrees of freedom turn out to be low-energy excitations in a

2Which is discussed above in the triangular lattice, or in the square lattice by introducing hopping onto next
nearest neighbor bonds[38], and also Toric code introduced by Kitaev [39])

3These RVB states have the singlet dimer coverings covering over the whole lattice with uniform weights
for all configurations [42, 43]. Contrast to the short-range RVB states where the dimer coverings are within the
nearest or next nearest neighbor distances [40, 41], like in the dimer models.

4In the case of global ones, chemical potential-like terms can take care of that constraint.
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few cases (gapped QSLs) and impact the low-energy physics to different ’emerging’ phases (in
gapless QSLs). This enhanced symmetry in the low-energy gives freedom to create different
QSLs satisfying the physical symmetries- this construction is called the Projective Symmetry
Group (PSG) analysis developed by Wen [9]. The discussion on these ideas is presented below
by taking an example for each representation.

1.1.2.1 Schwinger Fermion Mean-field Theory

This theory was developed by Baskaran [21, 47] and later used by Wen [9] for spin liquids.
For this discussion, I mainly follow Refs. [9, 48, 49]. In this approach, the spin is written into
fermionic parton operators fiα ,α =↑,↓ carries spin-1/2 with no charge. The spin operator Si is
represented as

Si =
1
2 fiα

†
σαβ fiβ , (1.3)

with S+i = Sx
i + iSy

i = f †
i↑ fi↓ and S−i = S+†

i . The partons have SU(2) invariance. By this repre-
sentation, the Hilbert space dimension, which is two at each site for spin-1/2 particles (called

’physical Hilbert space’), increased to 4 (called ’extended Hilbert space’). The Hamiltonian
considered here is the Heisenberg Hamiltonian for a half-filled Mott insulator given in Eq. 1.
The constraints for half-filling at each site are

∑
α=↑,↓

f †
iα fiα = 1, ∑

α,β

fiα fiβ εαβ = 0, (1.4)

where εαβ is the Levi-Civita matrix. The second constraint is redundant from the first one,
annihilating double occupancy. These constraints are difficult to implement exactly because
the Hamiltonian is quartic in these operators; rather, impose these constraints at the mean-field
level on the ground state as

⟨ ∑
α=↑,↓

fiα
†fiα⟩ = 1, ⟨∑

α,β

fiα fiβ εαβ⟩ = 0. (1.5)

Since these constraints are local, these can be implemented in the Hamiltonian by including
a site-dependent Lagrangian multiplier, al

0(i), l = 1,2,3, where a1
0 for the first constraint and

a2
0, a3

0 corresponds to the imaginary and real parts of the second one. In the zeroth order
approximation, we ignore the time dependence of the al

0, i.e., its fluctuations. By including the
fluctuations, the constraint in Eq. 1.5 becomes the original constraint, Eq. 1.4. The Heisenberg
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Hamiltonian, eq. 1:

H =
J
4 ∑
⟨i j⟩

(2S+i S−j +h.c+ (ni↑−ni↓)(n j↑−n j↓)),

=
J
4 ∑
⟨i j⟩

(2 f †
i↑ fi† f †

j↓ f j↑+h.c+ (ni↑−ni↓)(n j↑−n j↓)) (1.6)

with ∑i,α=↑,↓ f †
iα fiα = 1 and subtracting the constant term ∑⟨i j⟩,α≠β=↑,↓ niαn jβ ,

H = −
J
2 ∑
⟨i j⟩,α≠β=↑,↓

(fiα
†fjα fjβ

†fiβ +
1
2 fiα

†fiα fjβ
†fjβ ). (1.7)

Since the above Hamiltonian is quartic in fermionic operators, we decompose the terms into
quadratic fermionic operators by considering the mean field parameters

ηi j = −2εαβ ⟨fiα fjβ ⟩ , with ηi j = η ji,and

χij = δαβ ⟨fiα
†fjβ⟩ , with χij = χji

†
. (1.8)

ηi j is a singlet pair creation term, and χi j is a single spin hopping term. These mean field
equations are calculated self consistently. Using these terms, the mean-field Hamiltonian is

Hmean =
−3
8 J∑

i j

[χi jfiα
†fiα +ηijfiα

†f †
jβ εαβ +H.c− ∣χi j∣2

− ∣ηi j∣2] (1.9)

+∑
i

[(a3
0(f †

iα fiα −1)+ (a1
0 + ia2

0)fiα fiβ εαβ +h.c]). (1.10)

This Hamiltonian has local SU(2) gauge symmetry which can be seen by defining,

ψ = (f↑
f †
↓

) , Ui j = (χ
†
i j ηi j

η
†
i j −χi j

) =U†
ji. (1.11)

Where ψ is a spinor and Ui j act as SU(2) gauge field. As a result, Eq. 1.5 and Eq. 1.9 are
written as

⟨ψ
†
i τ

l
ψi⟩ = 0, (1.12)

Hmean =
−3J

8 ∑
i j

[1
2Tr(U†

i jUi j)−(ψ
†
i Ui jψ j +H.c)]+∑

i

al
0ψ

†
i τ

l
ψi. (1.13)
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The first term is from the mean field, corresponds to the gauge fluctuation and the gauge -
matter coupling in a lattice. The second term is from the constraints, implements the Peierls
phase of the emergent gauge fields for the fi in the lattice. The gauge fields in the above
Hamiltonian emerges as follows. This Hamiltonian is invariant under local SU(2) transform
W(i): ψi →W(i)ψi and Ui j →W(i)Ui jW

†( j). The physical wave function for spins is obtained
from the mean-field answer from the self-consistency method by projecting the mean field state
into a single occupancy constraint at each site. The physical observables do not affect by this
local SU(2) transform. The states may transform but not observables. So, this transformation is
not a symmetry but a redundancy.

A mean-field ansatz is chosen depending on the lattice of interest and internal symmetries,
like time reversal and parity. In addition to these physical symmetries, the ansatz has a local
gauge redundancy or gauge symmetry, SU(2) symmetry here (preciously invariant gauge group
of the projective symmetry group, which will be discussed in the next section). For any
chosen ansatz, the Hamiltonian in Eq. 1.13 is quadratic, and solve the Hamiltonian is solved
self-consisitently for order parameter. Hence, the spectrum and the nature of excitations are
studied efficiently. The excitations include the phase excitations of mean field parameters. The
magnitude fluctuations are generally gaped, in some cases, the phase fluctuations can be gapless
which makes the phase is unstable. But Z2 spin liquids in triangular lattices and Kagome
lattices [50] have gapped phase fluctuations and stable. Likewise, the ansatz may break SU(2)
local symmetry into U(1) or Z2. In the case of a square lattice, the phase fluctuations make U(1)
spin liquids unstable. Hence, by introducing the next nearest neighbor hoppings in the model,
the gauge group breaks into subgroup Z2 [48, 49], which has massive phase fluctuations. So,
Z2 spin liquids can be stable. 5

In such stable phases, the gapped spinon excitations (created by breaking a singlet in the
RVB picture) can be integrated out to obtain a low-energy effective field theory in terms of the
order parameter fluctuations- which turns out to a gauge theory. The universal long-wavelength
properties like topological degeneracy, entanglement entropy, and the nature of fractional
statistics can be studied from the resulting gauge theory.

1.1.2.2 Schwinger Boson Mean-field Theory

I will follow the discussions from Refs. [38, 52]. In this approach, the spins are written in terms
of bosonic partons Si =

1
2b†

iασα,β biβ , with constraint ∑
α

b†
iαbiα = 1. Just like in the above case,

the Hamiltonian is written in terms of these bosonic partons, and then the quartic terms are
decomposed in terms of singlet pair creation/annihilation term (Âi j) and single spinon hopping

5Intruding various terms into unstable U(1) spin liquid phase, stabilizes different phases either ordered or spin
liquids [51].
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term (B̂i j)

Si ⋅Sj =∶ B̂i j
†B̂i j ∶ −Âi j

†Âi j,

(1.14)

with

B̂i j =
1
2 ∑

α

b†
iαb jα and Âi j =

1
2 ∑

α,β

εαβ biαb jβ , (1.15)

where : : denotes the normal ordering in terms of b†
iα operators. The mean-field equations are

Ai j = ⟨Âi j⟩ , Bi j = ⟨B̂i j⟩ ,

and the constraint is implemented on average: ⟨∑
α

b†
iαbiα⟩ = 1. This representation has the

U(1) local symmetry not the SU(2) symmetry we obtain for the fermionic case: b†
iα → eiφ(i)b†

iα

, and Âi j → e−iφ(i)−iφ( j)Âi j, B̂i j → eiφ(i)−iφ( j)B̂i j. So, by exploiting this local U(1) local
symmetry, this physical symmetry can be implemented differently for different mean-field
ansatz, resulting in different spin liquid phases. As discussed in the previous section, the
physical state is constructed by imposing the constraint on the mean-field wave function. The
mean field ansatz may vary between bosonic and fermionic parton constructions for the same
state, but the resultant physical states must remain the same state. As discussed in the fermionic
parton scenario, various ansatz can be formulated to assess state stability further. Depending
on the energetics of the excitations of the resulting state from the ansatz, a low-energy field
theory can be constructed, giving rise to different gauge theories.

1.1.2.3 Projective Symmetry Group

As discussed in the previous sections, the same physical symmetry can be implemented
differently due to the emergence of local symmetry in the mean-field ansatz. The set of all
transformations (including physical symmetries and local symmetries) that keep the mean field
ansatz invariant is called the ’projective symmetry group’ (PSG). In PSG, if the transformations
are completely local without involving physical symmetries, they also form a group called
the ’invariant gauge group.’ The different mean-field ansatz, which is related by only IGG
transformations, gives the same physical state. This is used in the literature as a nomenclature
for spin liquids, for example, Z2-spin liquids for IGG=Z2 or similarly for U(1) or SU(2) spin
liquids. PSG of any QSLs is the index of mean field ansatz with IGG of the group indicating the
spin liquid type, i.e., with Z2(Ui j,a

l
0τ

l) for the fermion case discussed in the previous section
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[9]. For example, different mean-field Ansatz have different PSGs even though they all have
the same physical symmetry, giving different spin liquids. So, the PSG provides a way to
implement different symmetry-allowed background flux configurations for the partons. Not
all the PSG ansatz can give stable physical spin liquids [49]. In the absence of any local order
parameters for QSLs, the PSG of QSLs is used to classify the phase. For example, 196 types of
Z2 PSGs in the square lattice can give physical Z2-spin liquids, which can be used to identify
them. Similarly, see for triangular [52, 53], and Kagome [54]. In addition to the symmetric
spin liquids, there are spin liquids that do not obey all the symmetries; for example, the Z2 spin
liquid constructed in Ref. [38]. Those can not be classified with PSGs.

1.1.2.4 Topological Order

The concept of ’topological order’ is used for the gapped states and can lack the local ordered
parameters as in the Landau paradigm. In addition to QSLs, fractional quantum hall states
are another famous example of topological ordered phases. The definitive signature of the
topological ordered phase is the long-order entanglement and topological degeneracy. Both
depend on the number of distinct quasiparticle types present in the model. The measure of
long-range entanglement is the topological entanglement entropy (TEE) [55], which is the
universal term in the bipartite entanglement entropy. Bipartite entanglement entropy of a pure
state 6 is calculated by dividing the system into two subsystems (A, B) with a boundary of
length L in a 2D lattice and by defining the reduced density matrix ρ for subsystem A or
subsystem B. Entanglement entropy is the von Neumann entropy [Sρ = −tr(ρ log(ρ))] of the
sub-system density matrix ρ . For the topological ordered phase, Sρ is

Sρ = αL− γ + . . . , (1.16)

where α is the non-universal, ultraviolet divergent constant and γ non-negative universal
constant depends on the global entanglement on the boundary 7. γ is system length independent,
so this can be calculated using effective topological field theories. γ behaves as

γ = log(D), with D =

√
∑

a
d2

a , (1.17)

where D ≥ 1 is the total quantum dimension of the medium and da is the quantum dimension of
the quasiparticle with charge a. For any abelian quasiparticle, the quantum dimension is 1. D
counts the total number of superselection sectors present: for example, the toric code, which is

6For mixed states, bipartite entanglement entropy is not a good measure.
7Some subtitles of the universality of TEE are discussed recently in Ref.[56].
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an abelian Z2 gapped spin liquid, has four superselection sectors: vacuum, fermion ε = e×m,
and vortices e, m. each having quantum dimensions to be one, which is the case for all abelian
particles. So, γ = log(2). For the non-abelian case, the quantum dimension is the dimension of
a fusion vector space spanned by all the distinguishable ways of fusing n types of quasiparticles
into the trivial ones, see Appendix. E of Ref. [57] 8. The total quantum dimension for the
non-abelian phase in the Kitaev honeycomb model (which is also a Z2 spin liquid) is 4 (where
each supersection sector: vacuum (represented by 1, d1=1), fermion (represented by ε,dε = 1),
and vortex (represented by σ ,dσ =

√
2)). So, the entanglement entropy is the same as in the

abelian case. There is recent interest in calculating multi-partite entanglement entropy of
the states in distinguishing the abelian and non-abelian spin liquids [59]. Since the bipartite
entanglement has the extra non-universal term, which depends on the boundary area, different
procedures were proposed to extract the universal term- known as Kitaev Preskill construction
[55] or the Levin-Wen construction [60]. Here, one divides the system into four sub-regions
and calculates the tripartite mutual information of the regions to extract the TEE. Recently, an
interesting proposal from Feng et al. [61] to calculate TEE from correlation functions of spins.
Also, there are interesting proposals for measuring TEE in experimental settings [62].

Another signature of topological order is the degeneracy of the ground state. This degener-
acy is also equivalent to D2

=∑a d2
a , and depends on the genus of the manifold. This can be

seen in short-range RVB states as follows 9: Consider nearest neighbor singlet bonds covered
RVB state on the square lattice with periodic boundary conditions. If we draw a line along the
boundary of one of the holes in the torus (which is along x - or y - directions in the lattice.)
and count the number of singlet bonds crossing the line, which is even always. Then, breaking
a single singlet bond that crosses the line into individual spinons creates an odd number of
singlets crossing the line, where the individual spinons can be paired by moving the spinon
to the other side without crossing the line. By this procedure, the states with even and odd
numbers of singlets are not distinguishable, i.e., degenerate. Likewise, the complete degeneracy
is calculated by the genus number of the manifold.

The above procedure for computing the topological degeneracy of a state utilizes quasipar-
ticle statistics, as detailed in Ref. [63–65]. This demonstrates the direct connection between
fractional statistics and topological order. This calculation assumes that the state is gaped and
the excitations placed on the ground state do not change the state when they move around,
keeping the state in the ground state manifold. The detailed derivation of the topological degen-
eracy for the torus with genus g = 2, for example, with fractional charges 1/q, is presented in
appendix A.1. In the case of toric code, the exact operators corresponding to these degenerate

8See Preskill notes on ’Quantum Information and Computation’ [58].
9This discussion is taken from Ref. [2].
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states are discussed explicitly in Sec. 1.3.3. This degeneracy of the states depends on the
fractional statistics of the quasiparticles, so it also survives in the long-wavelength effective
field theory calculations. This degeneracy is only valid with gapped systems. Whether the
corresponding degeneracy is relevant or not for gap-less quasiparticles where topological order
(called ’quantum order’) is also present is still an open question.

1.1.3 Experimental signatures of QSLs

Note that there are no direct smoking-gun experimental probes that can give the unambiguous
signature of the QSL phase. There exist a few indirect probes, which, with proper analysis, can
indicate the presence of a QSL phase. The discussion below is taken from [66–68]. 10

The foremost criterion for a QSL is the lack of magnetic order down to temperatures well
below the magnetic exchange constant. In this regard, the first step is to estimate the exchange
constant from magnetic susceptibility via the Curie-Weiss temperature fitting. The second
signature is the specific heat measurement. The absence of the typical λ− line peak in Cv is
another evidence of no order. Cv ∼ T is another prediction of spinon in QSL, than phonons
etc. One of the ways to rule out this possibility is to check the excitation spectrum- which is
fractional spin-1/2 excitations with fractional statistics in QSLs. Probing fractional statistics of
the quasiparticles is not an easy task. There are theoretical proposals [71–74] and experimental
verification of fractional statistics using interferometer experiments in fractional quantum
Hall edges [75, 76] which have both abelian and non-abelian but not in the QSL materials.
However, the experiments probing the fractional excitations have successfully identified the
candidate materials. The experiments that are sensitive to magnetic excitations are used, such as
inelastic neutron scattering (INS), thermal conductivity and thermal Hall conductivity, nuclear
magnetic resonance, electron-spin resonance, specific heat, and Raman and terahertz (THz)
spectroscopies, can be utilized to identify the type of fractional excitations and further classify
the QSLs.

Particle-hole continuum of spinons, which are broad. This should be contrasted with the
magnon spectrum for an ordered state [66, 77, 78]. In the case of ordered magnets, the excitation
spectrum has magnons. The magnons dispersion is calculated, had sharp peaks at the ordering
vectors in high-Tc compound La2CuO4 [77], confirming the antiferromagnetic nature of high-

10While finishing this thesis, I have come across an interesting proposal by Patrick Lee et al. Ref. [69] to
probe the Meissner effect of emergent gauge fields. The core idea of the proposal is to use Nitrogen-Vacancy
(NV) Centers in the diamond placed from a distance z0 from the crystal hosting the U(1) spin liquid to probe
the Meissner effect of spinons, which is the signature of emergent gauge fields. The current fluctuations in the
spinon fermi surface of U(1) spin liquids generate magnetic fluctuations in the NV centers [70]. Extending this
idea further, the relaxation rate of the NV centers falls rapidly during the spinon pairing transition from U(1) spin
liquid to Z2.
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Tc parent compound. On the other hand, there is a continuum observed on top of the sharp outer
background in triangular compound Ba3CoSb2O9 [78], signifying there are excitations present
other than magnons- which are spinon pairs or multi-spinon excitations, see References there
in Ref. [66]. The continuum in the energy spectrum is the indication of disordered structures in
the underlying spins and Fractionalization. Inelastic neutron scattering experiment is used to
probe the these excitation spectrum. Further, measuring thermal conductivity can probe the gap
or gapless nature of QSLs, which is used in Kitaev candidate materials, α−RuCl3.

1.1.4 Experimental survey of QSLs

This section comprises a list of materials that realize QSL phases. [66–68] The main ingredient
for having QSLs is frustration (either by exchange interactions in the lattice or by geometry due
to specific Hamiltonian structure) and quantum fluctuations. Although the quantum fluctuations
are prominent in 1D and a spin-1/2 chain is the 1D analog of QSLs with spinon excitations,
the phase is not a QSL. Because there is no braiding in 1D, and the statistics are not fractional.
The fluctuations in 3D may not be as eminent as in 2D, but 3D materials like pyrochlores
and hyperkagome are still good candidates for QSLs. Spin-1/2 materials are favorable since
spin-1/2 (either from spin or from the effective total angular momentum J) has stronger
quantum fluctuations. But spin-1 [79], spin-3/2 [80] and for spin-S cases [81–83] materials
also show spin liquid phase. Recently, there has been tremendous interest in materials with
multipole- interactions (mainly dipolar-dipolar and octopolar-octopolar exchange interactions)
with J > 1/2, which has a phase called multipolar spin liquids having fractionalization of
higher magnetic multiples, see Ref. [84] and references therein.

Following Ref. [68], the candidate materials having spin or angular momentum 1/2 are
mainly with triangular lattice (such as 2D organic salts, for example κ-(ET2)Cu2(CN)3 and
EtMe3Sb[Pd(dmit)2]2), Kagome lattice (such as herbertsmithite and Zn-Barlowite), and Kitaev
materials with Honeycomb lattice (such as strong-spin-orbit coupled materials, α−RuCl3) 11.

In addition to the real materials, synthetic materials based on Rydberg atoms are used to
prepare spin liquid phases [85, 86]. The 2D arrangement of neutral atoms with excitations, i.e.,
to a Rydberg state: a two-level system analogous to the qubit, having controlled interactions,
can be used as a programmable quantum simulator [87, 88] and references therein.

11See Sec. 1.3.4 for detailed discussion on Kitaev materials
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1.2 Algebraic spin liquids

As discussed in the previous sections, the spinons in the spin liquids can have a gapped or gap-
less spectrum. For the gapped spectrum, the spin liquids are stable phases. But there are cases
when the spinon spectrum possesses gapless Dirac-like linear dispersion, such as staggered flux
(sF) and π-flux (πF) phases. These are called the ’Dirac spin liquids’ or ’algebraic spin liquids’
[89]. These states have enhanced stability in non-bipartite lattices compared to bipartite lattices
[45, 51].

Let us consider the πF phase, a prototypical example of one of the algebraic spin liquids.
The mean field Hamiltonian is

HMF = −t ∑
⟨rr′⟩

f †
rαe−iarr′ fr′α +h.c, (1.18)

where arr′ are U(1) gauge fields living on the bonds of the lattice. arr′ are chosen such that
each plaquette gives π−flux state in a lattice. The πF state in different lattices corresponds
to different configurations of fluxes- 0,π on the lattice; see [51]. To assess the stability of the
phase, a low energy theory is considered, which is quantum electrodynamics in 2+1 dimensions
(QED3) with α = 4-flavors. The four flavors are two spins and the other two valley points in the
Dirac spectrum. Any bilinear operators that produce mass for any of the 4-flavor fermions are
irrelevant and stabilize the phase. However, monopoles (which change the flux by 2π) are local
operators that can be written as the polynomial of the fermionic operators. These monopole
operators are trivial under physical symmetries in the bipartite lattices, so they can be included
in the action and make the spin liquid unstable. However, in the case of non-bipartite lattices,
the monopole operators are not trivial, and the spin liquid is stable. One can include different
symmetry-allowed monopole operators in the action that are relevant and drive the phase away
from spin liquids to the particular ordered phase; see Ref. [45, 51, 90] also Ref. [91] for recent
study on SU(8)-Dirac systems. Hence, the algebraic spin liquids are treated as the parent state
for many symmetry-allowed ordered states of the Hamiltonian.

1.3 Kitaev Model: Z2-spin liquids

The Kitaev Honeycomb model [57] is one of the few exactly solvable models in 2D. The
features of QSLs, like fractionalization, emergent gauge fields, and topological excitations,
discussed via mean field analysis in Sec. 1.1.2 are relatively easily understood in this model.
Later, many spin-orbital coupling models depicting the Kitaev model were discussed, called
the ’compass models,’ which are also exactly solvable.
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1.3.1 The Model

The Hamiltonian is

HKitaev = −Jx ∑
⟨i j⟩x

σ
x
i σ

x
j − Jy ∑

⟨i j⟩y

σ
y
i σ

y
j − Jz ∑

⟨i j⟩z

σ
z
i σ

z
j . (1.19)

Here i, j label the sites of a hexagonal lattice, ⟨i j⟩α with α = x,y,z denotes the nearest
neighbor bonds along the α direction, shown in Fig. 1.1. Exchange interactions are different in
each nonequivalent bond, resulting in a geometrical exchange frustration in the model. This
means fixing spin polarisation along one direction, say z-direction for minimizing the zz term,
will not satisfy the xx- and yy- terms in other neighbors. The xx- and yy- terms give quantum
fluctuations to the z-polarised phase and destroy the ordered phase. So, this does not show any
order even at T=0. However, the existence of an extensive number of conserved quantities
makes this model solvable exactly. The conserved quantities are plaquette operators in each
plaquette p, shown in Figure. 1.1, defined as.

Wp = σ
α1,2
1 σ

α1,2
2 σ

α2,3
2 σ

α2,3
3 σ

α3,4
3 σ

α3,4
4 σ

α4,5
4 σ

α4,5
5 σ

α5,6
5 σ

α5,6
6 σ

α6,1
6 σ

6,1
1 , (1.20)

where, αi, j = x,y,z bonds connecting bonds i and j. Using σ
x
σ

y
= iσ z, the Wp operator is a

product of the out-going spin component at each site of 6 sites of the plaquette, defined as

Wp = σ
x
1 σ

y
2σ

z
3σ

x
4 σ

y
5σ

z
6. (1.21)

Eigenvalues of Wp are ±1 as W 2
p = 1, a Z2 operator. These loop operators commute with

Hamiltonian, [HKitaev,Wp] = 0, and with each other [Wp,Wp′] = 0. The exact solution for
HKitaev for each invariant subspace of different {W1,W2,W3, ...,WN} with N being the total
number of plaquettes. The spectrum is solved in terms of fractionalized quasiparticles. Kitaev
solved this model by writing the spin at each site in terms of four Majorana fermions [57].

1.3.2 Exact Solution in Majorana Representation

In general, Majorana fermions (c1,c2) do not have any physical significance and can be viewed
as the real and imaginary parts of a complex fermion (a) as

c1 = (a†
+ ia), c2 = i(a†

− ia).

Notionally, with Hilbert space dimension of Majorana fermion is
√

2. At each site, one

can define four Majoran fermions c,cα , α = x,y,z with cα
†

= cα hence (cα)2
= 1 and obey the
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x y
z

n1
n2

Wp

1

2
3

4

5
6

A

B A B

A
B

Fig. 1.1 A honeycomb lattice with two sublattices denoted by A and B. A unit cell consisting of
two sublattice sites with basis vectors n1 = (

√
3,0) and n2 = (

√
3

2 , 3
2) is shown. Corresponding

reciprocal lattice vectors are G1 = 2π( 1√
3
, −1

3 ) and G2 = 2π(0, 2
3). The nearest neighbor

distance, a, is taken to be a unit. Wp corresponds to a loop operator in each plaquette.

usual fermionic anti-commutational relations {cα
,cβ} = 2δαβ . In writing complex fermions

into Majorana fermions, the Hilbert space dimension increases from 22N to 42N with N unit
cells consisting of two spins (two sublattice sites in the Honeycomb unit cell). A representation
of Pauli spin operators σx,σy,σz into these Majorana fermions is given by

σ
x
= icxc, σ

y
= icyc, σ

z
= iczc,

In the extended space with a constraint (σ
α)†

= σ
α
,(σ

α)2
= 1,

σxσyσz = i

with ccxcycz
= 1 12. There is one more Majorana representation, where spins are represented

by three Majorana fermions, cx
,cy

,and cz, without any physical constraint. Still, the Hilbert
space dimension has to be chosen properly for exact mapping [93, 94]. This is also studied in
terms of Schwinger fermions discussed in the first section, and it is exactly solvable- which is a
p-wave pairing term of spinons [95, 96]. By denoting c jc

x
jc

y
jc

z
j at each site j as D j, impose a

condition on states on extended Hilbert space to get physical states

12This model is also exactly solvable by doing a Jordan-Wigner (JW) transformation [92]. JW transformation is
not usually suitable for 2D models because there will be a non-local string of spin operators that lies with the
local fermion operators, making the JW transformation not useful. But in the Kitaev model, the local string gets
canceled out because of the special structure of the Hamiltonian.
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(D j −1)∣ψ⟩phys = 0.

The above constraint is similar to the constraint of single-site occupancy in the Heisenberg
model. As mentioned before, these constraints are significant and have physical implications.
In general, implementing this constraint in calculations is quite tricky, and the Gutzwiller
projection method of imposing is one among them. Here, the imposition of this constraint is
easy for the ground state, where the constraint is taken care of automatically when working
with the invariant flux subspace. The Hamiltonian will result into

HKitaev = − ∑
a=x,y,z

Ja ∑
⟨i j⟩a

iciu⟨i j⟩a
c j, (1.22)

where u⟨i j⟩a
= ica

i ca
j is the operatior at the link between i and j sites with the bond represented

by a. u⟨i j⟩a
is hermitian and

u2
⟨i j⟩a

= 1.

with eigen values u⟨i j⟩a
= ±1 and it commutes with Hamiltonian (1.22), [H,u⟨i j⟩a

] = 0. Since
u⟨i j⟩a

= −u⟨ ji⟩a
, use the convention that i belongs to sublattice A with j corresponding to B

sublattice. The above Hamiltonian has Z2 gauge redundancy, where the Hamiltonian is invariant
by transformations: u⟨i j⟩a

→ ηiu⟨i j⟩a
η j with ci → ηici. Since this invariance is not present in the

parent Hamiltonian in Eq. 1.19, hence is called ’emergent.’ The above Hamiltonian is invariant
under transformation from Jα =+1 to Jα =−1, ∀α , in which the sign can be absorbed into the
corresponding uα

i j without changing the model. The physics of the model is the same for both
ferromagnetic and antiferromagnetic interactions J, which is no longer the case if the external
magnetic field is applied. The u⟨i j⟩a

are interpreted as Z2 guage fields on each bond. In terms
of these link operators, the plaquette operators (1.21) become

Wp = −u⟨12⟩z
u⟨23⟩x

u⟨34⟩y
u⟨45⟩z

u⟨56⟩x
u⟨61⟩y

. (1.23)

This measures the flux passing through the plaquette p. This is similar to Wilson loop
operators in gauge theories. The particle that traverses over the plaquette acquires a phase
corresponding to Aharonov-Bohm-like flux of either 0 or π , i.e., gauge invariant Z2 vortex
charges ±1, respectively. Wp = +1 at the plaquette is termed flux-free, and π− flux in the other
case.

The Hamiltonian (Eq. 1.22) is a simple, non-interacting Majorana fermion coupled with
static Z2 gauge fields. For lattice of N unit cells with two spins in each unit cell, all the
eigenstates can be written as a product of 2N dimensional Fock space of ci Majorana fermions
(matter sector denoted as MG) and 23N dimensional space of Z2 link variables (gauge field
sector is denoted with G). The extended Hamiltonian of dimension 4N is the direct product of
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these two subspaces.
∣ψ⟩ = ∣MG;G⟩ = ∣MG⟩∣G⟩.

This perfect decoupling of the gauge and matter sectors makes them treated independently and,
hence, exactly solvable. This is no longer the case in the presence of perturbations. Coupling
these sectors has important implications, as found in our work [97] shows rich phases like
glass and amorphous crystal phases (See Chapter 3 for details). As Lieb’s theorem dictates, the
gauge sector is flux-free in the low-energy ground state. Hence, the ground state has Wp = +1
at each plaquette. This is achieved by fixing the bond operators in each bond uα

i j = +1. Since
the Hamiltonian is invariant under Z2- gauge transformations, fixing the gauge is necessary.
Therefore, uα

i j = +1,∀α , for i( j) ∈ sub-lattice A (B), or otherwise uα

i j = −1. This simplifies
the model, Eq. 1.22 into only the matter sector, the free hopping matter Majorana fermions (c)
in the Honeycomb lattice. The spectrum consists of gapped and gapless bands depending on the
parameters, Jα . For Jα ≥Jβ+ Jγ , the bands are gapped. The low-energy gauge field model is
equivalent to the Toric code [39], another toy model introduced by Kitaev. The excitations are
abelian. In the other case, Jα ≤Jβ+Jγ , there exits gapless linearly dispersive gapless points at
±K = ± 4π

3
√

3a
(1,0) in the spectrum. This is exactly like the dispersion relation for electrons in

graphene. For Majorana fermions, the Brillouin zone is half of the electron counterpart because

cα
†

i = ci implies cα
†

k = c−k. So one considers only half of the BZ for the Majorana fermion case.
The energy to create a single π−flux in a plaquette is finite, called vison gap in the literature,
and it is approximately EVison ≈ 0.15J at Jx = Jy = Jz = J [57]. The visons are always gapped.
That means the visons are frozen and massively heavy particles. The gap to create a pair of
visons in the nearest neighbor plaquettes (Evison-pair ≈ −0.04, see Appendix. A of Ref. [57]) is
much less than the gap to create a single vison.

The low-energy excitations of the model are matter fermions (c) and visons/π−flux excita-
tions. A single spin-flip is fractionalized into a matter Majorana excitations and a pair of visons.
This Fractionalization differs from the one mentioned in the Sec. 1.1.2. Another characteristic
of spin liquids is the short-range correlations of the spins. In the Kitaev model, the spin-spin
correlations are ultra-short-range [98], meaning the correlations are zero if the spins belong to
sites beyond the nearest neighbors; see Appendix. A.2 for detailed results.

1.3.3 External Perturbations: Small Magnetic field

The exact solvability of the model, Eq. 1.19, is not present once any external magnetic field
is applied. Also, the model for Jα = +1 and Jα = −1 is no longer equivalent to the applied
magnetic field. Since external perturbations give dynamics to the visons, the matter sector
and gauge section intermix, and the problem becomes non-trivial. In the presence of the time
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reversal breaking term like an applied magnetic field, another interesting aspect of the model
is related to the gapless region. We focus on Jx = Jy = Jz = J region throughout here unless
otherwise mentioned. If the magnetic field is applied along [111], the spins couple to the
external field via Zeeman term. The Hamiltonian is

H = HKitaev −∑
i

hxσ
x
i +hyσ

y
i +hzσ

z
i . (1.24)

As mentioned, the plaquette operators are no longer conserved [H,Wp] ≠ 0. This Hamiltonian
can be solvable perturbatively exactly in the limit of small magnetic fields, hx,hy,hz << J,
i.e., by preserving in the flux-free sector. So, this approximation is valid for the region where
hx,hy,hz << Evortex. The leading correction to the HKiteav is the third-order interaction between
spins. The first-order term is zero, and the second-order term preserves the time-reversal
symmetry and does not change the physics of the Kitaev model. So, the effective Hamiltonian
is

Hpert = HKitaev −
hxhyhz

J2 ∑
⟨⟨i, j,k⟩⟩

σ
α

i σ
β

j σ
γ

k , α ≠ β ≠ γ, (1.25)

where i, j, and k are the three nearest neighbor sites, α,β ,γ are chosen such that the ending
site spin component points inwards to the middle. Another interesting aspect of the model is
the gap opening in the Majorana dispersion with time-reversal symmetry, i.e., with applied
magnetic field. Using Majorana fermionic representation, the Hamiltonian results into

Hpert = − ∑
a=x,y,z

Ja ∑
⟨i j⟩a

iciu⟨i j⟩a
c j − iK ∑

⟨⟨i, j,k⟩⟩
u⟨i j⟩α

u⟨ jk⟩γ
cick. (1.26)

In the flux-free sector, the perturbation term introduces the next nearest neighbor hopping
to the matter Majorana fermions. As a result, the gap appears in the band structure, just
like the gap in the Haldane model [99]. These gapped bands have non-zero Chern numbers
and gapless Majorana zero modes at the edge. Since the Majorana fermions have no charge,
neutral particles carry only thermal energy. This is one of the smoking gun signatures used
in experiments [100, 101]. Although experiments [100] presented the thermal Hall signature
for the existence of Majorana fermionic edges, and the results are sample dependent [102],
yielding no conclusions. [103]

Theoretically, the Hamiltonian, Eq. 1.26, and its ground state are equivalent to the p+
ip superconductor. This can be seen by combining Majorana fermions from two nearest
neighbor sites into a complex fermion (called bond fermions [98]). The excitations of the p+ip
superconductor are non-abelian [104]: the fermion, a vortex, and a semion (fermion + vortex).
Here, the semion has one unpaired Majorana bound to it. The created vortex in semion provides
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an edge from the regular vacuum to the bulk of p+ ip SC. Consequently, the gap-less Majorana
fermion edge adheres to the vortex [105], so-called Majorana Zero Mode (MZM). In the case
of the Kitaev model, a π−flux, if created on top of a uniform flux-free ground state, bound with
the unpaired Majorana fermion, forms an MZM. There is an issue: a single π−flux can not be
created. They are only created in pairs. By flipping the bond operator, u⟨i j⟩α

, the two plaquettes
common to the bond accommodate the flux pair. The single π−flux is created by taking one of
the fluxes in the pair to infinity. In the finite system, taking these fluxes far enough distances
is enough. So, each π−flux accommodates one zero mode, resulting in two modes with zero
energy. When the fluxes are brought closer, the two Majorana combine and give one complex
fermion, and the zero modes will be gaped.

Another key ingredient of QSLs is the presence of long-range entanglement measured
using entanglement entropy. As discussed in previous sections, the phase (both Abelian and
non-Abelian phases) also has the entanglement entropy obeying the area law. It has a universal
term, topological entanglement entropy, Stopo = − log2 [106]. The topological degeneracy is
very easy to see in the case of Abelian case [107]- which is equivalent to the toric code model
13. Consider, for example, a torus; there exist four Z2 global operators that are products of
σ

z on two closed strings, denote them by Cx,Cy for along x-string and y-string, and similarly,
two operators from the product of σ

x on the same two closed strings, denote them by Dx,Dy
14. These four operators commute with the Hamiltonian. They have commutation relations
as {Cx,Dy} = 0 and {Cy,Dx} = 0, and all remaining operators commute with each other. The
four states labeled by Cx,Cy states have differed by different Dx,Dy values and have the same
energy- degenerate. This argument is similar to any genus-g manifold [39]. As mentioned in
the previous sections, this topological degeneracy is global and depends on the manifold.

1.3.4 Material realization- Kitaev Materials

The exchange interactions of the Kitaev model, Eq. 1.19, are peculiar and proposed as a toy
model for realizing exotic excitations with fractional statistics for topological computation.
Jackeli and G. Khaliullin [108] showed that there are few materials whose effective Hamiltonian
has Kitaev exchange interactions in addition to other exchange terms. Transition metal ions
such as Ir, Ru, Os, and Rh have strong spin-orbit coupling exceeding intersite interactions;
the spin and orbitals interlock. When a single hole in the triply degenerate t2g orbitals is
present, the interplay of spin-orbit coupling and tetragonal splitting gives effective spin-1/2

13The Hamiltonian is Htoric-code = −J∑s As +∑p Bp, where As =∏i∈s σ
x
i at each vortex, s and Bp =∏i∈p σ

z
i

at each plaquette p.
14These operators are the ones which move fractional excitations e and m in the toric code along the path of

strings. The commutations indicate the statistics of the particles involved.
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isospin to bond-dependent compass models. When the transition metal is combined with
alkali metals into layered compounds A2BO3, the Kitaev model can be realized [109]. One
of the popular and recent materials of interest is in the ruthenium compound, α−RuCl3 [110–
112]. In addition to Kitaev interactions, exchange interactions like Heisenberg and exotic
exchanges like Γ− exchanges also appear. The insulating materials have zig-zag spin ordering,
and when applied in-plane magnetic field along the [11−2] direction, the Kitaev exchange
dominates at the intermediate field strength approximately from 7 Tesla to 11 Tesla, and the
Kitaev spin liquid with Majorana edges is proposed to exist [100]. The Majorana edge modes
can be identified by half quantization of thermal hall conductivity [100]. This proposal has
been under debate, claiming that the intermediate field region shows oscillatory behavior in
in-plane thermal conductivity with no 1/2 quantization in thermal hall conductivity [103].
Other experiments supporting the Majorana edges, [101, 102] and gave a possible explanation
for the oscillations in the thermal conductivity: these are due to multiple phase transitions
implied by considering phonons are not completely oscillations. In addition to that puzzle,
another experiment [113] claimed that the intermediate field region has large zero-temperature
non-linear susceptibilities, and their behavior as a function of temperature does not match any
of the known ordered/disordered phases, such as ferro/anti-ferro magnet or spin glass phase. In
our work [97], we found that the higher non-linear susceptibilities are due to the glassiness of
the excitations present in the Kitaev model. Which is presented in Chapter 3.

More recently, there has been a lot of interest in higher spin generalization of the Kitaev
model [82, 83, 114, 115] with few experimental proposals [80, 82, 116] in materials. Even with
spin-S Kitaev model, theoretically the exact solution exists like in spin-1/2 case by extending
the Majorana fermion representation into general spin-S case [117], especially with spin 3/2 in
CrI3 [80, 116] and spin-1 in NiI2 [114].





A
Appendices for chapter 1

A.1 Topological Degeneracy

In this section, I discuss the details of the topological degeneracy of the ground state with
topological order. Consider a torus with genus g = 2 as a manifold for example. Denote the
translational operator, Tx, for traversing fractionally charged quasiparticles, with a charge of
1/q along the x-axis and, similarly, Ty along the y-axis. If Aharonov-Bohm flux quanta are
threaded along the x-axis, denoted with Fx, the quasiparticle acquires a phase e2πi/q after its
return to the same position. This is written as

TxFx = e2πi/qFxTx. (A.1)

Similarly, for Ty and Fy. But, quasiparticles traversing along the x-direction do not have any
effect from flux passing through the y-direction, i.e., TxFy = FyTx, and the same for Ty,Fx. So,
the operators T§,F† have eigenstates simultaneously, i.e. ∣tx, fy⟩. Tx changes the eigenvalue of

Fx to fxe−2iπ/q- give q degenerate states which are [ fye−2iπ/q (Tx∣tx, fy⟩)]. Similarly, Ty,Fy

give q more of degenerate states: [ fye−2iπ/q (Ty∣ty, fy⟩)]. But, all these states are independent
of each other. This we can see by calculating the commutation relations between Tx,Ty
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and Fx,F†. They have non-trivial commutations depending on the statistics of the particles.
Consider exchanging two particles to acquire a phase eiθ , θ depending on the statistics of the
quasiparticles, which is eπi/q. This process creates a linked knot between the worldlines of the
two quasiparticles, denoted as follows:

T −1
x T −1

y TxTy = e2iπ/q
,

TxTy = e2iπ/qTyTx, (A.2)

Using this relation,
TxTy∣tx, fy⟩ = txe2iπ/q(Ty∣tx, fy⟩). (A.3)

The repeated action of Ty can change eigenvalues of Fy,Tx operators to ( fye−2iπ/q
, txe2iπ/q)-

give q states and using commutation relations Fx,Fy give rise to the same set of q degeneracy
states 1. As a result, only q-states are independent. This argument can be generalized to g
number of punching holes, giving rise to qg, for genus, g, manifold.

A.2 Ultra short-range spin-spin Correlations in Kitaev Model

This section give the detailed derivation of the ultra-short range spin correlations of the Kitaev
model. Forming complex fermions in terms of Majorana fermions in matter and gauge sector
subspaces as matter fermions (denote fi) and bond fermions (denote χ⟨i j⟩a) respectively

fi =
1
2(ci + ici), (A.4)

χ⟨i j⟩a =
1
2(ca

i + ica
j). (A.5)

The link variables defined in the main text 1.3 can be related to bond fermions as u⟨i j⟩a
=

icic
a
j = 2χ

†
⟨i j⟩aχ⟨i j⟩a −1 and

χ
†
⟨i j⟩aχ⟨i j⟩a∣G⟩ = ni j∣G⟩ (A.6)

with n⟨i j⟩a =
u⟨i j⟩a+1

2 . In terms of these bond fermions, the spin operators become

1Tx,y are equivalent to Fy,x. As a result, only one independent magnetic algebra arises in the ground state
manifold
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ca
i = (χ⟨i j⟩a +χ

†
⟨i j⟩a),

ca
j = (χ⟨i j⟩a −χ

†
⟨i j⟩a), (A.7)

σ
a
i = ici(χ⟨i j⟩a +χ

†
⟨i j⟩a),

σ
a
j = ic j(χ⟨i j⟩a −χ

†
⟨i j⟩a).

These bond fermions change the link operators corresponding to that bond. Hence, the
fluxes in the plaquettes adjacent to that bond will change from 1 to -1 or vice versa and denote
these symbolically as

σ
a
i = ici(χ⟨i j⟩a +χ

†
⟨i j⟩a)→ iciπ⟨i j⟩aπ⟨i j⟩a, (A.8)

where π⟨i j⟩a will add the fluxes in the plaquettes adjecent to bond ⟨i j⟩a. From these results,
the dynamical spin-spin correlation function in the ground state becomes

Sab
i j (t) = ⟨MG∣⟨G∣σa

i (t)σ
b
j (0)∣G⟩∣MG⟩,

= ⟨MG∣⟨G∣(eiHt ici(χ⟨i j′⟩a +χ
†
⟨i j′⟩a)e−iHt)(ic j(χ⟨i′ j⟩b −χ

†
⟨i′ j⟩b))∣G⟩∣MG⟩,

(A.9)

where i′ and j′ fixed by the bond ⟨i j′⟩ and ⟨i′ j⟩ respectively. In the Kitaev honeycomb
model, the ground state corresponds to a flux-free case, so consider u⟨i j⟩a = +1. As a result,
χ

†
⟨i j⟩aχ⟨i j⟩a∣G⟩ = 1 from equ. (A.6) and hence χ

†
⟨i j⟩a∣G⟩ = 0. Using quantum mechanical

identity for any operators A,B

BeA
= eA−DB if [A,B] = DB, and [D,B] = 0, (A.10)

and [χ
†
⟨i j⟩aχ⟨i j⟩a,χ⟨i j⟩b] = χ⟨i j⟩aδab, siimplifying equ. (A.9)

Sab
i j (t) = ⟨MG∣⟨G∣(eiHt icie

−i(H−V⟨i j⟩a)t(χ
†
⟨i j′⟩a))(ic jχ⟨i′ j⟩b)∣G⟩∣MG⟩ where V⟨i j⟩ = −2 jcic j,

(A.11)

In the interaction representation, this becomes

Sab
i j (t) = ⟨MG∣⟨G∣(ici(t)T(e−2Ja

´ t
0 ci(τ)c j(τ)dτ)t)(−1)c j(χ

†
⟨i j′⟩aχ⟨i′ j⟩b)∣G⟩∣MG⟩, (A.12)

with in the ground state: ⟨G∣χ†
⟨i j′⟩aχ⟨i′ j⟩b∣G⟩ = δi,i′δ j, j′δa,bδ⟨i j⟩ = δa,bδ⟨i j⟩a)
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Sab
i j (t) = ⟨MG∣(ici(t)T(e−2Ja

´ t
0 ci(τ)c j(τ)dτ)t)(−1)c j∣MG⟩δ⟨i j⟩a. (A.13)

As δ⟨i j⟩a indicates, the spin correlations are only limited to nearest neighbor distances,
ultra-short range. This is because of the static nature of the fluxes.

A.2.1 Static Spin Correlations

From dynamic spin correlation expression equ. (A.13), static spin correlations become

Sab
i j (t = 0) = −i⟨MG∣cic j∣MG⟩. (A.14)

These are exact results, and to solve equ. (A.14), use matter fermions as defined in equ.
(A.4), cA,i = fi + f †

i and cB,i = −i( fi − f †
i ). The spin correlation function in equ. A.14 become

Sab
i j (t = 0) = −i⟨MG∣( fi + f †

i )i( f †
i − fi)∣MG⟩, (A.15)

operators can be transformed into momentum space as

fq =
1√
2N

∑
q

eiq.ri fi, (A.16)

equ. A.14 becomes

Sab
i j (t = 0) = 1

2N ⟨MG∣(∑
δi,q

( f †
q f †

−q + fq f †
q)eiq.δi − ( f †

q fq + fq f−q)e−iq.δi)∣MG⟩. (A.17)

with simple Bogoliubov transoform solves problem with θq = − Im(S(q))
Re(S(q)) ,

( fq

f †
−q
)
= (cos(θq) isin(θq)

isin(θq) cos(θq)
)( aq

a†
−q
) ,

Denote ∑
δi

Ja⟨δi⟩e
q.δi by S(q), with δi are vectors along the bonds denoted with i, δx = (1

2 ,
√

3
2 ),

δy = (1
2 ,

−
√

3
2 ) and δz = (0,0). equ. (A.17) gives

Sab
i j =

1
2N ∑

q
cos(2θq), (A.18)
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where cos(2θq) = Im(S(q))
S(q) . By converting sum into integral over Brillouin zone and

transforming integral in qx,qy into q1 = q.δx and q2 = q.δy with Jacobian
√

3
2 , will give

Sab
i j (t = 0) =

√
3

16π2

ˆ
BZ

cos(2θq)dq1dq2, (A.19)

values at Jx = Jy = Jz = 1 is 0.47, the points in J’s space at Jx = 1,Jy = 0.1,Jz = 0.2 → Sab
i j =

0.098 and Jx = 0.1,Jy = 0.1,Jz = 0.7 → Sab
i j = 0.99 at Jx = 0.1,Jy = 0.7,Jz = 0.1 → Sab

i j = 0.069
To see fractionalization, consider the time evolution of a single spin operation on ground state,
"spin-flip", operation using (A.13) and (A.8)

σ
a
i = ici(t)T(e2u⟨i j⟩aJa

´ t
0 ci(τ)c j(τ)dτ)π⟨i j⟩aπ⟨i j⟩′a⟨ψ∣, (A.20)

This shows freely propagating Majorana fermions as a function of time with band perturbing
term, 2u⟨i j⟩aJaci(t)c j(t)). This spin flip operation consists of Majorana fermion with π-flux
pair. Spin flip operation adds fluxes to plaquettes adjacent to a-bond ⟨i j⟩a. As these fluxes are
static and bond fermions are conserved quantities under time evaluation, the other spin flip
operation in dynamical spin correlations has to remove these fluxes to have a non-zero value.
By this selection rule, the other spin adds π-fluxes to adjacent site j with having bond a. This
gives spin correlations to be short-ranged.





References

[1] P. W. Anderson, Science 177, 393 (1972).

[2] S. Sachdev, Quantum phases of matter (Cambridge University Press, 2023).

[3] C. M. Varma, Rev. Mod. Phys. 92, 031001 (2020).

[4] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge Univer-
sity Press, 2005).

[5] J. T. Chalker, in Topological Aspects of Condensed Matter Physics: Lecture Notes of
the Les Houches Summer School: Volume 103, August 2014 (Oxford University Press,
2017).

[6] L. Savary and L. Balents, Reports on Progress in Physics 80, 016502 (2016).

[7] C. Lacroix, P. Mendels, and F. Mila, Introduction to Frustrated Magnetism, Vol. 164
(Springer Series in Solid-State Sciences, 2011).

[8] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).

[9] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).

[10] P. W. Anderson, Science 235, 1196 (1987).

[11] J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B Condensed Matter 64, 189
(1986).

[12] L. Pauling, The nature of the chemical bond and the structure of molecules and crystals:
an introduction to modern structural chemistry, Vol. 18 (Cornell university press, 1960).

[13] P. Anderson, Materials Research Bulletin 8, 153 (1973).

https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1103/RevModPhys.92.031001
https://doi.org/10.1093/acprof:oso/9780198785781.003.0003
https://doi.org/10.1093/acprof:oso/9780198785781.003.0003
https://doi.org/10.1007/978-3-642-10589-0
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/https://doi.org/10.1016/0025-5408(73)90167-0


30 References

[14] G. Baskaran, Ind.Journal of Phys. 89, 583 (2006).

[15] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35, 8865 (1987).

[16] D. A. Ivanov and T. Senthil, Phys. Rev. B 66, 115111 (2002).

[17] A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. B 71, 094421 (2005).

[18] Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B 84, 075128 (2011).

[19] J. Pei, S. Han, H. Liao, and T. Li, Phys. Rev. B 88, 125135 (2013).

[20] J. Wildeboer, A. Seidel, and R. G. Melko, Phys. Rev. B 95, 100402 (2017).

[21] G. Baskaran and R. Shankar, Mod. Phys. Lett. B 2, 1211 (1988).

[22] E. Fradkin and S. Kivelson, Modern Physics Letters B 4, 225 (1990).

[23] T. Senthil and M. P. A. Fisher, Phys. Rev. B 63, 134521 (2001).

[24] G. Baskaran and R. Shankar, Modern Physics Letters B; (USA) 2 (1988).

[25] N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).

[26] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Phys. Rev. B 85,
235151 (2012).

[27] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987).

[28] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988).

[29] R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2001).

[30] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601
(2006).

[31] N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García, Phys. Rev. B 86, 115108
(2012).

[32] D. Poilblanc, N. Schuch, D. Pérez-García, and J. I. Cirac, Phys. Rev. B 86, 014404
(2012).

[33] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete, Rev. Mod. Phys. 93, 045003
(2021).

arXiv:cond-mat/0611553
https://doi.org/10.1103/PhysRevB.35.8865
https://doi.org/10.1103/PhysRevB.66.115111
https://doi.org/10.1103/PhysRevB.71.094421
https://doi.org/10.1103/PhysRevB.84.075128
https://doi.org/10.1103/PhysRevB.88.125135
https://doi.org/10.1103/PhysRevB.95.100402
https://doi.org/https://doi.org/10.1142/S0217984988001156
https://doi.org/10.1142/S0217984990000295
https://doi.org/10.1103/PhysRevB.63.134521
https://www.osti.gov/biblio/5580657
https://doi.org/10.1103/PhysRevB.40.7133
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.61.2376
https://doi.org/10.1103/PhysRevB.65.024504
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003


References 31

[34] M. C. Bañuls, Annual Review of Condensed Matter Physics 14, 173 (2023).

[35] P. C. G. Vlaar and P. Corboz, SciPost Phys. 15, 126 (2023).

[36] R. T. Ponnaganti, M. Mambrini, and D. Poilblanc, Phys. Rev. B 106, 195132 (2022).

[37] R. Moessner and K. S. Raman, in Introduction to frustrated magnetism: materials,
experiments, theory (Springer, 2010) pp. 437–479.

[38] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

[39] A. Kitaev, Annals of Physics 303, 2 (2003).

[40] E. Fradkin and S. Kivelson, Modern Physics Letters B 4, 225 (1990).

[41] R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B 65, 024504 (2001).

[42] G. Baskaran, Z. Zou, and P. Anderson, Solid State Communications 88, 853 (1993),
special Issue A Celebratory Issue to Commemorate 30 Years of Solid State Communica-
tions.

[43] S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988).

[44] T. Dombre and G. Kotliar, Phys. Rev. B 39, 855 (1989).

[45] M. Hermele, T. Senthil, and M. P. A. Fisher, Phys. Rev. B 72, 104404 (2005).

[46] T. Li and H.-Y. Yang, Phys. Rev. B 75, 172502 (2007).

[47] G. Baskaran, Z. Zou, and P. Anderson, Solid State Communications 63, 973 (1987).

[48] X. G. Wen, Phys. Rev. B 44, 2664 (1991).

[49] C. Mudry and E. Fradkin, Phys. Rev. B 49, 5200 (1994).

[50] Y. Huh, M. Punk, and S. Sachdev, Phys. Rev. B 84, 094419 (2011).

[51] X.-Y. Song, C. Wang, A. Vishwanath, and Y.-C. He, Nature Communications 10,
10.1038/s41467-019-11727-3 (2019).

[52] F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 (2006).

[53] Y. Zhou and X.-G. Wen, Quantum orders and spin liquids in cs2cucl4 (2003), arXiv:cond-
mat/0210662 [cond-mat.str-el] .

https://doi.org/https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.21468/SciPostPhys.15.4.126
https://doi.org/10.1103/PhysRevB.106.195132
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1142/S0217984990000295
https://doi.org/10.1103/PhysRevB.65.024504
https://doi.org/https://doi.org/10.1016/0038-1098(93)90256-M
https://doi.org/10.1103/PhysRevLett.61.365
https://doi.org/10.1103/PhysRevB.39.855
https://doi.org/10.1103/PhysRevB.72.104404
https://doi.org/10.1103/PhysRevB.75.172502
https://doi.org/https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1103/PhysRevB.44.2664
https://doi.org/10.1103/PhysRevB.49.5200
https://doi.org/10.1103/PhysRevB.84.094419
https://doi.org/10.1038/s41467-019-11727-3
https://doi.org/10.1103/PhysRevB.74.174423
https://arxiv.org/abs/cond-mat/0210662
https://arxiv.org/abs/cond-mat/0210662


32 References

[54] Y. Huh, M. Punk, and S. Sachdev, Phys. Rev. B 84, 094419 (2011).

[55] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).

[56] I. H. Kim, M. Levin, T.-C. Lin, D. Ranard, and B. Shi, Phys. Rev. Lett. 131, 166601
(2023).

[57] A. Kitaev, Annals of Physics 321, 2 (2006).

[58] J. Preskill, California institute of technology 16, 1 (1998).

[59] R. Sohal and S. Ryu, Phys. Rev. B 108, 045104 (2023).

[60] M. Levin and X.-G. Wen, Phys. Rev. B 67, 245316 (2003).

[61] S. Feng, Y. He, and N. Trivedi, Phys. Rev. A 106, 042417 (2022).

[62] S. Feng, Y. He, and N. Trivedi, Phys. Rev. A 106, 042417 (2022).

[63] M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601 (2006).

[64] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).

[65] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[66] J. Wen, S.-L. Yu, S. Li, W. Yu, and J.-X. Li, npj Quantum Materials 4, 12 (2019).

[67] L. Clark and A. H. Abdeldaim, Annual Review of Materials Research 51, 495 (2021).

[68] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil,
Science 367, eaay0668 (2020).

[69] P. A. Lee and S. Morampudi, Phys. Rev. B 107, 195102 (2023).

[70] J. Y. Khoo, F. Pientka, P. A. Lee, and I. S. Villadiego, Phys. Rev. B 106, 115108 (2022).

[71] C. de C. Chamon, D. E. Freed, S. A. Kivelson, S. L. Sondhi, and X. G. Wen, Phys. Rev.
B 55, 2331 (1997).

[72] S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett. 94, 166802 (2005).

[73] A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802 (2006).

[74] E.-A. Kim, Phys. Rev. Lett. 97, 216404 (2006).

[75] F. S. S. H. e. a. Nakamura, J., Nature Physics 15, 563 (2019).

https://doi.org/10.1103/PhysRevB.84.094419
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.131.166601
https://doi.org/10.1103/PhysRevLett.131.166601
https://doi.org/https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.108.045104
https://doi.org/10.1103/PhysRevB.67.245316
https://doi.org/10.1103/PhysRevA.106.042417
https://doi.org/10.1103/PhysRevA.106.042417
https://doi.org/10.1103/PhysRevLett.96.060601
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/https://doi.org/10.1146/annurev-matsci-080819-011453
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/PhysRevB.107.195102
https://doi.org/10.1103/PhysRevB.106.115108
https://doi.org/10.1103/PhysRevB.55.2331
https://doi.org/10.1103/PhysRevB.55.2331
https://doi.org/10.1103/PhysRevLett.94.166802
https://doi.org/10.1103/PhysRevLett.96.016802
https://doi.org/10.1103/PhysRevLett.97.216404


References 33

[76] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Nature Physics 16, 931 (2020).

[77] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W.
Cheong, and Z. Fisk, Phys. Rev. Lett. 86, 5377 (2001).

[78] H. D. Zhou, C. Xu, A. M. Hallas, H. J. Silverstein, C. R. Wiebe, I. Umegaki, J. Q. Yan,
T. P. Murphy, J.-H. Park, Y. Qiu, J. R. D. Copley, J. S. Gardner, and Y. Takano, Phys.
Rev. Lett. 109, 267206 (2012).

[79] S. Kumar, S. K. Panda, M. M. Patidar, S. K. Ojha, P. Mandal, G. Das, J. W. Freeland,
V. Ganesan, P. J. Baker, and S. Middey, Phys. Rev. B 103, 184405 (2021).

[80] C. Xu, J. Feng, M. Kawamura, Y. Yamaji, Y. Nahas, S. Prokhorenko, Y. Qi, H. Xiang,
and L. Bellaiche, Phys. Rev. Lett. 124, 087205 (2020).

[81] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annual Review of Condensed
Matter Physics 5, 57 (2014).

[82] T. Takayama, J. Chaloupka, A. Smerald, G. Khaliullin, and H. Takagi, Journal of the
Physical Society of Japan 90, 062001 (2021).

[83] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008).

[84] V. S. de Carvalho, H. Freire, and R. G. Pereira, Phys. Rev. B 108, 094418 (2023).

[85] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini, A. Omran, D. Bluvstein,
R. Samajdar, H. Pichler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and
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2
Introduction: Classical Spin liquids

Classical spin liquids (CSLs), as the name suggests, is analogous to the case of quantum spin
liquids (QSLs), have no long-range order but have extensive zero temperature entropy, whereas
it is zero in QSLs. As discussed in the previous Chapter, quantum fluctuations are vital in
getting QSLs over the ordered state. The quantum fluctuations can be enhanced by having
lower spin systems, for example, spin-1/2, at low temperatures. However, at high temperatures
(compared to the energy scale associated with quantum fluctuations present in the quantum
model), the quantum fluctuations play no role compared to thermal fluctuations. In such cases,
the physics can be treated in terms of classical spins [1]. So, studying the classical spin models
has direct implications in the high-temperature physics of QSLs, and also, CSL models give
a good starting point in starting to construct QSL states [2–5]. In addition to that, there exist
several materials where the spin physics at low temperature is approximated to classical spin
models [6, 7], for example, Ising models for spin-ice materials [8, 9] and the Ashkin-Teller
model [10], different variants of O(N) models [11] and Heisenberg models [12], Potts Model
[13, 14], Zq−clock models [15, 16] and references therein. In such cases, many interesting
classical spin phases arise, either ordered phases or disordered phases. There are some scenarios
where both the ordered and disordered phases co-exist [17, 18].
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The ’Disorder’ phase exactly means the phase with no long-range order and has a finite but
extensive number of degenerate spin configurations. These phases in classical spin models also
possess some non-trivial structures, like in quantum spin liquids. There are a few similarities
between them, as QSLs have fractional quasi-particles and emergent low-energy gauge fields.
Similarly, CSLs also have fractional excitations and emergent gauge theories [19]. However,
the gauge theories in classical spin liquids are physical and appear out of physical spins but
not like redundancy in the case of QSLs, and the low-energy excitations correspond to the
excitations of the gauge theories. In quantum spin liquids, the emergent gauge field is not
directly related to physical spins; instead, only the fractionalized partons can see the gauge
fields (see Chapter 3)- their implications only arise in measurable quantities like transport
properties. In both cases, the gauge theories govern the low energy physics; even though the
origins are different, the primary roots are due to non-trivial local constraints; see, for instance,
Ref. [20–22].

There are many aspects still open for investigation in the classical spin liquids. This Chapter
briefly overviews classical spin liquids and a few open directions in the field. An essential
part of this is understanding classical spin models beyond the spin-ice rule or Luttinger-Tisza
approximation, which are relevant to the broad range of materials. In general, the models
describing the materials apart from spin-ice pyrochlores do not need to respect spin-ice rules
like the models with the Dzyaloshinskii–Moriya (DM) interaction [23]. This raises the demand
for analytical methods to study these models. We have developed a unified framework in
Ref. [23] to understand the existence of spin liquids and various interesting order, disordered
phases in the classical spin model.

2.1 Spin Ice Models and the Coloumb Phase

Spin ice is a group of materials that resembles water ice [24] with the chemical formula A2B2O7

[25, 26], where A3+ are the magnetic rare-earth ions on the sites of pyrochlore lattice and B4+

are non-magnetic ions on an interpenetrating pyrochlore lattice. For example, Ho2Ti2O7
1 [27],

Dy2Ti2O7 [28]. The ground state governing these compounds follows an ice rule famously
known as ’2-in-2-out’ configuration [29], as shown in Fig. 2.1, hence the name ’spin ice’.
Since this constraint within the four sites of the pyrochlore lattice can be satisfied by many
configurations, consequently, for the whole lattice. This results in extensive degeneracy of the
ground state. Hence, these materials have zero temperature entropy, also known as the Pauling
entropy. Later, this methodology of constructing models to have ground states that possess
the ice rules or its generalization laid a foundation for more studies in classical spin models

1This is the first material found to have frustrated ferromagnet.
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and then to the general class of CSLs. I am going to jointly refer to them as ’spin ice models.’
These are a class of models that has the Hamiltonian written in terms of constraints, which
are different variants of the simple ’ice rule’ of the pyrochlores. Firstly, I discuss the spin ice
pyrochlore materials and their related physics of emergent electromagnetic theory, monopole
excitations. Further, I present these ideas to the more general class of spin ice models with
more general constraints.

The first spin-ice material, Ho2Ti2O7, is surprisingly a ferromagnet but has strong frustration
due to the combination of ferromagnetic coupling and the easy axis anisotropy [27]. This
material was found to have no ordering down to temperatures well below the Curie-Weiss
temperature and with the large magnetic moment of Ho3+ ions. Hence, this can be treated by
classical spin models. This has an easy axis pointing towards the center from each site of the
tetrahedral lattice with strong easy-axis anisotropy D < 0 (ferromagnetic), which is 50 times
higher than the strength of the exchange interactions J (ferromagnetic). Because of this high
easy-axis anisotropy, the spins point along the easy-axis. The small perturbative exchange
interactions J decide the orientation of the spins, which can be towards or away from the center
of the tetrahedron. The lowest energy turns out to be 2 spins pointing inwards and 2 outwards
in the given tetrahedron. This exactly gives rise to the antiferromagnetic Ising model in terms
of pseudo-spins (σ z) taken along the easy-axis [30, 31], which is a nearest neighbor spin-ice
model [29]. The model is,

HIsing = J∑
⟨i j⟩

σ
z
i σ

z
j , (2.1)

where site i and j are in the corner-sharing tetrahedral lattice. For ferromagnetic J < 0, the
state is an all-up ferromagnet, which becomes a paramagnet at high temperatures. However,
the scenario is different in the antiferromagnetic J > 0 coupling. And the effective pseudo spin
model Ho2Ti2O7 is indeed anti-ferromagnetic with J > 0 [30, 31]. Here, since the lattice is
corner-sharing, the above Hamiltonian is simplified into up to an additional constant,

HIsing = J∑
p
(∑

i∈p

σ
z
i )

2
+ const., (2.2)

where p denotes each tetrahedral plaquette. The re-writing of the Hamiltonian implies that the
ground state for J > 0 corresponds to spins satisfying ∑i∈p σ

z
i = 0, known as the ice rule. As

mentioned, in a pyrochlore tetrahedral unit cell with four lattice sites, the constraint is satisfied
by having two spins pointing inwards and the other two pointing outwards, as shown in Fig. 2.1.
This corresponds to a state with spins as ’2-in-2-out’ configuration. Many configurations
can satisfy this condition, resulting in a paramagnet with a non-trivial structure that satisfies
this local constraint. This results in a zero-temperature residual entropy. It is also called the
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’cooperative paramagnet’ because, here, the spins in each of these degenerate states follow a
constraint cooperating with each other.

Later, a seminal work by Siddharthan et al. [32] and Bramwell et al. [33] found that
the dipole-dipole interactions play a significant role in spin ice materials agreeing with the
experimentally measured quantities. This model is also known as the dipolar spin ice model.
The Hamiltonian is,

HDSI = −J∑
⟨i j⟩

S⃗i
zi ⋅ S⃗ j

z j +Drnn∑
i> j

S⃗i
zi ⋅ S⃗ j

z j

∣R⃗i j∣3
−

3(S⃗i
zi ⋅ R⃗i j)(S⃗ j

z j ⋅ R⃗i j)
∣R⃗i j∣5

, (2.3)

where S⃗zi
i are Ising spin pointing along the easy axis zi in site i of the corner-sharing tetrahedral

lattice, and the J > 0 is the strength of exchange interactions. The second term in the dipole-
dipole interactions between the spins S⃗i and S⃗ j with dipolar strength D = µ0µ

2/4πr3
nn > 0, µ

is the magnetic moment of the spins, rnn is the nearest neighbor distance and the R⃗i j is the
distance between the site i and j. Here, the strength of dipolar interaction is 2.5 times less
than the exchange interactions [34]. Numerical and mean-field studies [34–36] showed that
the long-range dipolar interactions of the DSI model screen out and have degenerate states
satisfying the ice rule at temperatures above 0.1K, see Ref. [37] for full phase diagram. In such
cases, the physics described by the spin-ice model [38], Eq. 2.2 with effective Jeff =

5D
J + J

3
[34, 36].

In coarse-graining, the spin-ice state possesses non-trivial features like emergent gauge
theory at low energy with the power-law spin correlations. For the coarse-graining, consider
the pyrochlore lattice sites (denoted by i, j . . . ) residing in the bonds of its medial lattice, which
is a diamond lattice 2. Denote the diamond lattices by I,J, . . . . On the bonds of diamond lattice,
define a bond polarisation tIJ , which is +1 if the spin (σ z

i ) residing on the bond is aligned from
even (I) to odd (J) diamond lattice sites, see Fig. 2.1. Since the diamond lattice is a bipartite
lattice, this convention gives tJI = −1 for the other case [40]. The 2-in-2-out condition of the
spin-ice ground state gives this bond polarisation to take +1 on two bonds and −1 for the other
two bonds for each site of the diamond lattice. Defining this bond polarization to be the unit
flux, B, residing on the bonds with direction dictated by the sign of polarization. So, the spin
ice constraint will give rise to a ’flux-free’ condition for each diamond site, i.e.,

▽⋅B = 0. (2.4)

This results in gauge fields A, and it is defined as B =▽×A. The conservation of flux, here, is
a emergent phenomenon in low-energy but not of any fundamental reason because it appears

2The diamond lattice is formed by considering its sites as the pyrochlore centers. It is a bipartite lattice.
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Fig. 2.1 (Top left) The pyrochlore lattice with corner-sharing tetrahedron of spin ice embedded
in a cube. (Top right) The diamond lattice (thick lines) is formed by the centers of the tetrahedral
lattice (thin lines). The spins, site variables on the tetrahedral lattice, become link variables
(arrows) on the bonds of the diamond. (Bottom left) The ground state configuration of spins
with ’2-in-2-out’ condition. (Bottom center) shows as link variables on the diamond lattice, the
spins can be thought of as a lattice flux B (brown arrows of the top right figure). (Bottom right)
a set of spins on a green line arranged on a head-to-tail on a loop may be inverted to produce
another ground state configuration. Such a loop has zero net magnetization. The term, which
strength g, produces a liquid ground state, which is a quantum spin liquid as discussed in the
text. The figure is taken from Ref. [39] with permission from the springer nature.

only when the 2-in-2-out condition is enforced. [39] The redefining of the spins in terms of the
emergent fluxes gives a handle over the spin-ice state by taking an analogy with Maxwell’s
theory. The leading order in the action can be written as,

S =
κ

2

ˆ
ddrB2

, (2.5)

where κ is the dimensionless parameter, and it is calculated using Monte Carlo simulations [41].
This coarse-grained model helps in calculating the correlation functions of spins to leading
order. The calculation goes as follows, derived from the Ref. [39, 40]. By Fourier transforming
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the above Eq. 2.5, give a gaussian theory (quadratic in B(q)) and the correlation becomes,

⟨Bi(−q)B j(q)⟩ ∼ 1
κ

δi j. (2.6)

But, there is the conservation law in Eq. 2.4 that restricts this form. Eq. 2.4 in Fourier space
becomes to q ⋅B = 0, leading to the vanishing longitudinal part. That is (q̂ ⋅B)q̂ = 0, where
q̂ is the unit vector. Subtracting the longitudinal part of the correlations which is ∼

qiq j

q2 , the
correlations in Eq. 2.6 lead to,

⟨Bi(−q)B j(q)⟩ ∼ 1
κ
(δi j −

qiq j

q2 ) ∼ ⟨σ z
i (−q)σ

z
j(q⃗)⟩. (2.7)

Here, the correlations in B is equivalent to σ
z since B are coarse-grained variables from σ

z.

The above momentum space correlations, measurable in neutron scattering experiments,
have a quadratic singularity at q = 0, known as ’pinch points.’ The pinch points, or variants
of the pinch point, are one of the identifiable experimental identities of the spin-ice phase. In
real space, this correlation goes like 1/r3: dipolar spin correlations. [2, 9, 36, 42, 43] For the
concrete derivation of the correlations, see Ref. [3, 41] and for large-N of O(N) model, see
Ref. [44].

The excitations of the spin-ice state correspond to flipping one of the spins in the given site
in the tetrahedron. As a result, the ice rule is violated to 1-in-3-out and 3-in-1-out configuration
of two tetrahedra to which the site belongs, and the flux passing through the two tetrahedra
has non-zero flux. These defective tetrahedra resemble a source or sink of flux B. These can
be separated by arbitrary distances independently but can only be created pairwise. This is
equivalent to the creation of a pair of monopoles. [45] These monopoles can be moved further
by flipping the consecutive string of spins, which costs finite bounded energy but does not
diverge with the length of the string. These are deconfined excitations because separating them
to infinite far distances costs finite energy. Hence, the spin ice state is the deconfined Coloumb
phase of the U(1) gauge theory (Maxwell’s theory)[22, 39]. These defects/excitations from
the spin-ice ground state interact by Coloumb interactions with effective magnetic charges as
found in Ref. [45] with the dumbbell approximation to the previously discussed DSI model,
Eq. 2.3, of pyrochlores. Hence, this phase is also known as the ’Coloumb’ phase.

Using an applied magnetic field, one can tune the density of these monopoles. By tuning
the field, the phase transitions occur from a polarized phase at a high field, having these strings
confined to a low-field phase with the self-repelling strings with non-zero density. This phase
transition is called the ’Kasteleyn transition’- an unusual one. On one side, from the polarised
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phase, it looks like a first-order phase transition without any fluctuations, and on the other side,
it is like a perfect second-order phase transition. [46, 47]

The above interesting features of pyrochlores are due to the spin configurations satisfying
the ice rule present in the ground state. So, irrespective of the origin of the Hamiltonian Eq. 2.2,
suppose, if we consider the Hamiltonian is constructed into that form to satisfy the ’ice rule’
constraint ∑i∈p σ

z
i = 0 in the ground state. Then, this procedure can be generalized to construct

a class of Hamiltonians. Here, I am referring to them as ’spin-ice’ models. For example, a
classical anti-ferromagnetic Heisenberg model can also be decomposed into a form with a
constraint Cp =∑i∈p Si = 0 for plaquette p up to some constants. Such as

HHeisenberg = J∑
⟨i j⟩

Si.S j = J∑
p
(Cp)2

+ constant.

The ground state corresponds to the configurations satisfying the constraint Cp = 0. Similar
to the spin-ice pyrochlores, this ground state also has extensive degeneracy in case lattice
frustration is present [22]. This recipe of writing different variants of constraints Cp = 0 with
spins components and then constructing a Hamiltonian in terms of Cp to give a ground state
satisfying the constraint Cp = 0 produces a low-energy manifold with more generalized gauge
theories. [21] The emergent gauge theories in these models have higher-rank gauge theories,
which are fractonic in nature. [48] In the Luttinger-Tisza approximation discussed in the next
section, the emergence of general gauge theories in these constrained models can be easily
seen.

The finite entropy, also known as the Pauling entropy, of the spin-ice at zero temperature
is the perfect avenue to host quantum spin liquids in three dimensions. The key to getting a
spin liquid is allowing quantum tunneling from one ice configuration to another. That gives
a coherent superposition of all the ice configurations, giving zero entropy and keeping the
algebraic correlations intact. These are known as ’quantum spin ice’(QSI) models [49]. The
resulting spin liquids are also known as ’Coloumb spin liquids.’ This idea was proposed by
Moessner and Sondhi in the three-dimensional dimer models [50] and Hermele et al. [3]
and others in water ice [24]. The term that generates these tunneling events is the product of
six spins along the underlying Honeycomb loop of the pyrochlore lattice [3, 50], as shown
in Fig. 2.1. This is known as the ’ring-exchange’ term. This term flips spins residing on
the Honeycomb loop. As a result the flux on the bond changes in time and results in time
dependence for the magnetic fields. The time-dependent magnetic field produces the analogous
electric field from time-dependent gauge fields A like in quantum electrodynamics (QED).
Those are defined as,

B =▽×A, and E = −
∂A
∂ t

. (2.8)
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Where E is the electric field. The effective low-energy action will be

S =
1

8π

ˆ
ddr(B2

+ cQSIE
2), (2.9)

where cQSI is the constant equivalent to the speed of light in 3D QED and is extracted by fitting
the low-energy spectrum of the original Hamiltonian with the above coarse-grained model[51].
3 This theory is the lattice analog of electromagnetism with linearly dispersing ’photon’
excitations. Quantizing this effective coarse-grained theory with appropriate energy scales and
calculating experimentally measurable structure factors due to these photon excitations, see
Ref. [49], give the extra power of q in the spin-spin correlations, ∼ q× (Eq. 2.7). As a result,
the sharp pinch in the spin structure factor gets smeared out to less sharp [49].

In recent times, the QSI model has been generalized to breathing pyrochlore lattice, given
the experimental finding of the candidate material Ba3Yb2Zn5O11 [52–54]. Few theoretical
studies [55–58] proposed that the QSI model in this lattice gives rich emergent gauge theories
different from simple U(1) gauge theory.

If the magnetic field is applied in the pyrochlores along the crystal direction [111] projects
onto one easy axis with a strength three times higher in size than the other three. Then, the spin
on that easy axis is pinned along the field. The other three spins are free to fluctuate and form a
2D Kagome lattice. However, in the spin-ice regime of pyrochlores 4, the system can lower
the energy by taking the next best possible configuration satisfying the ice rule for these three
spins in the ground state, which is ’2-in-1-out’ (a monopole) or ’1-in-2-out’(an anti-monopole)
depending on the even or odd centers of the triangles in the Kagome lattice. [59, 60] This
state is known as the ’Kagome ice.’ This occurs slightly before the high-field ordered state 5.
[61, 62] Since this phase occurs in 2D, the dimensional reduction in resulting gauge theories
has correlations different from those in 3D. The correlations are logarithmic as in Maxwell’s
theory in 2D; see Ref. [62, 63]. Exploring different field directions like applying [001] gives a
platform to access the phase transition from spin-ice to Kagome ice [64].

3Tuning the strength of ring exchange term, one can tune the fine structure constant of the QED (which is
αQSI = e2

QSI/h̵cQSI, where eQSI and cQSI are fitting parameters of coarse-graning model, analogous to charge and
speed of light in QED). The strength of the ring exchange term is tuned by introducing varying third nearest
neighbor interactions. This gives the ability to tune QED from strong coupling to very weak limits. Because
of this, emergent QED in the spin-ice materials gives the lattice realization of QED. Hence, spin-ice materials
provide a quantum simulator platform for QED with tunable fine structure constants [51].

4Reminder to the reader that the DSI model describes the physics of pyrochlores and specific region of phase
diagram with temperature is governed by the spin-ice Ising model.

5Here, the anti-ferromagnetic ordered state corresponds to ’all-in-all-out’ configurations. So, this phase has
confined monopoles and anti-monopoles. Hence, this is also regarded as a monopole crystal in the low-energy
perspective.
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2.2 Magnetic Fragmentation

Fig. 2.2 (left) 3-in-1-out monopole configuration in a tetrahedron, (middle) respective dumbbell
representation of 3-in-1-out tetrahedron, (right) their Helmholtz decomposition into divergence-
full and divergence-free elements with the size of the arrows indicating their magnitude
discussed in the texts. The figure is taken from Ref. [65] with permission from the Springer
Nature.

This section is derived from the Ref. [65]. As discussed in the previous section, the dipole-
dipole interaction plays a significant role in pyrochlores. At a certain part of the temperature
regime, above 0.1K, the spin ice Ising model governs the low-energy physics. But below that
temperature [66], the quadrupolar and higher-order interactions between the spins start playing
a role and induce finite density of monopoles in the ground state. In that region, the partially
ordered phase is found to have spin-ice Coloumb phase co-existing with an ordered phase with
ordering vector q = (0,0,2π/a), and a is the distance between the centers of corner-sharing
tetrahedrons. [37] The structure factor, the Fourier transform of spin-spin correlations, of this
phase shows sharp Bragg-peaks at q along with the usual pinch points corresponding to the
Coloumb phase of the pyrochlore spin ice.

In addition, a similar kind of partially ordered phase is also proposed in a specific region of
the phase diagram in the Kagome Ice, see Ref. [67–70].

Later, Holdsworth et al. [18] proposed a unified concept known as ’magnetic fragmentation’
to study the co-existence of order and disordered phases in spin ices. This is based on the
’Helmholtz decomposition’ of the magnetization present in the model. In the case of the
pyrochlores, the DSI model is approximated to the problem of magnetic charges using the
dumbbell approximation; see Appedix. B. For the Coloumb state, the net magnetization at each
center of the tetrahedron is zero.

2.2.1 Helmholtz Decomposition

In the spin ice state, the ice rule dictates the net magnetization to be zero in each site of the
diamond lattice, which is ▽⋅M = 0 satisfying the Gauss’s law. For the monopole excitations,
that becomes ▽⋅M =−ρm, where ρm is the magnetic charge. Using Helmholtz decomposition,
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we can estimate how much of the divergence-free of ice rule is broken and estimate the fraction
of ordering to disordering contributions in the magnetization. The decomposition of M is a
follows,

M = Mm +Md,

where the Mm is the diverse full part (related to the ordered state) and Md is the divergence-
less related to the Coloumb phase. In the Coloumb phase, Mm = 0. For the ordered anti-
ferromagnetic phase, the ground state configuration is all-in-all-out, which is a monopole with
a double charge. That is a divergence-full configuration with Mm ≠ 0 and Md = 0. When the
finite density of monopoles is present in the model, both Mm,Md take finite values. The idea
of decomposing the magnetisation into different components of the spins is already discussed
previously in Ref. [71]. In the spin ice case, this breaking of magnetization is not a coarse-
grained phenomenon. The ratios of both contributions are calculated precisely using dumbbell
approximation. As discussed in the appendix B, the microscopic magnetization for site I to site
J in diamond is MIJ =±1. So, the decomposed magnetization parts, which are denoted by Mm

IJ

and Md
IJ , should satisfy the condition: Mm

IJ +Md
IJ = ±1 each bond in the diamond lattice. The

orthogonality condition for these parts is ∑I>J Mm
IJMd

IJ = 0. Using these two conditions, the
3-in-1-out monopole is decomposed into [18],

[MIJ] ≡ (−1,−1,−1,1) = (−1
2 ,−

1
2 ,−

1
2 ,−

1
2)+(−1

2 ,−
1
2 ,−

1
2 ,

3
2) , (2.10)

where first part is Mm and second one is Md . This decomposition for one tetrahedron is
schematically shown in Fig. 2.2. A similar decomposition procedure is used for the Kagome
ice and different ice models to study the partially ordered phase [18].

It is evident that this decomposition works only for discrete spin cases. The partially ordered
phase also exists in the classical continuous spin models [23], which are dubbed as fragmented
phases. Moreover, the contributions of ordered and disordered parts for the continuous spins
are not known previously. The group theoretical method proposed in our work [23] helps in
calculating precisely these quantities in the fragmented phase and also in all other ordered,
disordered spin liquid phases.

2.3 Luttinger-Tisza Approximation and Classification

As discussed in the above section, the spin-ice models paved a route to construct different CSLs
with different emergent low-energy gauge theories. Most of those CSLs have algebraic spin
correlations. Not all states with extensive degeneracy in the ground state give rise to algebraic
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spin liquids. There exist cases where the state has exponential correlations with non-trivial
topological structures in the classical spin models, as discussed in Ref. [19] for the Heisenberg
spin-ice model on the ruby lattice and Kagome lattice.

Recently, the Luttinger-Tisza approximation, also known as the soft-spin approximation,
has been introduced to study classical spin liquids and construct new and different classical spin
liquids. Recently, this approximation has been used to classify the existing CSLs [72–74]. The
local unit length constraint, ∣Si∣ = 1 at each site, is sacrificed in this approximation. Instead,
the constraint is imposed on the total spin of the lattice with N sites, i.e., 1

N ∑i ∣Si∣ = 1. This
simplification effectively makes some progress in classifying the CSLs but has its own pitfalls.
The constraint imposed on the whole lattice allows spins to be treated as scalars. This approach
is for the set of Hamiltonians which are quadratic in spins such as

H = J∑
p
(∣S∣2

q)p
. (2.11)

where the sum is over the plaquettes denoted by p and The plaquette spin is Sm
q =∑i∈p ηiS

α

i ,
where ηi are the real coefficients which are all equal for Heisenberg model with spin components
denoted by α , i is for sublattice sites and m index is for the spin component in each sublattice
withing the plaquette p. This quadratic Hamiltonian is transformed using Fourier transformation
as 6

Sq =
1
N ∑

i∈p

Sm
i e−iq⋅ri. (2.12)

Any generic Hamiltonian, such as,

H = ∑qS
m(−q)Jmn(q)Sn(q), (2.13)

= ∑qS
m(−q)T m(q)ω(q)T n∗(−q)Sn(q). (2.14)

The interaction matrix J (q) is the Fourier component of the exchange terms with J for all
sublattices sites, which is

Jmn(q) =∑
i, j

Je−iq.(ri−r j)
= T m(q)T n∗(q). (2.15)

The eigenvectors are denoted by T(q)∗ and the eigenspectrum by ω(q). In the case of the
CSL phase, the eigenspectrum consists of flat bands at energy ω = 0, the lowest energy. The
flat band is the consequence of the extensive degeneracy of the ground state. All the other

6The definition of the Fourier transformation is only feasible under the soft-spin approximation, where spins
are treated as scalars.
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bands are dispersive with dispersions as ω(q) = ∣T(q)∣2. The condition for the ground state
manifold for the Hamiltonian mentioned in eq. 2.13 is Sq = 0 (spin ’ice rule’), which results
into, in the Fourier space as

∑
m

T∗
m (q)Sm(q) = 0. (2.16)

The conditions for various types of emergent gauge fields in constrained Hamiltonians can be
deduced from the kind of dispersions of flat bands represented by T(q). Furthermore, it is
also helpful in the classification of classical spin liquids. Apart from the trivial paramagnet,
the types of spin liquids deduced from the knowledge of flat band physics are algebraic and
fragile spin liquids. The algebraic spin liquids correspond to bands where dispersive bands
touch the flat bands at finite points in the Brillouin zone singularly [73]7 If not, the points
are non-singular. The associated spin liquids are called ’ fragile.’ These are fragile in the
following sense. Suppose the band is gapless with non-singular band touching points or gaped
without any band touching; then, the eigenvectors are non-vanishing at any Brillouin zone
points without any singular points. The non-vanishing eigenvectors make these bands possess
non-zero topological invariant, skyrmion number, from the map of eigenvector from Brillouin
to CPN−1; see [73] for more details.

The characteristics of singular band touching points in the Brillouin zone for algebraic spin
liquids infer the type of gauge theory that emerges. For example, in the case of the Coloumb
phase, the band touching happens at q ∼ 0 with leading power in the wave vector T(q) ∼ q.
From the constraint condition mentioned above, the constraint gives rise to q ⋅S = 0, which
gives the Gauss law. So, the structure of gapless points directly maps the pinch points or their
analogs in the structure factor. See Refs. [72, 73] for more examples of tensor gauge structures
and higher-rank gauge theories. This approach can also be employed additionally to construct
various classical spin models by developing the model with the required type of dispersions.

2.4 Order by Disorder

So far in this chapter, I discussed that the fluctuations induced by frustration do not allow the
system to have ordered phase in the ground state. In contrast, there are scenarios in which the
quantum or thermal fluctuations may induce order or close to ordered phase. This concept is
known as "order by disorder" introduced by Villain et al. [75] in classical Ising systems.

This key idea of this concept is as follows. [] In classical spin systems, the ground state
possess finite degeneracy, for example, symmetry broken phases like ferromagnetic or anti-
ferromagnetic phases has degenerate states. The modes, called ’zero modes’, which take the

7Singular band touching points, say q∗, are defined as where the eigenvector vanishes, i.e., T(q∗) = 0.
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system from one state to another degenerate state without any further energy cost. The order
by disorder works to select the subset of degenerate energy states to the more ordered state.
To illustrate this with an example, consider an Heisenberg antiferromagnetic in bcc lattice.
The bcc lattice is a cubit lattice with two sub-lattices. Because of the two sublattices, two
zero modes exist in this case. One is corresponding to Heisenberg rotation of all the spins
together, which is a Goldstone mode. Other is related to out-of-phase rotation of spins between
the spins in the two sublattices. This mode is called ’phason’. The introduction of quantum
or thermal fluctuations into this phase, break this phason mode of continuous rotations into
simple Z2 Ising symmetry. As a result, the system become more ordered collinear phase, see
Ref.[76]. The more the number of zero modes present in the state, the more the system is prone
to fluctuations. So, the coplanar and nonplanar phases in Kagome and pyrochlores lattices
has more zero modes and has many interesting physics arises, see Ref [77–79]. For the latest
activities related this concept, see Ref. [80, 81] and its quantum analogs, see Ref. [82] and
references therein.

2.5 Material realization

This section summarises the existing classical spin liquid candidate materials. So far, all
the materials possessing CSLs are spin-ice models and related models. One of the foremost
experimentally known materials to have classical spin liquids is the 3D pyrochlores [22, 43].
The pyrochlore materials initially investigated to have spin-ice models are rare earth (R)
titanates R2Ti2O7, R=Ho, Dy. The zero point entropy of the pyrochlores was calculated at first
to confirm the resemblance of the water ice physics in Ho2Ti2O7 [33], Dy2Ti2O7 [83]. These
dipolar-magnets have surprisingly ferromagnetic frustration with dominating dipolar-dipolar
interactions. Later, simplifying models to study these models are proposed but still have many
puzzles to address; see Ref. [43] for details. Many spin ices are now known based on the
chemical base A2B2X7 being extremely large, including spinels rather than pyrochlores [84].
Recently, the classical spin liquid phase has been found in the Heisenberg Kagome compound
Li9Fe3(P2O7)3(PO4)2 [85], which has spin S =

5
2 .

In addition to these materials known to have classical spin liquids, few cases in this class of
materials had prominent quantum fluctuations. These materials are prime candidates to have
quantum spin ice, including Pr2Zr2O7[86], Pr2Hf2O7 [87], Nd2Zr2O7 [17], and Ce2Zn2O7 [88].
Various other materials with triangular [89–91], Kagome [92–94], and square Kagome lattices
[95–97] are found, but the spins need not be classical. But, all these are studied theoretically
with both classical and quantum spins.





B
Appendices for chapter 2

B.1 Dumbbell Approximation to Dipolar Spin Ice (DSI) Model

The dumbbell approximation to the DSI model goes as follows [45]. The point spin dipoles are
considered as infinitesimally thin magnetic needles along the easy axes connecting the centers
of adjoining tetrahedra, which give a diamond lattice. These needles carry dumbbells of charges
at each end, which touch at the diamond lattice sites, as shown in Fig. 2.2. For each dumbbell
at the ends, there is a positive and a negative charge denoted by ±QI at site I, reproducing the
magnetic moment of the original point dipole. The spin ice rule is satisfied by taking two ends
with +QI and two with −QI . As a result, the ground state has a charge-neutral configuration at
each diamond lattice site. Changing the sign of a single dumbbell produces a monopole pair in
the tetrahedra connecting the dumbbell. By construction, the magnetic moment at each site of
the tetrahedron is given by the magnetic charge MIJ = ±1 connecting the diamond lattice sites
I and J. In the spin-ice state, for spin-ice configuration has ∑4

I=1 MIJ = 0 (i.e. ▽⋅M = 0 in the
coarse-graining), and for ’3-in-1-out’ monopole has ∑4

I=1 MIJ = −2.
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3
Emergent Glassiness in Disorder-free Kitaev
model

The complete phase diagram of the Kitaev model with a magnetic field remains elusive, as
do the experimental results in the candidate material α-RuCl3. Here, this chapter discusses
the study of the Kitaev model on a one-dimensional ladder setting within the density-matrix
renormalization group (DMRG) method in the presence of a magnetic field at zero temperature.
There are five distinct phases found with increasing magnetic field, which are characterized by
a homogeneous flux phase, the Z2 vortex gas, solid and emergent glass phase, and finally, a
spin-polarized phase. The emergent glassiness is confirmed by calculating correlation functions
showing quasi-long range behavior and ground state fidelity, showing a plethora of energetically
accessible orthogonal saddle points corresponding to different flux configurations. This glassy
behavior seems to arise from the slow dynamics of the Z2 fluxes, which is a consequence
of the local constraints present in the underlying Hilbert space. This phenomenon can also
be explored in other spin-liquid systems where the corresponding low-energy excitations are
similarly retarded due to constraints.1

1This chapter is a reproduction of our published work on ’Emergent Glassiness in disorder-free Kitaev Model’
with reference PHYSICAL REVIEW B 108, 165118 (2023).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.165118
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3.1 Introduction

Quantum magnetism in crystalline solids and the study of spin liquids is experiencing a resur-
gence. It is partly due to a remarkable exactly solvable quantum spin model on a honeycomb
lattice by Kitaev [1], followed by an exciting proposal by Jackeli and Khaliullin [2] of ex-
perimental realization of Kitaev spin liquid in certain real materials. Several potential Kitaev
proximity materials are appearing on the scene [3–11]. New experimental results in possible
Kitaev systems, such as α-RuCl3 [12–19], continue to surprise us. Beyond basic sciences,
developments in quantum spin liquids give hope and pave the way for novel qubits, topological
quantum computation, and quantum information science and technology.

The Kitaev model is studied extensively in the presence of the magnetic field in 2D
honeycomb lattice [20–25], in ladder setups [26, 27], and combined with other interactions
[28–30]. There has been a variety of results and proposals, some of which are ubiquitous
while others remain active research topics. There is theoretical evidence of U(1) quantum
spin liquid (QSL) in the intermediate field regime, with gapless excitations whose nature is
still debated (for reviews see [31–34]). Our understanding of the constituent gauge and matter
excitations in the Kitaev model with other interactions [35–42] and external perturbations are
gradually evolving [43–48]. In particular, the behaviour of the gauge fluxes is not explicitly
investigated in the previous numerical studies at finite magnetic fields, and hence their role in
the corresponding phases remained unknown. Moreover, given that the dynamics of the flux
excitations are restricted by the constraints in the underlying theory, interesting features such as
amorphous solid and glass phases can be expected here but remain unexplored in the literature.

The experimental situations similarly remained inconclusive. Experiments have observed
half quantization in the thermal Hall effect [49], and quantum oscillations in in-plane longitudi-
nal thermal conductivity without any observed quantization in the corresponding transverse
conductivity [50] in α-RuCl3 in the intermediate magnetic field region. Another experiment
has indicated multiple phase transitions in the same field region based on the anomalies in
thermal (both longitudinal and Hall) conductivity [51] Evidence of magnetic excitations [52]
and phonon anomalies [53] are also presented in experiments in the same field region (before
polarized phase appears). More recently, this is roughly the same magnetic field region where
an experiment finds a signature of significantly strong and unusual temperature dependence in
non-linear susceptibilities (χ2 and χ3).[54] Generally, a negative divergence in χ3 is taken as
the signature of spin-glass. However, in α-RuCl3 a positive (‘λ ’-like) divergence in χ3, along
with other unusual signals in χ1,2, indicates the possible presence of some glass phase and/or
excitations with slow dynamics, but not a spin glass.

Emergent glassiness in disorder-free many-body systems is seen, sporadically or otherwise,
in many earlier works, although the observed phase was not often associated with glassiness.
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Intuitively, if the ground state is in proximity to a wealth of local minima due to (say frustration-
induced or topological-) degeneracy [55], ‘emergent disorder’ arising from an excessive number
of conserved quantities [56–58], or orthogonal catastrophe near a critical point [59, 60], or
local constraints or local bath, [55, 61, 62] its dynamics are impeded. In modern calculations,
it is also shown that if the Hilbert space is partitioned [63, 64] and/or disentangled [65] into
(local) Hilbert space, then the ergodicity is hampered.

The presence of a glass phase in the Kitaev model is highly probable, thanks to its distinctive
excitation spectrum. When a local spin flip occurs, it induces the non-local excitations of a
pair of Z2 fluxes and/or a flux coupled with a Majorana fermion. However, the mobility of
these excitations is limited due to constraints within the underlying Hilbert space. Can these
excitations eventually freeze into a glass phase? Furthermore, what role does the flux density
play in the potential formation of the glass phase? What is the role of the parent spin-liquid
phase in it? In this work, we delve into these questions.

Here, we carry out a DMRG study on the Kitaev model on the 1D ladder at a finite
magnetic field and zero temperature. The problem has previously been studied using the
DMRG, iDMRG, and exact diagonalization methods, with or without the so-called Γ interaction
term.[26, 66, 67]. While the phase boundaries with the magnetic field strength are reproduced
below, the identification of the phases, especially the amorphous and glass phases, remained
undisclosed in the previous studies. We find that the phases are described by the flux operator
on each plaquette, while interesting features are also observed in the local operators such as
spin operator per site[67] and flux operator in half of the plaquette. We find a set of interesting
phases with an increasing magnetic field. At low fields, the Z2 gauge flux stabilizes in a
spatially homogeneous phase before it tends to crystallize. In the intermediate field region,
we spot a robust glass phase determined by random spatial distributions of the Z2 gauge
fluxes, with possible gapless excitations. The emergence of glass physics is corroborated
by the signature results of the correlation functions and quantum Fidelity calculations of
the ground state. The dynamics of the glass phase have not been studied in detail because
they are computationally expensive to simulate using the DMRG method. The glass phase
intervenes in the homogeneous flux phase on one side and a homogeneous polarised phase
at a high field. The candidate mechanism for the intrinsic glass phase is that the dynamics
of low-energy excitations are restricted by constraints within the underlying Hilbert space,
not by the quintessential emergence of conserved charges. As the count of π-fluxes reaches
the half-filling fraction of the plaquette number, the fluxes acquire a near-freezing behavior.
We also conducted the same DMRG analysis on a 4-leg Honeycomb strip with cylindrical
boundary conditions. The nature of the phases is the same as that of the 1D ladder except for
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Fig. 3.1 A Kitaev ladder setup that we study here. At each site, we have three nearest neighbor
bonds with exchange interactions, Jx,y,z, between Sx,y,z, respectively, as in a honeycomb analog.
The Jz interactions (J3, J4) are kept to be the same as well as different for comparison. a denotes
the lattice constant, while W , Ti are flux operators defined in the text.

the quantitative values of phase boundaries. The glassy phase is observed for the range of fields
where the U(1) spin liquid was proposed [20–25].

Our remaining article is organized as follows. We present our DMRG method and results
in the Kitaev ladder at T = 0 as a function of the magnetic field and discuss the emergence of
various phases with emphasis on the intrinsic glass phase.

3.2 Method

We consider the Kitaev model with the magnetic field (h) along the [111]-direction as

H = ∑
⟨i j⟩α

JαSα

i Sα

j −∑
i,α

hαSα

i . (3.1)

Here Jα > 0 are bond dependent exchange couplings, α = x,y,z. This model is set on the
1D Ladder as shown in Fig. 4.1). Each bond has three nearest-neighbor interactions, hence
mimicking the setup proposed by Kitaev on a honeycomb lattice. The coupling along the
z-bond (between the chains) is taken to be staggered, in general, as Jz = J3 or J4 in alternative
rungs, see Fig. 4.1.

The spin operator Sα

i at each site i can be factorized into matter Majorana fermion (ci) and
gauge Majorana fermion (bα

i ) operators. Then the gauge Majorana operators in the nearest
bonds can be combined into a bilinear operator uα

i j = ibα

i bα

j , which serves as a Z2 gauge field.
With this, we can define a flux operator at a six-bond plaquette p as

Wp = Sy
i Sz

jS
x
kSy

l Sz
mSx

n =∏
lp

uα

lp, (3.2)
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where lp = i j, jk,kl, lm,mn, and ni are nearest neighbor bonds. The chosen spin component at
a given site is the one present in the outward bond (normal to the plaquette). It turns out that
Wp at each plaquette commutes with the Hamiltonian at h = 0, giving N conserved quantities in
both 2D Honeycomb lattice as well as in the 1D ladder. In addition, in the present 1D ladder
setting, there are two additional local conserved quantities, which are four-bond plaquette
operators as defined by

T1p = Sy
i Sy

jS
x
kSx

l = −∏
lp

uα

lp ,

T2p = Sx
jS

x
mSy

nSy
k = −∏

lp

uα

lp, (3.3)

where lp = i j, jk,kl, li bonds in the 1p-plaquette, and so on. These operators are shown in
Fig. 4.1. Consequently, Wp = T1pT2p and [T1p,T2p] = 0 1. In the ground state, all these
conserved quantities assume W = +1 and T1p/2p = +1, (uniform flux-free phase),2 giving us
an extensive number of conserved quantities. Hence, the many-body Hilbert space is made
of ‘trivial’ product states of gauge sectors and matter sectors [68]. This is a Z2 - QSL state
[69]. The phase diagram of the ladder Kitaev model with Jx,y,z has been previously explored
in Ref. [70]. The lines defined by Jx − Jy = J3, Jx − Jy = −J3 for J3 = J4 exhibit gapless phases
characterized by linear dispersions. Furthermore, the J4 = 0 line also features gapless excitations
but with quadratic band touching. The rest of the phase diagram has gapped excitations.

We study Eq. 4.1 at h≠ 0 by using the DMRG method for N = 200,300,400 with cylindrical
boundary conditions between the chains and open boundary conditions at the edge. The
randomly initialized Matrix product state (MPS) is variationally tuned to the ground state by
minimizing the expectation value of the matrix product operator of H in Eq. 4.1 (energy) with
bond dimension up to D ≤ 2500 and truncation error, ε ∼ 10−10. The DMRG algorithm is
implemented using ITensors Library [72]. All the results of the main text are with Jx = Jy =

J3 = J4 = 1; see Appendix. C.2 for results of other couplings. The expectation values of any
gauge-invariant operators are calculated by contracting the MPO with DMRG-predicted ground
state MPS.

We repeat some of the calculations on a four-leg 1D lattice with cylindrical boundary
conditions along the armchair direction and open boundary conditions along the zig-zag
direction. This geometry is closer to the 2D Honeycomb lattice; see Appendix. 3.6. The

1These four-bond plaquette operators do not commute themselves or with the 2D Kitaev Hamiltonian but
commute with the 1D ladder Hamiltonian in Eq. 1 at h = 0.

1Uniform flux free ground state is obtained by fixing the gauge: uα

i j = +1 on α = x,y bonds and on the legs,
uz

i j = +1(−1) along J3 (J4)-couplings [69–71].
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salient properties that are presented in the main text for the two-ladder are reproduced in the
four-ladder settings.

3.3 Results

(a) (b)

Fig. 3.2 (a) The spatial average value of the magnetization along the magnetic field direction is
plotted as a function of field strength. (b) Corresponding values of the uniform spin susceptibil-
ity (χ) are plotted here. Three different colors denote the same calculated values but for three
different system sizes N = 400,300,200. The vertical dashed lines mark the phase boundaries,
which are located at h ≃ 0.24,0.28,0.3, and 0.43. (The plots are magnified between h = 0.2 -
0.5 values for visualization.)

In gauge theories of the present kind, it is often difficult to find the right order parameter (s),
especially when there are multiple phases that compete and/or coexist. As h → 0, we have a
non-local multi-linear operator, Wp, which acquires a fixed eigenvalue at each site as discussed

above. At h →∞, the local linear (magnetization) operator Sĥ
i has a uniform average value in

the polarised phase with the easy axis oriented along the field direction ĥ. There is no obvious
way to smoothly interpolate between these two (quasi-) local operators, and a phase transition
between them, if exists, evades the Landau theory and occasionally can be classified within
the deconfined quantum critical paradigm. Non-local string operators arise as dynamics are
introduced in the intermediate magnetic field strength. These string operators bind flux-flux,
matter-matter, and/or flux-matter excitations. It is numerically expensive to evaluate their
expectation values within DMRG. We will, however, occasionally comment on the possible
role of such non-local string operators for the slow dynamics of the glassy phase we obtain
here.

We present the spatial average values of the ground-state expectation value ⟨O⟩= 1
N ∑l⟨Ol⟩,

where Ol = Sĥ
i , l = i site index as shown in Fig. 3.2, and Ol = Wp, T1p, T1p; l = p plaquette
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I II III IV V

Fig. 3.3 Computed values of the spatial average of the three flux operators W , Ti are plotted as
a function of field strength. The results are shown for a DMRG run on a 400 site lattice. The
vertical dashed lines indicate the same phase boundaries as in Fig. 3.2. The horizontal dashed
line marks the ⟨W⟩ = 0 line.

index, as shown in Fig. 3.3. In both values of M = ⟨S⟩ and ⟨W⟩, we observe concurrence of
kinks or jumps with increasing magnetic field strength h. We denote these finite-field phases by
I, II, III, IV, and V. We see in Phase I, a uniform flux value at all plaquettes with the average
value decreasing with h, and hence we dub it the uniform-flux phase, see Fig. 3.4. In Phase II,
local flux (we will call them Z2 vortex) values begin to deviate from their finite mean value at a
few plaquettes. This is a result of the appearance of the low density of π fluxes in the ground
state. Phase III appears in the region where the number of vortices is nearly half of the number
of lattice sites (half-filling), and Z2 vortices tend to crystallize. Phase IV corresponds to the
glass phase with random fluctuations in the Z2 vortices around a zero-mean value. Finally,
Phase V corresponds to the uniform polarised phase.

The magnetization grows near-linearly at all field strengths except in the intermediate
region. The uniform spin susceptibility, defined as χ =

∂M
∂h , shows divergence features at all

phase boundaries. The divergence in χ is most sharp at h = 0.43J, at the phase boundary
between the glass and the polarized phases, possibly indicating a phase transition caused by the
long-wavelength collective excitations (magnons).
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I II

(a) (b)

(c) (d)

Fig. 3.4 The computed value of ⟨Wp⟩ are shown for each plaquette p for two different fields (a)
h = 0.2 (b) h = 0.275, which correspond to Phase I and Phase II. (c),(d)) The values of ⟨Tβ p⟩
are shown in the corresponding bottom panel. The T2p > T1p at a p corresponds to T1p flux
sitting at the boundaries, and vice versa

3.3.1 Uniform and Crystalline phases of fluxes

The expectation values of flux operators show an intriguing behavior, as shown in Fig. 3.3. Up to
h ≈ 0.24J, we observe a uniform value of ⟨Wp⟩, but ⟨Tip⟩ obtain staggered mean values between
the alternative four-bond plaquettes, as shown in Fig. 4(a) and 4(b), respectively. (The condition
for T1p > T2p versus T1p < T2p at a given plaquette depends on the open boundary condition.)
Moreover, the uniform value of ⟨Wp⟩ < 1 at all plaquettes suggests that the gauge sector of the
ground state can still be approximated to be a product state of local basis, but now the local
states have changed from ∣+⟩p at h = 0 to αp∣+⟩p+βp∣−⟩p for h > 0, where Wp∣±⟩p =±∣±⟩p,
and α

2
p −β

2
p = ⟨Wp⟩, ∀p. The normalization condition dictates α

2
p = (1+ ⟨Wp⟩)/2.

When the Kitaev model is perturbed, in general, one gets complicated multi-body interac-
tions among Majorana Fermions and Z2 gauge fluxes. Z2 gauge fluxes become dynamic and
acquire finite effective masses[45]. Further, open string operators carrying Majorana fermion
modes (both bx,y,z

i and ci) at their ends also have expectation values in the ground state. The
study of open strings using DMRG at finite fields is cumbersome. Elaborated discussion on
these string objects at finite fields and their role in dynamics is presented in Appendix. 3.7.
There are excitations due to Tip fluxes whose energy scale is < 10−3J. But in the uniform
⟨Wp⟩ phase, we find that ⟨T1p⟩ > ⟨T2p⟩ for T1p sitting at the boundaries (⟨T1p⟩ < ⟨T2p⟩ for T2p
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III IV(a) (b)

(c) (d)

(e) (f)

Fig. 3.5 Similar to Fig. 3.4, but here the results are shown at two representative fields of Phase
III (h = 0.2975) and Phase IV (h = 0.365). In the middle panel ((c),(d)), we plot the real part of
the Fourier transformation of ⟨Wp⟩ with wave vector k.

at boundaries). In addition, both the W and T flux pairs are also virtual excitations. These
excitations induce further neighbor hopping to the matter fermions. The density of these
excitations increases as a function of h, changing the magnitude of the ⟨W⟩. The energy gap
to create flux-pair is ≤ 10−3. Similarly for T−flux pair, it is ≤ 10−5 (see, Appendix. C.1).
There are long-wavelength collective excitations, in which αp (i.e., ⟨Wp⟩) varies slowly across
the lattice but with a gap that scales with the system size. Finally, single matter Majorana
excitations appear at higher energy.

A single Z2 vortex creation in the uniform flux case at a six-bond plaquette, i.e., changing
Wp from +1 to −1 costs energy E ∼ 0.24J. Therefore, for h > 0.24J, Wp vortex creation is
energetically feasible. In the dilute limit, the vortices start to proliferate in the lattice like a
vortex gas or liquid phase, which is Phase II in our phase diagram.
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(b)(a)

Fig. 3.6 We plot the correlation function of the flux operator ∆Wp with p = 50 for (a) h = 0.295,
and (b) h = 0.365.

With further increase of the field strength, by h ≥ 0.28J there is a tendency for the vortices
to crystallize, as shown in Fig. 3.5(a). This is Phase III. Here, Wp = ±1 plaquettes are nearly
equal in number, giving ⟨W⟩→ 0, which is close to half-filling. In this case, the vortices are
‘frozen’ to the lattice site with alternating plaquettes having opposite Wp sites; see Fig. 3.5(a).
This phase is analogous to a density wave order in a correlated fermionic insulator or hard-core
bosonic insulator at half-filling. The vortex lattice formation is evident in the dominant value
of the Fourier component of the flux operators at a single wavevector as shown in Fig. 3.5(c).
Slightly away from the half-filling on both sides, we observe here a few wavevectors and
quasi-long-range correlation functions. which suggests an amorphous behavior.

3.3.2 Emergent Glassiness

An amorphous crystal is a precursor to glassiness and may be at play in the present case as well.
The energy to create a single Wp flux in the crystalline phase is ∼ 0.05J (assuming uniform
crystal for this estimation; see Appendix C.1 for more details). Therefore, at h > 0.3J, we enter
into the dense vortex region (Phase IV). The large value of the Z2 vortex density is evident in
the ⟨W⟩ ≤ 0 value shown in Fig. 3.3. Because of this high density, any small local fluctuation
tends to impede the ordering of the entire lattice, and hence a glassiness arises.

We calculate the correlations of Wp, quantifying the fluctuations from its mean, as ∆W =

⟨WpWq⟩−⟨Wp⟩⟨Wq⟩, where the expectation value is calculated with respect to the MPS ground
state. The value of the correlation of the fluxes is ∼ 10%, and the correlation length extends up
to 20-30 plaquette distance on both sides, as shown in Fig. 3.6(d). Furthermore, this quasi-long
correlation length in the glass phase is larger than its precursor crystalline phase. This is in
contrast to a solid-to-liquid phase transition where the correlation length decreases in a liquid
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phase. This is one aspect of the glassiness that distinguishes phase IV from it being the liquid
phase.

In this phase, the local spin operators exhibit an incommensurate order, as also reported
earlier.[67] Different incommensurate orders in finite lattice give closely lying energy states but
fail to become orthogonal to each other. On the other hand, as we will see below via the Fidelity
calculation, different local minima states are completely orthogonal to each other, suggesting
that the glass state is not governed by the incommensurate local spin but by the flux operators.

Furthermore, we have also checked that the phase has a non-zero central charge, signaling
gapless excitations. Note that this is the approximate range of fields where gapless U(1) QSL
state is proposed in the 2D Honeycomb Kitaev model [20–25]. The convergence of DMRG
minimization in this range of fields is slow compared to time scales for other phases (see the
Fidelity result for the corresponding interpretation).

Referring to the definition of Wp in Eq. 3.2, it is easy to associate the fluctuation of ⟨Wp⟩
with the quantum fluctuation of the spins. This sets the present glass physics apart from
the classical glassy phase of frozen spin configurations. Note that apart from single flux
productions, there are also non-local flux pairs that are connected by Wilson operator (Wp)n -
which in the spin operator form takes a string operator. This automatically generates n−point
spin-spin correlations in this system. Definite a nth-order uniform susceptibility χn ∼ ∂

nM/∂hn,
we have checked that the second and third-order susceptibilities in this region are large and
more chaotic as a function of the magnetic field. Note that in a Gaussian fluctuation theory, the
third and higher-order susceptibilities vanish, as we also find in the other phases. But in Phase
IV, we find significant enhancement of the mean square values of the second and third-order
susceptibilities in the range of O(102) to O(103).

For the high magnetic fields, Phase V is trivially polarised along the [111] direction. The
fluxes are half of the plaquettes with π− fluxes resulting in ⟨Wp⟩ = 0 and ⟨T1p/2p⟩ = 0 in every
plaquette uniformly.

There is no glassy phase observed for the ferromagnetic couplings, i.e. Jx = Jy = J3 = J4 =

−1. Here, we find two phases: the uniform flux phase at a small magnetic field region and the
polarised phase with uniform ⟨Wp⟩ = 0 (and ⟨T1p/2p⟩ = 0).

3.3.3 Robustness of results with other Lattice Settings

We repeat the DMRG calculation in a 2D lattice strip via the four-leg Honeycomb lattice with
cylindrical boundary conditions; see Appendix. 3.6 for more details. We find four phases
(Fig. 3.8), where phase II and phase III are not distinguishable within the finite system size
calculation. More importantly, the glass phase is reproduced here.
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We also repeat the DMRG calculation in the 1D ladder for J4 = 0 with other parameters
fixed at 1. This creates open boundary conditions between the chains. The result is presented
in Appendix C.2. We find two phases: at h > 0, we immediately find a crystalline phase (phase
III) and the uniform polarized phase (phase V). The glass phase is absent here.

3.4 Phase transitions and Fidelity

I II III IV V

Fig. 3.7 I plot the quantum Fidelity (defined in the text) with magnetic field for N = 400 lattice
sites. The vertical dashed lines indicate all five phase transition points, which coincides with
Figs. 3.2 and 3.3.

In the absence of a well-defined local order parameter, characterizing phase boundaries
and phase transitions becomes challenging. In such a scenario, we can study how different
variational ground states are mutually orthogonal as a function of the control parameter. This
information can be obtained by the quantum fidelity analysis.

The quantum Fidelity is defined as F(h) = ∣⟨ψ0 (h)∣ψ0 (h+δh)⟩∣, where ∣ψ0 (h)⟩ is the
ground state vector obtained from the DMRG calculation at h [73–77]. It is now evident that
if the states ∣ψ(h)⟩ and ∣ψ(h+δh)⟩ are linearly dependent, we have F → 1, and if they are
completely orthogonal, we get F → 0, and any value between them measures the overlap
between the two wavefunctions.[78] The fidelity F vanishes in two major scenarios: due to
gapless excitations and emergent glassiness. As the system is tuned to a new configuration,
and if the corresponding state is orthogonal to the preceding one, the fidelity between the two
states vanishes. This phenomenon is known as the orthogonality catastrophe, as proposed
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by Anderson in free Fermion systems. It is an infrared catastrophe that arises from gapless
excitations. However, fidelity can also vanish due to emerging glassiness. In this case, the
system becomes trapped in some metastable local minima whose states are mutually orthogonal
to each other. We discuss below why the glass phase is the origin of the F = 0 value in our case.

As shown in Fig. 3.7, we see that F → 1 in both the uniform phases of flux (Phase I) and
of spin (Phase V), suggesting a unique ground state in these phases. F sharply decreases at
the phase boundary between Phase I and II, implying that the vortex gas phase is separated
from the uniform phase by a phase transition. Within the Phase II region, the Fidelity does not
completely reach 1, suggesting the presence of configurations that partially overlap with the
chosen ground state.

The most exciting feature is obtained in Phase III (amorphous vortex crystal) and Phase IV
(vortex glass) where F = 0. This clearly indicates the presence of a plethora of local minima
whose wavefunctions are orthogonal to the chosen ground states. These local minima are
not degenerate, as in the case of an infrared catastrophe, but lie within the energy fluctuation
scale provided by the magnetic field. Additionally, we repeated the DMRG runs with different
random initial configurations at a fixed value of the magnetic field. In each iteration, the
obtained ground states are orthogonal to each other. We have performed the ED calculations
with system sizes 6, 10, and 14. And found that the results qualitatively agree with the DMRG;
see Appendix 3.8 for the details. These findings strongly suggest that the orthogonality is
unlikely to be driven by gapless excitations and rather points towards the stabilization of a glass
phase.

The fidelity is consistently zero in both Phase III and Phase IV, which aligns with expecta-
tions since an amorphous solid serves as a precursor to a glass phase. In an amorphous solid,
a domain of fluxes has a metastable ground state, while in the glass phase, the domain size
reduces to a single flux. Orthogonal ground states obtained from different DMRG runs for
phase-III have different domain wall structures. Since the flux configurations vary for different
initial conditions in DMRG runs, the size of domains varies from one another. However, the
size of the largest domain scales proportionately with the system size.

3.5 Discussion

A key feature of the QSLs, in general, and the Kitaev model, in particular, is the presence of
constraints on the Hilbert space for low-energy excitations. The emergent matter excitations
typically enjoy an enlarged Hilbert space than the physical Hilbert space of the spin operator
provided by the Hamiltonian. This restriction on the available Hilbert space limits the dynamics
of the excitations on the phase space.
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In this DMRG study, we observed the glassy phase at the intermediate field range on the
1D ladder and then in a 4-leg Honeycomb strip with a cylindrical boundary. Previously, various
numerical studies have suspected intrinsic glassiness or slow dynamics in general as a function
of temperature and applied field. Localization features are observed for a range of different
couplings in the Kitaev ladder model at low field [79], indicating that the localization behavior
is beyond uniform flux approximations at low fields. A non-ergodic phase is also proposed
in the 2D Kitaev model under quench with skew magnetic field [80] and without the field for
anisotropic couplings [81]. Recall that the exact solution of the Kitaev model at the zero field is
a result of N local conserved quantities (flux operators) in a honeycomb lattice of N plaquettes.
As claimed in Refs. [63, 64], the local conservation constraint leads to the shattering of the full
Hilbert space of dimension 22N into 2N sectors of equal dimension. Each sector defines a 2N

dimensional Hilbert space of free neutral fermions. This perfect partitioning of Hilbert space
and consequent superselection impairs ergodicity and favors many-body localization.

Any external perturbation that directly couples to the local spins generates excitations of
flux pairs or flux-Majorana bonding. These topologically protected excitations have restricted
dynamics in the lattices and are impervious to annihilation by temperature or local defects
[82]. However, the emergence of a glass phase, specifically a flux glass rather than a spin
glass, necessitates further fine-tuning. In our study, we observe that as the number of fluxes
reaches half-filling, the disorder configurations of these fluxes form local energy minima
with corresponding orthogonal quantum states. These local minima possess slightly different
energies, comparable to the magnetic field’s strength, and do not give rise to a degenerate
manifold. Consequently, an infrared catastrophe does not occur; instead, the system freezes into
one of these local minima configurations. Since the flux operators are products of spin operators
within a plaquette, the flux correlation function corresponds to a many-spin correlation function.
Measuring such a correlation function is currently infeasible using existing experimental
techniques. However, indirect measurements can be achieved through experiments involving
field quenching and non-equilibrium analyses. For instance, femtosecond laser pulses can be
employed to probe the glassiness present in Kitaev spin liquid materials.

Extending these ideas to the RVB state, a few conjectures can be made for future studies.
A local spin flip at a site produces two spinons, which separate away during time evolution.
However, spinons as sources of emergent gauge fields, carry gauge fluxes [83]; sometimes both
electric and magnetic charges, called Dyons [84, 85]. Net gauge fluxes created by the spin
operators are zero, even though the spin operators are gauge invariant. Flux attachment endows
spinons with fractional exchange statistics in 2 dimensions [86]. This is also transparent in
Kalmeyer-Laughlin chiral spin liquid state [87, 88] and later works, where low energy spinon
carries a Vison or Meron (half-Skyrmion) [85] or SU(2) gauge fluxes [89]. The restrictions on
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the spinon dynamics lower its kinetic energy. Whether these spinons can freeze to form a glass
phase in a U(1) spin liquid phase remains to be investigated in future studies.

3.6 Towards 2D: Results on 4 Leg model

Fig. 3.8 The spatial average values of ⟨Wp⟩ as a function of the magnetic field for the four-leg
Honeycomb lattice with system size N = 52 sites. The vertical dashed lines are pointing the
fields of phase transitions identified from the magnetic susceptibility.

To find out the robustness of the phase diagram presented in the main text on a two-leg
DMRG calculation, we repeat the calculation on a four-leg ladder with cylindrical boundary
conditions of system size, N = 52 sites and with bond dimension D ≤ 1000, truncation error,
ε ≈ 10−10. We reproduce four phases as presented in Fig. 3.8. Those four Phases are Phase I,
Phase III, Phase IV, and Phase V of the 1D ladder results presented in the main text.

The different phase boundaries are identified from the magnetization values with smaller
steps of the magnetic field than seen in previous studies; see, for example, Ref. [20]. The
average expectation of the plaquette operators as a function of the magnetic field is shown in
Fig. 3.8 agreeing with the previous findings [21].

Even though the system size is small and prone to boundary effects along the legs, we
reproduce four phases, as seen in the 1D ladder. Here, the boundary between Phase- II to Phase-
III is not explicit within the finite size calculations. The low field phase, Phase-I, for fields up to
0.23J, has uniform flux configurations, as shown in Fig. 3.9(a). Then, in Phase III, for a range
of fields 0.23 < h < 0.29, the proliferation of the dynamically generated fluxes into the ordered
configurations is observed, see Fig. 3.9(b). For fields above 0.29, the randomly distributed
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fluxes without any order are observed up to 0.36 in the proposed U(1) spin liquid region. The
flux configurations in the polarised phase are with ⟨Wp⟩ = 0 in all the plaquettes uniformly.

0.772

0.643

(a) (b)

0.393

0.163

0.095

0.036

Fig. 3.9 ⟨Wp⟩ at (a) h = 0.18 and (b) h = 0.26, the emergence of periodic ordering in flux
configurations is observed at this field. The color bar indicates the strength of the flux in a
given plaquette. The shaded plaquettes are connected for the periodic boundary in the cylinder
geometry.

3.7 Topological Overprotection, Non-local String Operators
and Emergent glassiness at finite temperature in Disor-
der free Kitaev model

In this section, we elaborate on the discussion of the non-local string excitations in the Kitaev
Honeycomb Lattice model and their constrained dynamics. The ground state of the uniform
Kitaev model, a zero Fermion number sector, lies in the zero flux sector, as dictated by Lieb’s
theorem (2D analogue of discussions in Sec. 3.2 of main text). This sector has full translational
invariance, and a graphene-like Dirac cone spectrum of positive energy Fermion excitations
(Majorana fermion) in Bloch states in the Brillouin zone of the honeycomb lattice. Other flux
sectors bring in new physics. The spatial distribution of conserved and static π-fluxes, selected
randomly from among the 2N sectors, is typically random. Consequently, one particle wave
function of the positive energy Fermions will be non-Bloch-like and generically Anderson
localized.

We demonstrate that the Kitaev model has features that encourage glassiness at finite
temperatures in the absence of disorder. The notion of Topological overprotection [55] induced
glassiness was introduced by Chamon using 3D toric code quantum spin models. At the heart
of Chamon’s work is the observation that coupling of the constituent spin degree of freedom
at lattice cites to a dissipative Bosonic (model thermal) bath results in the creation of defect
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(anyons) clusters. Because of topological protection, defect annihilation and propagation are
severely constrained. It results in anomalous and slow relaxation - this is the beginning of
glassiness.

To induce dynamics, following Chamon, we couple the constituent spin degrees of freedom
at lattice sites to Bose oscillators (of some external heat bath) at every site: aα

i ,a
α†
i (this is

analogous to applying site-dependent magnetic fields in Eq. 4.1. And this discussion also
applies in case of homogeneous fields mentioned in the main text).

Hspin/bath =∑
i,α

gαSα

i (aα

i +aα
†

i )

Where gα is the coupling strength. It was shown [68, 90] that a spin operator at site i, when
acting on the ground state, creates a pair of static π-flux excitations in two plaquettes that share
a single bond (in α-direction) and a dynamical Majorana Fermion. During time evolution, the
Majorana Fermion propagates away from the site i, while the two π-fluxes remain immobile.
The dynamics of the two fluxes are restricted (topologically protected) in the following sense:
They disappear only when a specific process takes place - when the nearest neighbor spin at a
specific site creates/annihilates a (bath) boson and adds two more π-fluxes (thereby annihilating
the two π-fluxes that are already present). If a different spin component at the same site i
creates/annihilates a boson, then the π-flux pair does not get annihilated but reoriented. If a
wrong nearest neighbor spin creates/annihilates a bath Boson, two fluxes split and separate into
two next nearest neighbor π-fluxes.

Another extended operator arises from the liberated Majorana fermion. In terms of con-
stituent spin operators, the Majorana fermion operator is a product of a string of spin operators.
One end of the string is attached to the plaquette pair, and the other end carries the Majorana
fermion. In other words, the Majorana fermion that has been created by coupling to bath
Boson’s degree of freedom is an extended object (strings). Strings of two Majorana Fermions
can cross and get reconnected but never disappear. This feature of topological protection of
strings is absent in models discussed in Ref. [55].

The above two types of non-local string operators from π-flux pairs and spin strings attached
to Majorana fermions limit the disappearances of fluxes and discourage the proliferation of
strings. Equilibration processes get slowed down, and glassiness may emerge. Thus, at any
finite temperature, because of the production of π-flux excitations and strings, glassiness is
induced via coupling to the bath.

From another point of view, the Quantum disentangled liquid [65] character at any finite
temperature is manifest and exact in the Kitaev spin liquid. We have thermally produced
infinitely massive Z2 fluxes, in the background of which light Majorana Fermions hop and
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attempt to delocalize. In the thermal ensemble, various superselected sectors with static fluxes
appear and typically support Anderson localized positive energy neutral Fermions [91]. Thus
we have overwhelming members of the thermal ensemble that form a quantum disentangled
liquid with a high susceptibility for glassiness and non-thermalization.

3.8 Exact diagonalization calculations

I II III IV V

N

Fig. 3.10 (a) E −E0 at the magnetic fields: h= 0.1 (Phase-I), 0.26 (Phase-II), 0.29 (Phase-III),
0.36 (Phase-IV) and 0.6 (Phase-V) for system sizes N = 6, 10, and 14 are plotted. E0 is the
corresponding ground state energy. (b) The gap between the first excited state from the ground
state at the above-mentioned magnetic fields is plotted as a function of system size (N).

We have performed the exact diagonalization (ED) calculations with the system sizes N =

6, 10, and 14. The results are shown in Fig. 3.10, where we have plotted the lowest five energy
levels at five representative field values. A plot of the energy gap between the ground state
and the first excited state is given in Fig. 3.10(b). We find that in Phases II, III, and IV, the
energy gap decreases with increasing system size. The gap decreases much more slowly in the
polarised phase (V), while that in the homogeneous phase (I) is nearly constant. There is a
ground state degeneracy in Phases I and II, as also observed in the DMRG results. Within the
numerically accessible system sizes, the ED results are consistent with our DMRG conclusions.

3.9 Conclusions

Our detailed DMRG study on the 1D Kitaev model with a magnetic field reveals an intriguing
phase diagram with five phases, and among them, we discover a glass phase. All these five
phases are also obtained in the Kitaev-Γ model in previous studies[26, 66, 67]. We have found
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an intriguing intrinsic glassiness in a part of their phase diagram when Γ = 0. It is likely that
glassiness is present in other regions of the phase diagram which remains to be investigated
in the future. Furthermore, we are able to segregate between the vortex gas, crystal, and glass
phases in the otherwise known U(1) QSL phase, due to the detailed analysis of the vortex
operators as well as the Fidelity calculation. We find evidence of gapless excitations in the
vortex glass phase but not in the gas and crystal phases.

How robust is our phase diagram beyond a two-leg ladder geometry and beyond the
limitations of the DMRG studies? A complete answer to this question is not known in the
community. We have, however, repeated the DMRG calculation on a four-leg ladder geometry
as given in the Appendix. Here, we find four Phases: Phase I, Phase III, Phase IV, and Phase V.
This means the boundary between Phase II (vortex gas) and Phase III (vortex crystal) is not
discernible. However, the vortex glass of present interest is well reproduced.

There are now numerical software available for finite temperature calculation within DMRG
and Tensor network formalism. Future extension of our calculation to finite temperature will
shed light on the possibility of a BKT-like physics for Z2 vortex as well as the stability of the
glass phase to thermal broadening.





C
Appendices for chapter 3

C.1 Estimation of Gaps

The gap to the excited state with π− fluxes from uniform flux phase at h = 0 is estimated by
Exact Diagonalization. The ED calculations are done with matter Majorana fermions by fixing
the gauge in accordance with uniform flux configuration. The Z2 vortex gap for creating a
single W or T is, in principle, calculated by keeping two W or T π− fluxes infinitely far apart.
In finite-size calculations, that is approximately the y-axis intercept of the plot: gap versus 1/d,
where d is the distances between the two π− fluxes with systems sizes, (2d). The π− flux pair
can be created by changing the bond operator from uz

⟨i j⟩ = +1 to −1 on z− bond common to
the two adjacent plaquettes. Further creating a series of adjacent π−fluxes either to the right
or left of already created flux-pair for separating those initially created π−fluxes accordingly.
The gap to single W vortex is ≈ 0.24 and for W flux-pair, ≤ 10−3. In case of T plaquettes, it is
≤ 10−3 for single vortex and ≤ 10−5 for flux-pair.

The ordered superlattice flux configuration at the finite field strength is approximated to
uniform crystal for estimation of the gap. Further, it is approximated as follows: the high ⟨Wp⟩
value in the plaquette p to +1, the lower one to −1. With this approximated flux configuration,
the estimated gap to the single vortex is calculated following the same approach as for the
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uniform flux case. The gap to a single W vortex is ≈ 0.05 in this approximated uniform
crystallized flux configuration. All the energy values mentioned in this article are per unit cell.

C.2 Phases for Different Couplings

(a) (b)

Fig. C.1 (a) Average of ⟨Wp⟩ for N = 400 as a function of magnetic field for the coupling J4 = 0
with Jx = Jy = J3 = 1. The phase boundary is indicated with a vertical dashed line. (b)⟨Wp⟩ as
function of plaquette number, p at field h = 0.165.

In the main text, we presented results for Jx = Jy = J3 = J4 = 1. J4 = 1 imposed a cylindrical
boundary condition perpendicular to the ladder, leaving no bond indices to be open. Now we set
J4 = 0, which gives alternating sites to have open bonds in the matrix product state. The energy
dispersion of matter fermions in the ground state with h = 0 is gapless and quadratic. For h > 0,
only two phases are present with a phase boundary at h ≈ 0.215, which is distinguished by a
cusp in the magnetization plot (not shown). The average value of the Wp operator as a function
of the magnetic field is shown in Fig. C.1(a). The low field phase is a crystalline phase of
⟨Wp⟩, as shown in Fig. C.1(b). This phase is same as Phase-III for J4 = 1 given in the main
text. The high-field phase is a polarized phase with ⟨Wp⟩ = 0 at all the plaquettes. There is no
glass phase observed here.

Two phases with phase boundary around h ≈ 0.25 as a function of the magnetic field are
found with couplings Jx = 2,Jy = J3 = J4 = 1, where the ground state dispersion of matter
fermions at h = 0 is gap-less and linear. No structural difference is observed in flux configura-
tions in both phases, with ⟨W⟩ decreasing smoothly with increasing h.
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4
Fractional Wannier Orbitals and
Tight-Binding Gauge Fields in Kitaev
Honeycomb Superlattices with Flat Majorana
Bands

Fractional excitations offer vast potential for both fundamental physics and quantum technolo-
gies. However, their dynamics under the influence of gauge fields pose a significant challenge
to conventional models. Here, we present a systematic approach for constructing low-energy
lattice models for fractional Wannier orbitals traversing via tight-binding gauge fields. The
method transcends the geometric approach for eliminating high-energy states by systemat-
ically removing these states through virtual hopping, thereby deriving the gauge potential
via a superexchange-like mechanism. We apply this method to investigate the evolution of
low-energy Majorana dispersions across various crystalline phases of the π-flux in the Kitaev
spin model on a honeycomb lattice. Our study reveals an intriguing phase transition between
two non-trivial topological phases characterized by gapless flat-band (extensive) degeneracy.
Additionally, to analytically model the interaction effects of fractional particles, we introduce
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a gauge-invariant mean-field theory for Majorana flat bands, resulting in correlation-induced
fractional Chern insulators. Our work opens doors for future exploration of U(1), SU(N)
gauge-mediated tight-binding approach to other fractional or entangled Wannier excitations.1

4.1 Introduction

The key to harnessing quantum materials for quantum technologies lies in engineering and
controlling emergent excitations that obey unique statistics. [1–7] The sought-after excitations
such as anyons, Majorana-, and para-fermions living on the enlarged (fractionalized/entangled)
states embedded in a physical many-body Hilbert space of electrons or quantum spins. In
the effective field theories for these emergent excitations, the influence of the remaining
system degrees of freedom is incorporated through a geometric term.[8–15]. This couples the
particle-like excitations with the emergent gauge fields to commence exotic statistics that enjoy
constrained, protected, and slow dynamics of various characteristics.[16–19]

Within a lattice, how are the orbital states of fractional particles characterized when
they undergo hopping under tight-binding gauge fields? Standard methods such as maxi-
mally localized Wannier orbitals (MLWOs),[20–22] the perturbation theory,[23–26, 26–29],
renormalized Hamiltonian,[30], rotating-wave approximation, [31, 32], Hubbard-Stratonovich
transformation,[33, 34] produce effective low-energy models for conventional quasiparticles
hopping in a lattice potential. In contrast, entangled or fractional particles traverse a lattice
under a lattice gauge potential. Symmetry arguments and dualities are often employed to
postulate such lattice-gauge theory coupled with particle-like excitations [9, 35–38]. Wegner
realized that the high-temperature disorder phase of the Ising model is dual to a Z2 lattice gauge
theory.[39]. Kitaev introduced the first exactly solvable low-energy spin model exhibiting a
spin-liquid ground state, which directly translates to a Z2 lattice gauge theory.[40–43] However,
a systematic derivation of an effective Z2 gauge field-mediated TB model for the low-energy
states for fractional particles that are embedded in a larger Hilbert space is missing in the
literature.

This work presents a systematic derivation for a TB model describing Wannier Majorana
orbitals traversing a lattice via a Z2 gauge potential. The method generalizes to any lattice
U(1) gauge field for anyons, incorporating an additional particle-hole symmetry constraint
specifically tailored for Majorana fermions and Z2 gauge fields. Conventional approaches for
quasiparticles utilize projection operators on derived Wannier orbitals to eliminate high-energy
states and subsequently acquire gauge fields through the pullback operation on the manifold.

1This chapter is a reproduction of the preprint on our work titled ’Fractional Wannier Orbitals and Tight-Binding
Gauge Fields for Kitaev Honeycomb Superlattices with Flat Majorana Bands’ with reference arXiv:2407.12559.

https://arxiv.org/abs/2407.12559
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We propose an alternative approach, introducing a variational potential within the effective
Hamiltonian. This potential acts as a superexchange-like interaction, mediated by virtual
hopping processes to the eliminated states. Through analysis, we determine the conditions
under which this potential manifests as a gauge potential. Additionally, the method facilitates
the imposition of a flux-preservation constraint, ensuring consistency between the derived
low-energy lattice theory and the parent full model.

The Kitaev spin model on the honeycomb lattice [40] is an exactly solvable model exhibiting
uniform Z2 fluxes in the ground state and Z2 vortices and Majorana fermions as excitations.
With an applied magnetic field, the Majorana excitations - confined to Z2 vortices - can be
proliferated, leading to flux crystallization and an exotic quantum glass phase [19], before
turning into other possible U(1) phases.[44–50]. Alternatively, manipulating the Z2 flux
distributions from uniform to staggered in the parameter regime of the flux crystalline phase can
provide a versatile platform for controlling the dispersion relation of the Majorana fermions.[51–
56] The present work focuses on exploring various superlattices of Z2 flux pairs and the
corresponding evolution of the Majorana dispersions, with a particular emphasis on cases where
flat bands emerge. We then construct an effective lattice Z2 gauge theory for these flat bands to
investigate Majorana Wannier orbitals. The gauge potential is introduced in the Hamiltonian via
a superexchange-like interaction with the eliminated states that act as TB parameters between
Majorana Wannier orbitals. The effective model facilitates the determination of the Chern
number and the criterion for vortexibility through quantum metric. We find an interesting
case where the flat band with extensive degeneracy underlies a novel critical point between
two topologically non-trivial phases. Finally, we introduce a mean-field theory for the gauge-
invariant Majorana density-wave state in the flat bands to obtain an analytically tractable
description of a fractional Chern insulator state.

4.2 The Kitaev model with staggered fluxes

The Kitaev model is a particular lattice model of the spin-1/2 operator Si sitting at the ith site
on a honeycomb lattice and interacting with the nearest neighboring sites with bond-dependent
exchange coupling J. In the Majorana fermion ci representations of the spin-1/2 operators,
the model reduces to a model of nearest-neighbor Majorana hoppings mediated by a bond-
dependent Z2 gauge field ui j = ±1. For a small magnetic field, h applied along the [111] -
direction, the lowest-order perturbation term produces a next nearest-neighbor hopping with
the coupling constant K = h3/J2 (from the term ∑⟨⟨ik⟩⟩ Sy

i Sz
jS

x
k ).[40, 57–63] The model is
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Fig. 4.1 Z2 flux crystal structure and the supercell formation in the Kitaev model. (a) We show
a 2 × 2 supercell of honeycomb lattice containing a π - flux (Wp = −1) pair (orange plaquette)
separated by two vertical bonds having ui j = −1, while the rest of the plaquettes (white) have
zero flux and bond have ui j = +1. a1 = (4a

√
3,0) and a2 = a(

√
3,3), where a is the nearest

neighbor distance in the honeycomb lattice. Inset: Three different exchange interactions J
along the three nearest neighbors at each site are highlighted in different colors. (b) The chosen
gauge convention for the u operators in the Kitaev model is shown as ui j = +1 if an arrow
points from site i to j, or −1 otherwise. The same is shown for the next nearest neighbors by
dashed lines where two u operators for the intervening nearest neighbor bonds are multiplied.
For example, the bond from the site, i to k term has ui ju jk is −1. This convention is for the
uniform flux sector, where each plaquette has zero flux.

expressed as
H = iJ∑

⟨i j⟩
ui jcic j + iK ∑

⟨⟨ik⟩⟩
ui ju jkcick. (4.1)

The candidacy of the gauge field ui j demands it to be an antisymmetric tensor: ui j =−u ji, living
on the bond between the i and j sites. And, the gauge field for the next-nearest neighbor uik is
a path-ordered product of two subsequent nearest-neighbor gauge fields uik = ui ju jk, where j is
the intermediate site between i and k. This is reflected in the second term in Eq. (4.1). A gauge
choice of ui j is shown in Fig. 4.1(b). A Z2 operator, defined on six consecutive links forming a
loop on a plaquette p, is defined as Wp = ui ju jkuklulmumnuni. Wp gives the Z2 flux monopole
charge with Wp = ±1 for zero (π) flux. Another flux operator of importance is defined at the
ith site (called a vertex) as Xi = ui juikuil , which acts as a Z2 electric charge, which introduces
quartic interaction between Majoranas (see Sec. 4.4.4).

The Hamiltonian’s gauge redundancy manifests in gauge-dependent Majorana dispersions.
However, the essential properties of these dispersions, such as the presence of gapless point
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(point degeneracy), flat band (extensive degeneracy), or topological features (band inversions),
are gauge-invariant. The specific location of these gapless or band inversion points depends
on the chosen gauge. In uniform flux configuration with all Wp = +1 and a gauge fixing of
all u = +1 gives a graphene-like gapless Dirac node for K = 0. K ≠ 0 breaks the time-reversal
symmetry, opening a band gap at the Dirac cone to topological Chern bands for Majorana
fermions. This topological phase has Majorana zero modes (MZMs) at the boundary. Bound
states of MZM with π-flux excitations can be created in bulk by thermal energy or vacancies.
MZMs are topologically protected Ising anyons, which can be detected by electrical probes
[64] and by scanning tunneling microscopic techniques [65].

The focus of this work is to study different supercell formations of staggered Wp fluxes and
their impact on low-energy Majorana dispersions. [52–56]. Analogous to the U(1) magnetic
monopole, the creation of a Z2 monopole Wp is topologically protected. A Z2 flux pair is
defined by two π fluxes separated by d number of plaquettes with u = −1 in the intermediate
links, as shown in Fig 4.1(a). There is gauge redundancy in defining the same supercell, and we
fix the gauge for all considered supercells in the same way, as shown in the figure in Fig. 4.1(b).
This produces a d×d supercell of honeycomb lattice containing 2N = 4d2 number of Majorana
sublattices. A Z2 flux pair (ZFP) for d > 1 naturally breaks the C6 symmetry of the honeycomb
lattice; however, the alignments of the Z2 flux pair along, say, a1 or a2 primitive lattice vectors,
are gauge equivalent.

We chose a Majorana spinor CI = (c1 c2 ... c2N)T at the Ith supercell site. Then, the
matrix-valued Hamiltonian in this spinor can be written from Eq. (4.1) as

H = i∑
I

CT
I TIICI + i∑

⟨IJ⟩
CT

I TIJCJ. (4.2)

Here, the TIJ is an (anti-symmetric) rank-2 tensor, with each element being a 2N ×2N matrix.
Their explicit forms are given in the Appendix D.1. The basis vectors of the supercell are
a1 = 2da(

√
3,0), a2 =

da
2 (

√
3,3), where a is the nearest neighbor distance of the honeycomb

primitive unit cell. The corresponding reciprocal vectors are G1 =
2π

a (
√

3
6d ,

−1
6d ), G2 =

2π

a (0, 2
3d).

a2 vector of these supercells is half compared to the C6 symmetric honeycomb lattice; see
Fig. 4.1(a). Hence, the first Brillouin zone has two graphene-like BZs along the G2 vector.

The (virtual) Majorana spinor state in the momentum space is C(k) = 1√
L
∑I e−ik.RICI ,

where RI∈Z =∑i Iiai are the lattice sites of the supercell, and correspondingly, k is defined in the
reciprocal space of G1,2. The corresponding Hamiltonian in the momentum space is obtained
from Eq. 4.2: H =

1√
N
∑k∈BZ+

C†(k)H(k)C(k), where the matrix-elements of H are given

in Appendix D.1. The physical Majorana fermions ci = c†
i turn into particle-hole symmetric

virtual Majorana fermions in the k-space c†(k)= c(−k), leading to k ≥ 0 being restricted to the
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positive quadrant in the first Brillouin zone (BZ+). The (anti-unitary) particle-hole symmetry
C relates the Hamiltonian between different BZ quadrants as CH(k)C−1

= −HT (k). The
final task is to diagonalize the 2N ×2N particle-hole symmetric matrix H(k). We denote the
eigenvector states as ∣n,±,k⟩ corresponding to the eigenvalues of ±En(k), where n = 1,2, ...,N.
In this eigenbasis, the matter fields are the complex fermions (particles and holes), defined by
the creation operators ∣n,±,k⟩ = γ

†
n,±(k)∣0⟩, and related to the virtual Majorans by a unitary

transformation (Γ) as γ
†
n,±(k) =∑

α
Γn,±,α(k)cα(k), for Γn±,α(k) ∈ C. The corresponding

results are presented in Sec. 4.4 for several representative d ×d supercell configurations.

4.3 Tight-binding Gauge-field model for Majorana orbitals

Our task now is to obtain an effective TB model for a few low-energy eigenstates ∣n,±,k⟩.
Since ∣n,±,k⟩ states are for complex fermions, we may treat the corresponding Wannier
orbitals to be of the usual complex fermionic nature. However, owing to the underlying
physics of Majorana Wannier orbitals hopping under lattice Z2 gauge field in real space, the
TB model construction becomes non-trivial. In essence, we need to construct ‘Wannier’ fields
for both Majorana matter fields and the Z2 gauge fields while keeping all the symmetries and
flux-preservation constraints intact.

To avoid overloading with many new symbols, for the TB model, we adopt the same set
of symbols, such as H, T , c, C and others used in the above Sec. 4.2 with the same meanings.
Should confusion arise, we explicitly mention the corresponding definition.

We are interested in modeling the P < N number of low-energy Majorana pair states
∣p,±,k⟩ ≡ ∣p,k⟩, where we combine the indices p ≡ (p,±) for p = 1, ...,P with eigenvalues
±Ep(k). These states are obtained from the full Hilbert space ∣n ≡ (n,±),k⟩ by the projector
P = P++P− =∑p<N (∣p,+⟩⟨p,+∣+ ∣p,−⟩⟨p,−∣), where k dependence in each term is kept
implicit for simplicity in notation. Q = I −P is the projection outside the low-energy states of
our interest. ∣p,k⟩ states are incomplete, so its Fourier transformation to the Wannier orbitals
states would not be useful.

Our aim is to obtain complete, orthogonal states denoted by ∣ p̃,k⟩ with corresponding
eigenenergies Ẽp(k) ≈ Ep(k). One typically defines a complex quantum geometric tensor
from the Q projector and affix it with the ∣p,k⟩ states to obtain corresponding complete,
orthogonal states (with a quantum metric) ∣p̃,k⟩.[20, 66–71] Here, we devise an alternative
bottom-up approach to construct a (variational) effective Hamiltonian Heff with eigenstates
∣ p̃,k⟩, and eigenenergies ±Ẽp(k). We introduce a superexchange interaction that produces
tunning tunneling between ∣p,k⟩ and ∣p′,k⟩ states with intermediate hopping to the Q states,
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Fig. 4.2 (a) Schematic plots of the superexchange mechanism of gauge potential H ′ in the
low-energy spectrum (blue lines) due to virtual hopping to the eliminated high-energy states
(red lines). Note that the virtual hopping potential V is a fitting parameter in the TB model. (b)
The gauge fields in the effective theory in a honeycomb lattice. The sets of first and second
nearest neighbor sites are denoted by R(1)

= {R(1)
1−3} and R(2)

= {R(2)
1−6}. The gauge field for

the second nearest neighbor across diagonally opposite directions must be opposite in sign to
commence odd-parity hopping (superconducting term in Eq. (D.6), i.e., UR,R(2)

2
= −UR,R(2)

1
.

see Fig. 4.2. We call such a superexchange potential a ‘gauge’ potential, through which we can
define the Z2 gauge fields and topology in a lattice.

In what follows, we seek an effective Majorana Hamiltonian of the form Heff =P(H+H ′)P ,
∀k, where H is the full supercell Hamiltonian, and H ′ is an unknown superexchange/‘gauge’
potential to be evaluated self-consistently. H ′ gives off-diagonal terms in Heff arising from
the transitions between different Majorana states ∣p = (p,±),k⟩ via intermediate hopping to
the Q states. In what follows, ∣p,k⟩ acts as Majorana orbital states for Heff, except they are
incomplete. We denote the corresponding complete Majorana orbital states by∣α = (α,±),k⟩
for α = 1, ...,P. In the Majorana basis of ∣α,+,k⟩⊕ ∣α,−,k⟩, we denote the matrix elements
of Heff(k) as

Heff(k) = ( ∆R ∆I + ihS

H.c. −∆R
) , (4.3)

where k dependence on R.H.S. is kept implicit. hS(k) = h(k)+hT (−k), and ∆(k) = ∆R(k)+
i∆I(k). The diagonal and off-diagonal P×P matrices of Heff are relabelled in terms of h and ∆,
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so that the corresponding Hamiltonian in the complex fermion basis turns into a Bogolyubov-
de-Gennes Hamiltonian with h and ∆ being their dispersion and pairing terms.[40, 72] The
block-off-diagonal term (∆I + ihS)α,α ′ couples different Majoranas ∣α,±,k⟩ and ∣α ′

,∓,k⟩,
while the block-diagonal terms ±(∆R)α,α ′ give the dispersion for the same type of Majoranas
∣α,±,k⟩ and ∣α ′

,±,k⟩. Heff follows all the symmetries of the original Hamiltonian; in addition,
the fermion-odd-parity in the pairing term ∆ is also imposed. Explicit expressions of h and ∆ in
terms of H and H ′ are derived in Appendix D.2.

Our next task is to Fourier transform Heff to real space by converting h and ∆ into Z2

gauge-field induced hoppings between Wannier Majorana orbitals in a lattice. We consider a
lattice of N unit cells at positions R. The Fourier basis states are the Bloch phases at the Rth

cell as zR(k) = ⟨R∣k⟩ = eik⋅R. Then, we define the Majorana orbital states in real space as

∣α,R⟩ = 1√
N

∑
k>0

z̄R(k)∣α,k⟩. (4.4)

The physical Majorana operators are defined in real space as ∣α,R⟩ = cα ,R∣0⟩ where cα ,R =

c†
α ,R. The corresponding orthogonal Majorana wavefunctions at position r ∈ R unit cell

are called the Bloch states ψα ,k(r) = eik⋅ruα ,k(r) = ⟨r∣α,k⟩, and Wannier states wα ,R(r) =
⟨r∣α,R⟩. In the TB orbital case, the real space wavefunctions are fully localized to wα ,R(r) ∼
δ(r − R). In the Wannier orbital model wα ,R is (exponentially) maximally localized at
⟨r⟩α =

´
R dr r∣wα ,R(r)∣2, with its spread ∆rα = ⟨r2⟩α − ⟨r⟩2

α also contained within the unit
cell (see Appendix D.3). The two particle-hole Majorana pairs may have different Wannier
centers ⟨r⟩α,+ ≠ ⟨r⟩α,−, generally connected by a string Z2 vortex. However, their linear
combination particle-hole complex fermion wavefunctions must be at the same position such
that the U(1) charge is conserved in each unit cell.

It is convenient to represent the R positions in terms of sets of 1st, 2nd, 3rd, and higher
nearest neighbors rather than primitive lattice vectors. For the nth nearest neighbor with dn

number of sites, we define a dn-dimensional vector as Zn ∶= (z1 ... zdn)
T , ∀k. We split the

N -dimensional vector of the Bloch phases as Z(k) = Z1(k)⊕Z2(k)⊕ .... 23

We now expand the dispersion relations in the Bloch basis Z(k) to obtain the TB hopping
tensor as T = Z(k)Heff(k)Z†(k). T is a rank-2 tensor with component TR,R′ corresponding to

2We make an approximation that the single-particle dispersion, many-body interaction, and superconducting
order parameters are short-ranged, restricting to a few nearest neighbors only. (This truncation of the Fourier
series to a polynomial of few sites gives a finite width of the single-particle states in both position and momentum
space, and the number of nearest neighbors N to be considered is determined within a numerical procedure by
fitting to the band structure at all k-points. This yields the so-called compact localized orbitals for the flat band in
the Wannierization procedure).

3Note that in our procedure, it is easy to implement the lattice (point-/space-) group symmetry by doing the
invariant rotation on the Bloch phase spinor Zn(k).
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Majorana hoppings between R,R′
∈N sites. (Here, the symbol T is redefined for the Wannier

states and not to be confused with those in the supercell in Eq. (4.2).) Each component TR,R′ is
a 2P×2P matrix in the 2P-dimensional Majorana basis present at the R,R′ sites. We split the
Hamiltonian into hoppings between different neighboring sites as

Heff(k) = ∑
n,n′

Z†
n(k)Tnn′Zn′(k)+h.c.. (4.5)

Tnn′ gives a set of Majorana hopping tensors between the n and n′ neighbors: Tn,n′ = {TR,R′∣R ∈

dn,R
′
=∈ dn′}. Due to the translational invariance, only the difference between n and n′ is

relevant.

The intra-site hopping gives the onsite energy Tnn = iK0 between 2P-Majoranas with the
particle-hole symmetric constraint Tr(Tnn) = 0.

Now, we consider the first nearest neighbor term TR,R′ ∈ Tn,n+1, where R′−R ∈ d1 and
R ≠ R′. Using Taylor’s expansion (assuming analyticity), we obtain the hopping tensor as

TR,R′ = iK−1
1

∂
2Heff

∂ z̄R∂ zR′

»»»»»»»»»zR=zR′=0
. (4.6)

K1 is, in general, orbital dependent (2P×2P non-singular matrices) as well as bond (i.e., R,R′)
dependent. (This expansion holds when Heff are polynomials in terms of zR(k), which holds
for most band structures, except for non-compact flat bands [73, 74].) K1 absorbs the energy
dimension such that TR,R′ becomes dimensionless, which is now to be defined in terms of
gauge fields. The crux of the gauge theory is that TR,R′ ≠ TR′,R in general. We separate the
symmetric and anti-symmetric parts as

GR,R′ =
1
2(TR,R′ +TR′,R), and UR,R′ = −

i
2(TR,R′ −TR′,R). (4.7)

Roughly speaking, G and U produce the amplitude and phase variation of the hopping term
in the effective Hamiltonian between unit cells. In the momentum space, these are precisely
what the Fubini-Study metric (Gµν ) and the curvature (Uµν ) terms constitute the symmetric and
anti-symmetric components of the quantum geometric tensor.[67, 68, 75, 76] Their expressions
in terms of the projectors P(k) are as follows

Gµν(k) =
1
2P(k){∂µP(k),∂νP(k)}, (4.8)

Uµν(k) = −
i
2P(k)[∂µP(k),∂νP(k)], (4.9)
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where ∂µ =
∂

∂kµ

with µ = 1,2 for kµ spanned along the reciprocal lattice vector Gµ . {} and []
are the anti-commutator and commutator. It is now obvious that U acts as parallel transport or
Wilson line, which is Z2-valued in this particular case. In their present forms, G and U are not
gauge invariant in both real and momentum space formalism. Then, matter fields are attached
at the two ends to commence gauge invariance. Otherwise, we take a trace over the matrix
components and their product in a loop/plaquette in real/momentum space, giving topological
invariants such as flux (W ), Chern number (C) and similar quantum metric invariants as defined
in Sec. 4.4.3

The diagonal term of G tensor is zero as the R = R′ terms are separated into the onsite
energy matrix K0. The off-diagonal components GR,R′ give the symmetric hopping matrix
element between the orbitals localized at R and R′ sites. Such symmetric hoppings are mediated
by periodic lattice potential (e.g., potential due to nucleus in solid state systems) and depend
on the symmetries of the two orbitals (e.g., it’s present if the two orbitals have the same parity
or absent if the parity of the two orbitals is opposite such as for the s and p orbitals). In our
particular example below, we will seek a fully gauge-field mediated hopping between the two
sites and set G = 0 in the effective theory.

We identify UR,R′ as an anti-symmetric tensor that mediates tunneling between the Majo-
ranas at the R and R′ sites. For the gauge invariance of the theory for Majorana, the gauge
fields must be Z2, which puts the constraints that U2

R,R′ = I. So we interpret UR,R′ as the
non-Abelian (2P-dimensional matrix-valued) Z2 Wilson line operator, which can be written as
(path-ordered) exponentials of a (non-Abelian) gauge field A.

Next, we consider the second nearest neighbor term TR,R′′ ∈ Tn,n+2, where R′′−R ∈ d2

and R ≠ R′′. Proceeding similarly, we define we define the Z2 gauge field as the second
nearest neighbor as U (2)

R,R′′ . All gauge fields U are localized at the link/bond between the two

sites. So we can smoothly deform the path to pass through a site R′ corresponding to the 1st
nearest neighbor to both R and R′′ sites, as shown in Fig. 4.2. In other words, we can write
UR,R′′ = UR,R′ ◦UR′,R′′ , where the composition operation ◦ reflects a matrix product for the
tensor components. Therefore, for the nth-nearest neighbor gauge field, we have

UR,R(n) = ∏
R(m)

∈dn−1

UR,R(m) ◦UR(m),R(n), (4.10)
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where R(m) runs over the n−1 intermediate sites that minimize the distance between the R and
R(n) sites. Substituting these considerations in

Heff(k) = iK0 + iK1 ∑
{R,R(1)}∈d1

UR,R(1) z̄R(k)zR′(k)

+iK2 ∑
{R,R(2)}∈d2

UR,R(2) z̄R(k)zR(2)(k)+ ... (4.11)

The above Hamiltonian can be expressed in terms of physical Majorana orbitals cα ,R in real
space up to any number of nearest neighbor hoppings as

Heff = i
N
∑
n=0

Kn ∑
{R,R(n)}∈dn

∑
α ,α ′

(UR,R(n))
α ,α ′ cα ,Rcα ′,R(n) . (4.12)

Summation over n corresponds to a different nearest neighbors. The gauge fields UR,R(n) sit

on the link between the R,R(n) sites, and hence, there is no gauge field for the n = 0 term,
while n = 1 term has one gauge field, n = 2 has two gauge fields, and so on. Here, we have
assumed the coupling constants Kn to be independent of the orbital and bond-independent and
only depending on the nth nearest neighbor distance. This is a reasonable assumption as at the
nth nearest neighbor site, only one type of orbital is placed.

4.3.1 Gauge fixing and topological invariants

An important property of the gauge theory is the gauge constraint, which restricts gauge
redundancy to the physical states. Although the gauge operators UR,R(n) are gauge-dependent,
the flux is a gauge-invariant physical operator. Therefore, the total flux in the supercell must be
preserved in both the effective model and the supercell model.

The total flux in a supercell is defined as WS =∏p∈SWp, where S is the supercell index
containing S number of original unit cells. The WS, written in terms of the effective Z2 gauge
field, is

WS = Tr
⎛
⎜⎜
⎝

∏
R,R(n)

∈S

UR,R(n)
⎞
⎟⎟
⎠
. (4.13)

In the effective theory, we can define a similar invariant for the symmetric tensor G as GS =

Tr(∏R,R(n)
∈SGR,R(n)).
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Their counterparts in the momentum space are called the quantum metric invariant and the
Chern number as defined to be [67, 68, 75, 76]:

G =
1

(2π)2

ˆ
BZ

√
det(η)ηµνdkµdkνTrGµν(k), (4.14)

C =
1

2π

ˆ
BZ

dk1dk2TrU12(k), (4.15)

where ηµν = Ĝµ ⋅ Ĝν is a symmetric tensor that measures the curvature of the torus geometry
and depends on the lattice under consideration. WS and GS can describe both local and global
topological properties in real space, depending on the size of the 2-loop S. In contrast, C and G
in the momentum space only capture the global topology on the torus. Do they correspond to
the same topological invariant? Indeed, this is the case. Because the flux crystal in the original
lattice is taken into account in the formation of the supercell, the total flux is uniform among all
the supercells. This is reflected in the effective theory, as well, in that each band corresponds
to uniform flux values WS = ±1, ∀S, corresponding to Chern numbers C = ±1 for the two
respective bands.

Both Gµν(k) and Uµν(k) can also be calculated directly from the effective Hamiltonian
Heff(k). The corresponding formulas appear similar by replacing P(k) with Heff(k). For the
Chern number, the formula coincides with the Kubo formula for Hall conductivity, while the
same formula for G has no analog in any previous analysis. We compute them in Sec. (4.4.3) .

We consider Kn to be the TB hopping parameters related to the gauge potential H ′ in a
self-consistent way. We consider Kn to fit the low-energy band structure of our interest under
an additional constraint of flux preservation. The values of the Kn parameters are the same as
those obtained on the Wannier orbital basis, as shown below.

4.3.2 Examples of two Majorana bands in a honeycomb lattice

As an example, appropriate for the Kitaev model of present interest, we consider a honeycomb
lattice with one (P= 1) pair of Majorana bands, see Fig. 4.2(b). Here we have d1 = 3 first nearest
neighbors R(1) −R = δR(1)

= {1
2(1,±

√
3), (−1,0)} and d2 = 6 second nearest neighbors

R(2)−R = δR(2)
= {±1

2(3,
√

3), ± 1
2(3,−

√
3), ± (0,−

√
3)}, and so on.

Since only one type of Majorana orbital is positioned at each site, we can split the position
and orbital indices from the gauge field as UR,R′ = uR,R′σ . Here uR,R′ =±1, and uR,R′ =−uR′,R

are the Z2 gauge fields for two orbitals positions at R, and R′ sites, and σ are the Pauli matrices
in two (a = ±) Majorana basis. In this bipartite lattice, the same (different) Majorana orbitals
are positioned at the first (second) nearest neighbor sites. Hence, the first nearest neighbor
gauge field is off-diagonal: UR,R(1) = uR,R(1)σ

x. The second nearest neighbor is diagonal
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UR,R(2) = uR,R(1)uR(1),R(2)σ
z, where R(1) is the 1st nearest neighbor that connects R and R(2)

sites in the shortest distance. In all the diagonal terms, a = ± orbitals must have opposite gauge
fields for the Hamiltonian to be particle-hole symmetric, and hence, we have σ

z here.

Taking into account the above properties, we have the TB Majorana orbital Hamiltonian
(up to the second nearest neighbors):

Heff = K0∑
R

∑
a=±

ca,Rσ
z
aa′ca′,R + iK1 ∑

R,R(1)
i ∈d1

uR,R(1)
i

∑
a=±

ca,Rσ
x
aa′ca′,R(1)

i

+iK2 ∑
R,R(2)

j ∈d2

uR,R(1)
l

uR(1)
l ,R(2)

j
∑
a=±

ca,Rσ
z
aa′ca′,R(2)

j
. (4.16)

uR,R(1) = ±1 can take any value in a link, provided the total flux in a unit cell is conserved to
the value in the full Hamiltonian. Ki = KiI are set to be orbital-independent coupling constants
for simplicity in notation in this example, however, in the fitting procedure in Sec. 4.4.2 they
are considered orbital dependent. Going to the momentum space, we obtain the diagonal and
off-diagonal terms as

∆I(k)+ ihS(k) = iK1 ∑
R,R(1)

i ∈d1

uR,R(1)
i

eik⋅δR(1)
i ,

∆R(k) = K0 + iK2 ∑
R,R(2)

j ∈d2

uR,R(1)
l

uR(1)
l ,R(2)

j
eδR(2)

j . (4.17)

It is interesting to notice here that the imaginary and real parts of the superconducting (complex-
fermion) pairing gaps arise from the first and second nearest neighbor Majorana hoppings,
respectively.

Note that hS, ∆R,I are real. We set Ki to be real and K0 = 0. This makes ∆I = −2K1∑3
i=1×

sin(k ⋅δR(1)
i ), hS = −2K1∑3

i=1 cos(k ⋅δR(1)
i ). ∆R arises from the second next-nearest neigh-

bor, which gives −2K2∑ j=1,3,5 sin(k ⋅δR(2)
j ). This reduces the gauge choices for nearest

neighbors to be uR,R(2)
1

= −uR,R(2)
2

, uR,R(2)
3

= −uR,R(2)
4

, and uR,R(2)
5

= −uR,R(2)
6

. This affects
the gauge choices for the nearest neighbors and also the flux-modulation-induced supercell
constructions, shown in Fig. 4.1. Both ∆R,I are odd under spatial parity and are consistent with
odd-fermion parity for the fermionic odd-parity for complex fermion pairing for the same spin
states. This gives the well-known p+ ip pairing state for the corresponding complex fermion
state.
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Fig. 4.3 The dispersions of the Majorana fermions for two representative flux configurations.
(a) The dispersions for the 3×3 are shown here along the k− directions as given in the inset.
Here, we set K/J = 0, which shows a gapped dispersion. (b−c) The Majorana dispersions for
4×4 supercell are shown for K/J = 0.0 in (b) and K/J = 0.01 in (c). K/J > 0 opens a band
gap across the zero energy. The adjacent right-hand panel shows the density of states for all
three cases.

4.4 Results

4.4.1 Majorana band structure of the full supercell Hamiltonian

We consider here several representative superlattices of dimension d ×d containing a single
Z2 flux pair of length d, i.e., the number of u = −1 gauge fields flipped between the two
Z2 fluxes, while u = +1 in the rest of the bonds in the supercell. This makes the supercell
Hamiltonian dimension to be 2N = 4d2. A typical superlattice for d = 2 is shown in Fig. 4.1(a).
It turns out the band structure properties are characteristically similar for all 3d ×3d supercells,
which differ from the characteristically similar band structure for other supercells. Therefore,
we present the numerical results for two representative values of d = 3, 4 in Fig. 4.3 by
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diagonalizing the supercell Hamiltonian given in Eq. (4.2). We remind the reader that although
the band dispersion depends on the gauge choice, but different gauge choices give equivalent
dispersion along different momentum directions. Moreover, the salient properties such as
gapless (degeneracy), gap, flat bands, Chern number, and quantum metric indices are gauge
invariant. We show the gauge choice and the orientation of the Z2 flux pair for one example
case of d = 4 in Fig. 4.4.

Interestingly, we find that only for the d = 3 (and its integer multiples) flux configura-
tion, the Majorana dispersions are gapped even for K = 0, and render nearly flat-band, see
Fig. 4.3(a). The reason for the gapped behavior is the broken sublattice symmetry that protects
the degeneracy at energy E = 0, although the particle-hole symmetry remains intact.

For other flux configurations, the Majorana bands show a gapless feature at energy E = 0 at
the high-symmetric momenta for K = 0, a representative result of which is shown in Fig. 4.3(b).
The low-energy particle-hole symmetric bands have linear dispersions around the gapless point,
as in graphene, and also show linearly dispersing gap-closing points with high-energy bands.
All these gapless points acquire mass term for K ≠ 0 value, 4.3(c). The gap to the higher energy
bands is larger than that at E = 0. We denote the gap at E = 0 by ∆, while the bandwidth of
the corresponding two low-energy bands is denoted by δ . The ratio δ/∆, called the fitness
ratio, measures the flatness of the low-energy bands, with δ/∆ → 0 corresponding to complete
flatness (i.e., all k points are degenerate), while δ/∆ →∞ corresponds to point degeneracy. K
controls the band gap ∆(K), while the larger the length (d) of the Z2 flux pair, the smaller is δ ,
and typically δ scales allegorically as δ ∼ 1/d2.

Increasing d while holding all other parameters constant elevates the sublattice dimension.
In other words, it expands the dimension of the local Hilbert space CI . This, in turn, enhances
the level-repulsion from the eliminated high-energy bands to the target low-energy bands.
This repulsion is captured by the quantum metric G in the wavefunction description or by the
superexchange or gauge potential (H ′) within our effective theory, see Fig. 4.3(c).

As K increases, we observe a fascinating topological phase transition, depicted in Figs. 4.5.
Initially, the gap scales as ∆ ∼ K for K → 0, before it reaches a maximum around K ≈ 0.06J.
This is an interesting point where the band gap varies minimally with K. With a further increase
of K, ∆ reduces and eventually vanishes entirely around K ≈ 0.175J. Notably, the bandwidth
(δ ) also vanishes at this critical point, suggesting the formation of a completely flat band where
both bands become degenerate across all k-points. This results in an extensive degeneracy in
the Hamiltonian. it is noteworthy that on either side of this flat band degeneracy, the system
exhibits well-defined Chern bands with C = ±1. This observation suggests a unique type of
topological phase transition characterized by the emergence of an extensive band degeneracy,
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Original

Effective

Fig. 4.4 (a) The locations of the Wannier centers (magenta color) are shown to be adjacent to
the π flux plaquettes for the 4×4 supercell. (bottom) (b) The band structures from the original
band structure and the effective Hamiltonian are shown for K/J = 0.01 on 4×4 configuration.

which is different from the quintessential Dirac cone degeneracy at other topological phase
transitions; see Sec. 4.4.3.

4.4.2 Effective model and Majorana Wannier centers

We proceed by constructing an effective Hamiltonian Heff to capture the behavior of the two
low-energy bands (α = 1, and a =±) and the localization of the corresponding Wannier orbitals
∣±,R⟩. Here, we focus on the supercell results for the d = 4 case for K ≠ 0, i.e., a gapped
system. The construction of the effective band mirrors the example provided in Sec. 4.3.2,
utilizing the same sets of nearest neighbors, except the G1,2 are different here. We expand
the Hamiltonian up to several nearest neighbors, incorporating the coupling constants, and
the specific values of the TB parameters are given in Appendix D.3.4. The fitting yields a
near-perfect fit of the energy dispersions ±E(k) to the original supercell results, see Fig. 4.4(b).
For the fitting procedure, we use the Wannier90 code [77]. A key advantage of using the
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Wannier90 code is its ability to provide the real-space projection of the w±,R(r), and their
corresponding spread functions ∆r±. Due to the non-zero Chern numbers of these flat bands,
identifying their Wannier centers presents a challenge due to global gauge obstruction. In the
effective theory, this gauge obstruction is evaded by choosing uniform flux WS at all unit cells.
The flux condition deduced in the effective Hamiltonian in Eq. (4.16) gives constraints on the
fitting parameters. This method is discussed in Appendix D.3

As anticipated, the Majorana Wannier orbitals w±,R(r) are localized at the Z2 flux sites, as
shown in Fig. 4.4(a). Within the original supercell, these two states were linked by the string
operator that connects the Z2 flux pair. However, in the effective theory, w±,R(r) represents the
two basis states of a unit cell. Since the effective gauge fields reside on the links connecting
lattice sites, there is no gauge field directly coupling the two Majorana orbitals within a
unit cell. Their coupling is not parametrized by the anti-symmetric onsite interaction term
iK0 = K0σ

z +K ′
0σ

y, where σ
µ matrices are defined in the a = ± Wannier orbital basis, as in

the example case given in Sec. 4.3.2. Here, K0 captures the onsite energy difference of the two
orbitals, while K ′

0 describes the intra-unit cell coupling between them. The remaining terms in
Eq. (4.16) remain the same.

4.4.3 Chern number and Quantum metric

This work suggests that the Z2 flux quantization condition within the supercell leads to similar
properties as in the integer U(1) flux quantization condition in a magnetic Brillouin zone in
the TKNN theory for U(1) quantum Hall insulators.[78] Both mechanisms lead to a finite
Chern number for each Majorana band, a characteristic that persists in both the full supercell
Hamiltonian and the resulting effective theory.

Alternatively, we can interpret this behavior by parametrizing the eliminated states either
as a geometry term in the wave function or as gauge fields within the Hamiltonian. A trivial
topological space would correspond to a product state between the low-energy names and the
eliminated states. Conversely, a non-trivial topology signifies entangled states between them.
In the case of flat band geometry encountered here, a non-trivial topology necessarily arises.

To ensure consistency, we compute the Chern number for both cases. In the supercell case,
we employ the projector P(k) to compute the Chern number (C) using Eq. (4.15). Similarly,
for the effective Hamiltonian, C is obtained using it projector P̃(k) = ∣p̃,k⟩⟨p̃,k∣, where ∣p̃,k⟩
are the eigenstates of Heff(k). We present the results for the d = 4 case and compare them with
the zero-flux (d = 0) scenario. Our calculations consistently reveal that the K ≠ 0 case exhibits
a Chern number of C = +1 for both d = 0 and d = 4 cases (for the −E(k) band). However, in
the d = 4 supercell, a sharp transition from C =+1 to −1 occurs at the critical point K = 0.175J,
where the band gap (δ ) closes and reopens. The underlying physics governing the Chern
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(a)

(b)

G

K

C

Fig. 4.5 (a) Band gap (∆), bandwidth (δ ), and the fitness ratio (δ/∆) are plotted as a function
of K (from Eq. (4.2) for the 4× 4 supercell. (b) Computed values of the quantum metric
invariant (G) and Chern number (C) are plotted as a function of K, and compared with zero-flux
configuration. Two topological phase transitions are located here: at K=0, we have a topological
phase transition from trivial to non-trivial phase with Dirac cone degeneracy, and another one
at K ≈ 0.175J between two non-trivial topologies with a flat-band degeneracy.

number transition obtained from the effective Hamiltonian Heff(k) is analogous in which the
uniform flux sector changes from Ws = +1 to Ws = −1. The transition is different from the gap
closing and reopening at a single Dirac point; the involvement of the flat band at this transition
point to a novel topological phase transition.

The influence of flat band physics and the geometry effect introduced by the eliminated
high-energy states are effectively captured by the quantum metric (G(k)) term in Eq. (4.8). The
corresponding invariant (G) is defined in Eq. (4.14) and is plotted in Fig. (4.5)(b) as a function
of K. 4 As expected, the G value for the zero-flux configuration exhibits no distinguishing
features, reinforcing the notion that G captures a distinct topological invariant arising from

4The symmetric tensor ηµν for the hexagonal lattice becomes ηµν = Ĝµ .Ĝν = ( 1 −1/2
−1/2 1 ) .



4.4 Results 107

the projector, separate from the Chern number. In the supercell case, however, G displays an
additional singularity at the gap-closing point of K = 0.175J. Interestingly, both G and the
fitness ratio, δ/∆, exhibit similar behavior. This suggests that the singularity in G is sensitive
to the characteristics of the flat band, particularly the presence of extensive band degeneracy.

It’s important to distinguish between the phase transition properties of interacting and
non-interacting systems. In interacting theories, a second-order phase transition is characterized
by the appearance of gapless collective modes and singular correlation functions. In contrast,
in this non-interacting theory, an extensive degeneracy emerges at the flat bands. Here, the flat
bands exhibit maximal entanglement with the eliminated high-energy bands, and consequently,
we expect this unique phase transition feature to be reflected in the topological entanglement
entropy.[79–82]

A non-zero Chern number C signifies an obstacle in smoothly changing the wavefunction’s
phase (arg(wa,R)) throughout the material.[83, 84] In contrast, a non-zero quantum metric G
directly affects how "spread out"( ∆ra) the wavefunction is[85, 86]. More generally, G puts
constraints on how different parts of the wavefunction are correlated, and ∆ra is a type of corre-
lation function. In the effective Hamiltonian Heff(k), the winding number of the wavefunction
is determined by the complex phase of the off-diagonal term ∆I(k)+ ihs(k). ∆R(k) acts like a
Dirac mass term, which gives the inverse correlation length of the wavefunction, essentially
defining its spread. At discrete Dirac points, all these terms simultaneously vanish at a single
k−point, while for the degenerate flat bands, they vanish at all k-points. In our effective theory,
∆I,R, and hS are assumed to be polynomials of Bloch phases zR(k), which are a set of linearly
independent basis functions. Consequently, a flat band arises when all the coefficients in these
polynomials, i.e., the TB parameters Ki, become zero.

4.4.4 Gauge invariant Mean-field theory for Fractional Chern insulator

The interplay between U and G creates a promising platform for realizing fractional Chern
insulating states through interactions [87–89]. The current understanding of fractional Chern
insulating state primarily relies on numerical results. [87–98] In this section, we propose a
mean-field theory that predicts the emergence of a fractional Chern number in Majorana bands.

We introduce a mean-field theory to split the Majorana flat bands by forming a density wave
order state. A density wave state effectively folds the BZ into a reduced BZ, with the ordering
vector Q defining the new reciprocal lattice vectors. The original Chern bands transform into
a main band and folded (or shadow) bands within the reduced BZ. These bands share partial
occupation density. This process leads to a fascinating consequence: a single, split Chern band
becomes partially filled with a finite interacting gap separating it from another partially filled
Chern band. [87–89, 99]
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Fig. 4.6 We plot (a) the Berry curvature G(k) and (b) the difference G(k)−U(k) from the
trace condition (ii) in the first Brillouin zone. The plots in each column correspond to different
K values of 0.035, 0.12, and 0.22, from left to right.

Here, we begin by verifying if the bands fulfill the essential criteria for an ideal ’vortexable’
band, a prerequisite for realizing a fractional Chern phase. [93, 100–102] Interestingly, the low-
energy Majorana bands in the supercell configurations fulfill those conditions: i) uniform-in-k
Berry curvature U(k) = TrUµν(k) and ii) the trace condition G(k) = 1

2 ∑µ
TrGµµ(k) ≃U(k),

∀k-point. Another quantity that measures how good is a flat band is called the flatness ratio
(δ/∆), where δ is the bandwidth of each flat band, and ∆ is the band gap between the two flat
bands under consideration. When δ/∆ is less, as shown in Fig. 4.5(a) for the 4×4 supercell,
the conditions for ideal Chern bands are satisfied more accurately. Fig. 4.6(a) shows U(k) and
Fig. 4.6 (b) gives the difference G(k)−U(k) in ii) at three different K values, 0.035, 0.12, and
0.22 from left to right. δ/∆ decreases with increasing K, and U(k) becomes more uniform.
The same is true for the trace condition in (ii), i.e., the difference G(k)−U(k) is much less
with increasing K.

Having established that the Chern Majorana bands in the supercell settings are prone to
fractionalization, we now include an interaction term within the effective Hamiltonian Heff

in Eq. (4.12), or more specifically in Eq. (4.16) for the case of 2× 2 Honeycomb lattice.
Interestingly, a Z2 ‘electric field’ operator introduced below Eq. (4.1) mediates a quartic
Majorana interaction in the honeycomb lattice with three nearest neighbors.[35, 103] The
corresponding operator for the Wannier orbitals, in general, reads as XR =∏{R,R(1)}∈d1

UR,R(1) ,

where it is reminded that R(1) is a set of first nearest neighbor sites containing d1 elements with
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respect to the R site. XR is a gauge-dependent operator, and it couples to all the Majoranas
sitting at R and R(1), which then becomes gauge invariant. In the original Kitaev model
with the small magnetic field, it was shown that such a term arises in the same third-order
perturbation term as in Eq. (4.1) and has the same coupling constant of iK. Here, we consider a
general coupling term of iK′

1 and write the interaction term on a honeycomb lattice an a = ±

particle-hole Majorana pair in a single α = 1 orbital state as

Hint = −iK′
1 ∑

R,a,a′=±

iuR,R(1)
1

uR,R(1)
2

uR,R(1)
3

ca,Rc
a′,R(1)

1
c

a′,R(1)
2

c
a′,R(1)

3
. (4.18)

Consistent with Elitzur’s theorem [104], we can write down two gauge invariant mean-field
order parameters, defined as follows:

Ω1 =
iK′

1
3

3

∑
i=1

⟨uR,R(1)
i

ca,Rc
a′,R(i)

i
⟩, and Ω2 = −

iK′
1

3

3

∑
i≠ j=1

⟨uR(1)
i ,R(1)

j
c

a′,R(1)
i

c
a′,R(1)

j
⟩. (4.19)

Here, the expectation value is self-consistently evaluated within the mean-field ground state.
We have also assumed the order parameters Ω1,2 to be independent of R (uniform phase), and
hence, it is dropped or from the L.H.S. of the above equation. Both order parameters involve
two Majorana operators, and the gauge field links them so that the order parameter remains
gauge invariant. The resultant mean-field interaction (gauge-invariant) Hamiltonian becomes

H
(MF)
int = iΩ2∑R,i,a′ uR,R(1)

i
ca,Rc

a′,R(1)
i

+ iΩ1∑R,i≠ j,a≠a′ uR(1)
i ,R(1)

j
c

a′,R(1)
i

c
a′,R(1)

j
, (4.20)

In the second term in Eq.(4.19) and the first term in Eq. (4.20), we have implemented
the relation: uR(1)

i ,R(1)
j

= −uR,R(1)
i

uR,R(1)
j

. In the Fourier space, we assume Ω1,2 breaks the

translational symmetry to a staggered density wave state at a fixed wavevector Q such that

Ω1(Q) = ∑Ri−R(1)
j

Ω1eiQ⋅(Ri−R(1)
j ), and Ω2(Q) = ∑R−R(1)

j
Ω2eiQ⋅(R−R(1)

j ). While the above

gauge-invariant mean-field theory admits various generalizations, we focus on a simpler case
here to illustrate the emergence of partially filled Chern bands within this framework.

Adding H
(MF)
int to the effective Hamiltonian Heff in Eq. (4.16), we can express the matrix

form of the Hamiltonian in the spinor (c+(k) c−(k) c+(k+Q) c−(k+Q)T for the α = 1 band
as

HMF(k) = ( Heff(k) iΩ(Q)
H.c. Heff(k+Q) ) ,Ω(Q) = ( Ω1(Q) Ω2(Q)

Ω
∗
2 (Q) Ω

∗
1 (Q) ) . (4.21)
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The above form of Ω(Q) maintains the particle-hole symmetry of the Hamiltonian. The
eigenvectors of the mean-field Hamiltonian in Eq. (4.21) is used in Eq. (4.19) to calculate these
order -parameter self-consistently.

We test out results for a simpler commensurate density wave order for Q = G2/2, and Ω1 =

0.01,Ω2 = 0.015 with K = 0.12. The corresponding energy eigenvalues of HMF(k) split the
particle-hole symmetric eigenvalues ±Ek into four bands with a finite gap between all of them.
The Chern number of each band now corresponds to Cn =∑k∈RBZ∑aV

†
na(k)Vna(k)TraU12(k),

where V corresponds to the eigenvectors of HMF, and Tra corresponds to the trace operation
with the a = ± eigenvector on the Berry curvature given in Eq. (4.9). RBZ corresponds to the
reduced BZ in the density wave state. The obtained values of the Chern number for all four
bands are C = −0.4,−0.94,0.6, and 0.136.

4.5 Summary and outlook

In summary, our work revealed the following key results. (i) We examined how the Z2 flux pairs
with variable length d lead to superlattice formation. These superlattices introduce low-energy
Majorana bands with intriguing topological properties, including Dirac-like excitations or
flat-band degeneracy. (ii) We constructed a novel Z2 gauge-mediated tight-binding model for
Majorana Wannier orbitals. This involved introducing a gauge potential in the low-energy
Hamiltonian through a superexchange-like potential arising from virtual hopping to the elim-
inated high-energy energy levels. Conditions are deduced under which the superexchange
potential acts as a TB gauge field for Majorana hoppings within the lattice. Importantly, it
satisfies a flux-presentation constraint that matches the original supercell Hamiltonian. This
method of introducing gauge fields directly in the Hamiltonian offers several advantages over
traditional geometric terms introduced in the wavefunction description. (iii) We analyzed how
the Berry curvature and quantum metric of the effective theory evolve as flat bands form with
increasing nearest-neighbor hopping. Notably, we discovered a novel critical point where the
quantum metric diverges, suggesting a phase transition between C =±1 phases within the same
band. This behavior is a hallmark of flat bands with extensive degeneracy. Since this transition
occurs in the non-interacting theory, we propose that it signifies a state of maximal entangle-
ment between low-energy and high-energy bands. (iv) Finally, we leveraged the existence of
flat bands with a divergent quantum metric to develop a mean-field theory for a gauge-invariant
Majorana density wave order. The resulting split Chern bands enable us to achieve partial
filling with a gapped spectrum relative to other Majorana bands.

The experimental proposals for attaining control over the creation/annihilation of Z2 fluxes
are reviewed first. It is shown in Ref. [105] that the local modulation of the exchange in-
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teractions by introducing Dzyaloshinskii-Moriya interactions flips the sign of local bond
interactions. That produces a Z2 flux pair. Further desired configurations are obtained by creat-
ing/annihilating the sequence of pairs in neighboring plaquettes. In general, Superconducting
quantum interference device (SQUID) microscopy is helpful in experimentally visualizing
these vortex networks.[106]

This work centers on constructing a gauge-field mediated TB model for fractional particles.
Since fractional/entangled excitations do not exist by themselves, their combinations must pro-
duce electronic states. Alternatively, one can view these fractional particles as residing within a
medium of gauge fields, either confined or deconfined. Our focus is twofold: understanding the
origin of these gauge fields and establishing a systematic framework for their parameterization
within a TB model. The emergence of such gauge fields stems from the projection operation
used to eliminate high-energy states. This operation effectively imposes constraints, leading
to restricted dynamics and correlation functions pertaining to the fractional particles. These
constrained dynamics can give rise to more phenomena such as a distinct type of quantum
glass,[19] or deconfined critically,[107, 108] or extensive degeneracy in the formation of flat
bands, leading to novel topological critically in the non-interacting theory as observed here.

Our approach deviates from conventional methods by introducing a gauge potential directly
within the Hamiltonian through a superexchange mechanism. This mechanism gives rise
to gauge-mediated tight-binding (TB) hoppings arising from the anti-symmetric part of the
superexchange potential. Notably, an additional constraint can be readily incorporated to ensure
flux preservation and topology without worrying about the maximal localization of the Wannier
orbitals. The detailed constructions are provided in Sec. 4.3 applies to a general SU(N) gauge
field, U , and its corresponding fractional particle. In this specific work, we have inserted the
Z2 valuedness of the U operators towards the end and in the particle-hole symmetry of Heff,
which ensures real Majorana states in real space. Therefore, it will be rather straightforward to
generalize the TB theory to the SU(N) gauge field coupled to other fractional particles.

Our analysis reveals an interacting critical point within the theory as a function of the second
nearest-neighbor hopping strength (K). At this critical point, the quantum metric diverges, and
the Chern number exhibits a transition between +1 and -1. This signifies a potential singularity
in the entanglement entropy spectrum where the entanglement is maximal between the low-
energy and the eliminated high-energy states. Quantifying this entanglement spectrum in terms
of the gauge-mediated TB parameters remains an intriguing challenge for future investigations.

Finally, leveraging the insights from the effective Hamiltonian, we propose a mean-field
theory for a gauge-invariant Majorana density wave order. In conventional gauge theories, the
mean-field order parameter is subject to an additional constraint arising from the requirement
of gauge invariance. This constraint often presents significant challenges within the geometric
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framework, leading to a reliance on numerical methods for studying fractional Chern insulator
states. Our effective Hamiltonian, however, allows us to derive a self-consistent mean-field
theory for Majorana fermions. This method paves the way for future investigations into more
exotic interaction effects within both Z2 and SU(N) gauge theories.
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Appendices for chapter 4

D.1 Matrix Elements of the Supercell Hamiltonian

Here, we explicitly give the matrix elements of the 2N ×2N matrices HIJ as

TII =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 Ju1,2 Ku1,2u2,3 0 . . . 0 0
−Ju1,2 0 Ju2,3 Ku2,3u3,4 . . . 0 0

−Ku1,2u2,3 −Ju2,3 0 Ju3,4 . . . 0 0
0 −Ku2,3u3,4 −Ju3,4 0 . . . 0 0
⋮ ⋮ ⋮ ⋮ ⋱ 0 Ju2N−1,2N

0 0 0 0 0 −Ju2N−1,2N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,(D.1)

and

TIJ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 0
Ku2N−1,2Nu2N,1 0 0 . . . 0

Ju2N,1 Ku2N,1u12 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (D.2)
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The matrix elements in the momentum space become

H(k) = iTII +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 . . . 0 K1,2N−1(k) J1,2N(k)
0 0 0 . . . 0 0 K2,2N(k)
0 0 0 . . . 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 . . . 0 0 0
K∗

1,2N−1(k) 0 0 . . . 0 0 0
J ∗

1,2N(k) K∗
2,2N(k) 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (D.3)

where K1,2N−1(k)= iKu2N−1,2Nu2N,1e−ik⋅(R1−R2N−1), J1,2N(k)= iJu2N,1eik⋅(R1−R2N), K2,2N(k)=
iKu2N,1u1,2e−ik⋅(R2−R2N).

D.2 Matrix-Elements of the Tight-Binding Model

To ensure the Majorana operators are well defined and the corresponding complex fermion
operators recover the U(1) gauge fields, we transform the Hamiltonian on a complex fermion
basis. For each α−orbital, the two Majorana orbitals pair, a = ± constitute a complex fermion
particle-hole pair states at different momenta as

∣α,a,k⟩ = +eiφα,a∣α,−,−k⟩F + e−iφα,a∣α,+,k⟩F . (D.4)

where φα,+ = 0 and φα,− = π/2. ∣α,±,k⟩F are the complex fermionic hole and particle
excitation states defined as ∣α,+,k⟩F = fα,k∣G⟩ and ∣α,−,k⟩F = f †

α,k∣G⟩ with fα,k, and f †
α,k

corresponding annihilation and creation operators of complex fermions from some grand
canonical ensemble state ∣G⟩. It is easy to see that the corresponding Majorana and complex
fermion operators are local in real space as ∣α,a,R⟩ = eiφα,a∣α,−,R⟩c + e−iφα,a∣α,+,R⟩c.
Note that ∣α,a,R⟩ are the physical Majorana states in real space, whereas complex fermions
correspond to physical states in both real and momentum spaces. There is an inherent gauge
obstruction between the two Majorana orbitals by a phase difference of φα = φα,+−φα,−. We
have kept this phase difference to orbital independent, but it can be generalized to be orbital
dependent, which may commence interesting properties.

We construct a 2P dimensional Majorana spinor as ∣α,+,k⟩⊕ ∣α,−,k⟩ and complex
fermionic particle-hole symmetric Nambu spinor ∣α,+,k⟩F ⊕ ∣α,−,−k⟩F .The transformation
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between them is defined by the unitary operator:

S =
1
2 ( 1 i

1 −i
)⊗ IP×P. (D.5)

The Majorana Hamiltonian given in the main text is written generally as

Heff = hA ⊗I2×2 +( ∆R ∆I + ihS

H.c −∆R
) , (D.6)

where k dependence in all variables is kept implicit. Here hS/A(k) = h(k)± hT (−k), and
∆(k) = ∆R(k)+ i∆I(k). Then, by transforming this Hamiltonian to the complex fermion basis
gives

H
(F)
eff =

1
4SHeff(k)S†

= ( h(k) ∆(k)
∆

†(k) −hT (−k) ) . (D.7)

This is a typical Bogoluybov-de-Gennes Hamiltonian in the particle-hole basis, where hk is a
P×P Hamiltonian for complex-fermions hopping, and ∆(k) is the P×P matrix consisting of
superconducting pairings of the complex fermions.

The explicit form of the matrix elements of eq. (D.6) can be written as

(∆R)α,α ′(k) =
P

∑
p,p′=1

⟨α,+,k∣p,+,k⟩⟨p,+,k∣(H +H ′)∣p′,+,k⟩⟨p′,+,k∣α ′
,+,k⟩, (D.8)

(∆I + iHS)α,α ′(k) =
P

∑
p,p′=1

⟨α,+,k∣p,+,k⟩⟨p,+,k∣(H +H ′)∣p′,−,k⟩⟨p′,−,k∣α ′
,−,k⟩,

(D.9)
Due to particle-hole symmetry, ∣p,+,k⟩ states give ∣α,+,k⟩ Majorana orbital, while ∣p,−,k⟩
states give ∣α,−,k⟩ orbital, respectively. We define (U±)α,p = ⟨α,±,k∣p,±,k⟩ a P×P overlap
matrix which consists of the probability amplitudes of the particle-hole symmetric eigenstates
of the full Hamiltonian ∣p,±,k⟩ to the effective Majorana orbital states. Note that U is not
a unitary operator as ∣p,±,k⟩ states are incomplete. We denote the matric elements of H
is (D±)p,p′(k) = ⟨p,±,k∣H∣p′,±,k⟩ = ±Ep(k)δp,p′ . The matrix elements H ′ can be written
in second-order perturbation theory with respect to some gauge interaction/superexchange
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potential V that makes the transition from the P to the Q states as

(H′
aa′)p,p′ = ⟨p,a,k∣H ′∣p′,a′,k⟩

=
1
2 ∑

q,q′∈Q
(Va)pq(Va′)q′p′ [

sgn(a)
Ep −Eq

−
sgn(a′)
Eq′ −Ep′

]+ .... (D.10)

Here q ∈Q± = I −P± states are the particle-hole pairs outside the subspace of our interest.
(V±)pq = ⟨p,±,k∣V ∣q,±,k⟩ is the tunneling amplitude between the two eigenstates, our fitting
parameters. ∣p,±,k⟩ are the eigenstates of H and hence are particle-hole symmetric. Inter-
estingly, H ′ is not particle hole-symmetric in the ∣p,±,k⟩ as it allows for transition between
the particle-hole symmetric states in Eq. (D.9), but its matrix elements must be particle-hole
symmetric in the ∣α,±,k⟩ states, by construction. If C is the particle-hole symmetric operator
in the ∣α,±,k⟩ basis, defined as ∣α,+,k⟩ = C∣α,−,k⟩, the matrix elements transform as:
CD+(k)C−1

= −D−(k), CH′
++(k)C−1

= −H′
−−(k), and CH′

+−(k)C−1
= −H′

−+(k). Substi-
tuting them in Eqs. (D.8),(D.9) we get ∆R = −U+(D++H′

++)U−1
+ = −U−(D−+H′

−−)U−1
− ,

and (∆I + iHS) =U+H
′
+−U−1

− = −U−H
′
−+U−1

+ , ∀k.

D.3 Numerical fitting procedure

D.3.1 Gauge Obstruction and spread function of Wannier Majorana
states

Here, we address the issue of the gauge obstruction for Wannier orbitals of the electrons and
how they transcend into the Wannier orbitals of fractional particles. Fixing a smooth global
gauge for all Wannier orbitals of electrons within a unit cell can be hindered by several factors.
Below, we discuss several such cases and their corresponding remedies.

(a) Topological Insulators: In topological insulators, band inversion between two Wannier
orbitals obstructs a global momentum-space gauge. Here, the Wannier orbitals differ by a
well-defined local gauge connection, reflecting the non-trivial topology. For example, while
a Chern number of 1 requires a band inversion within the Brillouin zone (BZ), its specific
location can be shifted without affecting the overall topology (movable gauge obstruction).
As discussed in [20, 109–115], this can be addressed by defining an appropriate gauge-fixing
matrix.

(b) Gapless Points: If a gapless point arises from a symmetry-protected degeneracy between
two bands, it may not be readily movable (unless it is a gauge theory). [73, 116, 117] This can
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be tackled by expressing the Wannier orbital states as superpositions within the degenerate
manifold and carefully handling the singular point in the expansion coefficient (unitary matrix).

(c) Flat Bands.: Constructing Wannier orbitals becomes challenging for specific flat bands,
particularly when they exhibit degeneracy with another band. In such cases, a complete set
of localized compact Wannier orbitals may not be achievable. Instead, a combination of
compact localized states and extended states might be necessary to form a complete basis
set.[66, 67, 118–124]

(d) Atomically Obstructed Insulators: This recently discovered class of (trivial or fragile)
topological insulators presents a unique challenge. [125–128] Here, each of the multiple
Wannier orbitals must individually possess a sufficiently small spread function (∆r) such that
their combined spread stays confined within a unit cell.

Can the aforementioned challenges be entirely overcome using Wannier orbitals for frac-
tional particles within a gauge theory framework? The fractional particles of interest here
arise from the superposition states of the original complex matter fermions. The fractional
particles exhibit a physical separation in real space due to emergent local gauge fields and/or
topology. Their physical separation is linked by the gauge fields such as Wp, Xv, and Ui j. For
example, in the present case, the two Majorana orbitals are pinned at the two π− flux pairs that
are separated by a distance d. Therefore, in analogy with the atomically obstructed orbitals,
the spread function (∆r) associated with each Majorana Wannier orbital must be less than
d/2 if there exists a finite trivial gap between the two Majorana bands. For the gapless case,
∆r ∼ d/2, whereas in a topologically non-trivial case, ∆r > d/2 such that the two Majorana
Wannier orbitals overlap within the unit cell, and an intra-unit-cell gauge field between the two
orbitals contains a winding or knot to produce the topological invariant.

The gauge obstruction is incorporated within the eigenstates of the full Hamiltonian ∣p,k⟩
before fractionalizing them in the orbital states. This is done as in the standard method outlined
in Ref. [21]. The procedure has two steps. First, we allow a unitary transformation B(k) to the
eigenstates as ∣p̃,k⟩ =∑p Bp̃,p(k)∣p,k⟩ - which incorporates the singular gauge that needs to
be added/subtracted from the global gauge. Next, we perform a smooth gauge fixing on the
rotated states ∣p̃,k⟩ between the two nearest momenta differ by the grid size of δk = 2π/L,
where L is the sample length. It turns out the spread function ∆r =∑p̃⟨r

2⟩p̃ − ⟨r⟩2
p̃ is related to

the overall matrix

Mp̃,p̃′(k,k+δk) = 1√
2N

∑
i

∑
p,p′

B†
p,p̃(k)Γ

†
i,p(k)z̄ti(δk)Γp′,i(k+δk)Bp̃′,p′(k+δk), (D.11)

where ti are the positions of the original 2N Majorana sublattices in the full Hamiltonian within
the R supercell. Γ is the unitary matrix consisting of the eigenvector of the full Hamiltonian
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defined in Sec. 4.2. Rα is the position of the α-sublattice within the supercell, and we sum
over all R in the entire lattice. In the main text, we work with the ∣p̃,k⟩ after the gauge fixing,
which we continue to denote by ∣p,k⟩ for simplicity in notation.

D.3.2 Completeness of the Wannier Majorana states

In the above description, the ∣α,±,k⟩ are defined to be the orthonormal complete Wannier
states for the effective 2P× 2P Hamiltonian, while ∣p,±,k⟩ are the low-energy eigenstates
of our interests of the full Hamiltonian which orthonormal but not complete. Our numerical
procedure follows two steps. First, we construct ∣α,±,k⟩ states iteratively and then use Kn as
fitting parameters to find the corresponding energies ±Ep(k) subject to the flux conservation
constraint. The procedure followed is the same as [20] and implemented in the Wannier90
package.

We assume ∣α,±,k⟩t as some trial non-orthogogonal complete Wannier states related to
the ∣p,±,k⟩ states by an overall matrix (U(t)

± )p,α(k) = ⟨p,±,k∣α,±,k⟩t . Note that U
(t)
± are

not the same as the desired overlap matrix U± defined below Eq. (D.9) and we want to find a
relation between them. To orthonormalize ∣α,±,k⟩t we define their overlap matrix

(S±)αα ′(k) =∑
pp′

(U(t)†
± )α,p(k)(U(t)

± )p′,α ′(k)⟨p,±,k∣p′,±,k⟩ = (U(t)†
± U

(t)
± )αα ′ (D.12)

Then the orthonormal Wannier states are defined as ∣α,±,k⟩ =∑
α ′(S

−1/2
± )αα ′(k)∣α ′

,±,k⟩.
Then it is easy to show that the overlap matrix is defined as U± =U

(t)
± S

−1/2
± , ∀k. For the method

to work, i.e., the Wannier orbitals to be smooth in the momentum space, the overall matrix
U

(t)
± must be non-singular. This is often not the case for topological insulators, atomically

obstructed insulators, or flat bands with singular compact orbitals. For removable singularity,
the procedure works well as described in [66, 73, 109, 111]. Note that we do not need separate
trial functions for the ± states as they are related by the particle-hole symmetry C.

D.3.3 Choosing the trial wavefunction

How do we efficiently guess the trial Wannier states ∣α,±,k⟩t? We follow the procedure
outlined in [111] for complex fermions and make necessary modifications. Because we have
the eigenvalues and eigenvectors of the full Hamiltonian H in the supercell, we study first
where our interested eigenvectors are localized in the supercell. This gives hints on the location
of the Wannier centers for the trial states.
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61

Fig. D.1 We plot the orbital weight of the two lowest energy (p = 1) particle-hole states
∑k χp,i (k) at different sites i, defined in Eq. D.13. The results are shown for the 4×4− flux
configuration. The size of the open circles denotes the orbital weight strength. We notice that
the weight is largest around the π− fluxes.

The trial functions are considered as follows: following the procedure mentioned in
Ref. [111], we can expect the sites close to the π−fluxes to be the most probable regions
for Majorana wave functions. We confirm this by plotting the probability amplitude of each
Majorana sublattice of the Full supercell Hamiltonian:

χp,i (k) = ∑
a=±

∣Γp,a,i(k)∣2
. (D.13)

This signifies the occupation probability of the targeted bands for each sublattice index, α for a
k−point. The highest probability indeed coincides at sites close to the π− fluxes, as shown in
Fig. D.1. Based on this, we construct the trial functions for the α-Wannier Majorana orbital

∣α,±,R⟩t =
1√
2N

2N

∑
i

δ(r−R− ti)∣r⟩, (D.14)

where ti are the positions of the original Majorana sublattices in the full Hamiltonian within
the R supercell. For example, for the 4×4− configuration shown in Fig. D.1, the sublattice
indices for the trial function with (α,+) ∈ {1,9,10}; and (α,−) ∈ {5,16,17,18}. There is no
unique definition for these trial functions. The good choice is the functions that give 10−20%
change in the spread function, from the initial spread function to the final spreads after the
minimization procedure. In the k− space, we obtained ∣α,±,k⟩t by the Fourier transformation
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given in Eq. (4.4). With these trial functions, the Wannier centers are shown in Fig. 4.4(a)
for 4×4- configurations. In Fig. 4.4(b), we plot the dispersions of Majorana fermions from
Wannierised orbitals, and it fits ED results well with distances, R ≤ ∣9a1 +9a2∣.

D.3.4 Values of tight-binding parameters

The lattice vectors are given below in terms of the Miller indices and R = (0,0). The rest of the
parameters are nearly zero and hence ignored in this table. The 2×2 matrices for each tensor
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component are in the two particle-hole Majorana basis of a = ±.

TR,R = i( 0 −0.036
0.036 0

) ,

TR,R(1)
=(1,0) = i( 0.000 0.005

−0.023 −0.000
) = T †

R,−R(1),

TR,R(2)
=(0,1) = i( 0.028 −0.05

−0.05 −0.028
) = T †

R,−R(2) ,

TR,R(3)
=(1,1) = i( −0.004 0.005

−0.008 −0.004
) = T †

R,−R(3),

TR,R(4)
=(1,−1) = i( 0.018 −0.008

−0.038 −0.018
) = T †

R,−R(4),

TR,R(5)
=(2,0) = i( 0.025 −0.002

0.012 −0.25
) = T †

R,−R(5) ,

TR,R(6)
=(0,2) = i( 0.005 0.006

−0.029 0.005
) = T †

R,−R(6) ,

TR,R(7)
=(1,2) = i( 0.003 −0.002

0.011 −0.003
) = −TR,−R(7) ,

TR,R(8)
=(1,−2) = i( −0.011 −0.004

−0.014 0.011
) = −TR,−R(8) ,

TR,R(9)
=(2,−1) = i( −0.006 0.003

−0.026 0.006
) = T †

R,−R(9) ,

TR,R(10)
=(2,1) = i( 0.001 −0.001

0.001 −0.001
) = T †

R,−R(10) ,

TR,R(11)
=(2,2) = i( −0.017 0.001

−0.004 0.017
) = T †

R,−R(11) ,

TR,R(12)
=(2,−2) = i( 0.003 0.001

0.025 −0.003
) = T †

R,−R(12) ,

TR,R(13)
=(2,3) = i( 0.00 0.000

0.002 0.00
) = T †

R,−R(13) ,

TR,R(14)
=(2,−3) = i( 0.003 −0.003

−0.010 −0.003
) = T †

R,−R(14),
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TR,R(15)
=(1,3) = i( 0.000 0.00

−0.004 0.00
) = T †

R,−R(15) ,

TR,R(16)
=(1,−3) = i( −0.002 0.005

0.013 0.002
) = T †

R,−R(16) ,

TR,R(17)
=(3,2) = i( 0.00 0.000

0.002 0.00
) = T †

R,−R(17) ,

TR,R(18)
=(3,−2) = i( 0.00 0.000

−0.006 0.00
) = T †

R,−R(18) ,

TR,R(19)
=(3,3) = i( 0.000 0.000

−0.001 0.000
) = T †

R,−R(19) ,

TR,R(20)
=(3,−3) = i( −0.002 0.001

−0.002 0.003
) = T †

R,−R(20) ,

(D.15)
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5
Symmetry, Superposition, and Fragmentation
in Classical Spin Models

Classical magnets exhibit exotic ground state properties such as spin liquids and fractional-
ization, promising a manifestation of superposition and projective symmetry construction in
classical theory. While system-specific spin-ice or soft-spin models exist, a formal theory
for general classical magnets remains elusive. Here, we introduce a generic symmetry group
construction built from a vector field in a plaquette of classical spins, demonstrating how
classical spins superpose in irreducible representations (irreps) of the symmetry group. The
corresponding probability amplitudes serve as order parameters and local spins as fragmented
excitations. The formalism offers a many-body vector field representation of diverse ground
states, including spin liquids and fragmented phases described as degenerate ensembles of
irreps. We apply the theory to a frustrated square Kagome lattice, where spin-ice or soft spin
rules are inapt, to describe spin liquids and fragmented phases, all validated through irreps
ensembles and unbiased Monte Carlo simulation. Our generic theory sheds light on previously
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unknown aspects of spin-liquid phases and fragmentation and broadens their applications to
other branches of field theory.1

5.1 Introduction

Classical spin models can potentially capture exotic phenomena like spin liquid [1–6], spin
ice [7–9], and fragmentation [2, 10–13], order by disorder [14–19], prethermal discrete time
crystals[20], and exciting progress lies in designing novel and generic frameworks [6, 21–
29]. While quantum theory allows the ground state of a spin liquid to be a superposition
state, this concept does not have a classical analog. Classically, two main approaches so far
describe the spin liquid phase. The spin-ice model applies to specific spin Hamiltonians that
can be expressed in terms of ∣Sc∣2, where Sc is the total spin in a cluster, such that the Sc = 0
configuration describes degenerate ground states.[2, 6, 11, 23, 24] However, this rule doesn’t
hold for models with Dzyaloshinskii-Moriya (DM) interactions. Recently, a Luttinger-Tisza
approximation, also known as the spherical or soft-spin approximation, has been employed to
analyze the degenerate energy state in momentum space in terms of extended states of classical
spin.[23–27] A flat band in this model indicates the degeneracy characteristic of spin liquids.
The drawback of this model is that it relaxes the local ∣Si∣ = 1 constraint, imposing it at the
global spin value. Both approaches are suited for specific Hamiltonians and have so far been
applied only to spin-ice models.

Magnetic fragmentation is another exotic phenomenon in the classical spin systems that
draws recent attention.[10–13, 30, 31] In this phase, a local classical field (such as spin or
magnetization) fragments into components with one (or more) components exhibiting order
while others remain disordered or liquid-like. This phenomenon has so far been studied using
Landau’s coarse-grained magnetization fields, with or without local spin constraints. Despite
progress in understanding specific models with ground state degeneracy or fragmentation, a
comprehensive analytical framework, which would ideally encompass all lattice symmetries,
frustration, DM interactions, local spin constraints, and hence do not necessarily follow the
spin-ice rule, remains elusive.

Research on frustrated lattices, like pyrochlore,[6, 32–35] triangular,[36–38] Kagome,[39–
41] and others[4, 15, 18, 42] has been a major focus in exploring spin liquids and related
phenomena. Recently, the square Kagome lattice has sparked excitement due to experimental
hints of spin liquid phases[43–45] and supporting theoretical investigations [46–50]. However,

1This chapter is a reproduction of our published work on ’Symmetry, Superposition and Fragmentation in
Classical Spin Liquids: A General Framework and Applications to Square Kagome Magnets’ with reference
Phys. Rev. B 110, L060401 (2024).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.L060401
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these materials likely possess a strong DM interaction[43–45] which the spin-ice and soft-spin
models do not incorporate. Additionally, the square Kagome lattice boasts multiple sublattices,
offering a richer platform with potentially larger degenerate manifolds and more fragmentation
possibilities.

Here, we introduce a generic framework for studying ground state degeneracy and frag-
mentation in classical spin systems using a group theory approach. We apply this theory to a
two-dimensional square Kagome lattice. Our approach transcends a prior approach[35, 41],
used primarily for ordered phases, to encompass spin liquids and fragmented phases. We
define a vector space representing the spins within a lattice plaquette, designed to be invariant
under the lattice’s point-group symmetry. The plaquette spin vector can be expressed as a
superposition of the irreducible representations (irreps) of the symmetry group. The expansion
parameters of this superposition vector act as Landau-like order parameters. However, unlike
traditional order parameters, they transform under ‘discrete’ spatial rotations and acquire contin-
uous symmetry through degeneracy and irreps multiplets. Interestingly, these order parameters
serve as spin’s ‘probability amplitudes’ and ‘occupation densities’ to irreps state and energy
levels, respectively. This approach, with its resemblance to quantum concepts, paves the way
for a novel construction of classical spin liquids and fragmentation states.

We apply the theory to a model consisting of XXZ and DM interactions in a 2D square
Kagome lattice. We also employ unbiased classical Monte Carlo (MC) simulation to validate
our group theory approach and reproduce the phase diagram. We find that DM interaction
promotes a uniform or staggered ordering of specific irrep, containing vortex or anti-vortex.
Near the critical boundaries between these ordered phases, we observe the emergence of
classical spin liquid (CSL) states. Within the CSL phase, local spins remain fully disordered if
the ground state consists of a randomly distributed irrep ensemble. Alternatively, the ground
state can scramble ordered and disordered irreps to fragment the local spin vector into coexisting
extended/collective and point-like excitations. Additionally, the spin-spin correlation function
is analyzed in each phase to distinguish between magnetic Bragg peaks for the collective
excitations in the ordered phase and the ‘pinch-point’ excitations in the liquid phases.
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Fig. 5.1 (a) A plaquette of a 2D square-Kagome lattice, belonging to the D4 group, is shown
with sublattices enumerated as i = 0−7. (b) Among five irreps with different multiplets, we
show a few representative irreps here, while others are shown in SM[51]. Each irrep consists of
either S⊥i (horizontal arrow) or Sz

i (open and filled dots for up and down spins) components,
with the sizes of the arrows or dots dictate their magnitudes.

5.2 Mathematical foundation:

We define a local vector field in a plaquette network p to be invariant under the lattice’s
point-group symmetry G:

Sp =⨁
i∈p

Si. (5.1)

Si = (Sx
i Sy

i Sz
i )

T
∈ Oi(3) at the ith site, and Sp ∈ Op(3n) where n is the number of sublattices

in p. (Oi(n), Op(n) distinguish the orthogonal symmetry of the vector at the i-site and p -
plaquette, respectively). Each plaquette, like a conventional unit cell, includes redundant sites
than the primitive unit cell. This is adjusted by introducing a normalization factor in the dual
vector definition to fix the length of Sp.[52]

The transformation from the spin space to the irreps space of group G involves an orthogonal
matrix, whose column vectors Vα form the orthonormal basis of the irreps representation.
Expressing Sp in this irreps space yields

Sp =

3n

∑
α=1

mαVα . (5.2)
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Here mα ∈ R is the coefficient of the expansions. We keep the plaquette index in m and V
implicit for simplicity in notation. Interestingly, mα conforms to Landau’s order parameter as
the coarse-grain average of local fields, except, here, it is invariant under a discrete symmetry
group in a plaquette and is interpreted as the probability amplitude of vector field: mα =

VT
α Sp.[52] The local spins are defined by a rectangular projection matrix Pi∈p as Si∈p =

Pi∈pSp =∑
α

mαPi∈pVα .

Reformulating the order parameters in terms of the irreps conveniently decouples them in a
symmetry invariant Hamiltonian, albeit the irreps’ multiples can mix among themselves. To
account for the multiplets’ submanifold and emergent symmetry, it is convenient to introduce
an Op(dα) ‘spinor’-like field mα ∶= (m

(1)
α ... m

(dα)
α )T for the α irrep with dα multiplet. Then,

the eigenmodes are obtained by orthogonal rotation m̃α = eiLα ⋅φ α mα , where Lα are the
corresponding generators for the angle φ α . φ α lives on the Hamiltonian’s parameter space
and assumes fixed values for the energy eigenmodes. The orthonormal basis states ensure
the constraint ∣Sp∣2

= ST
p Sp = ∑

α
dα∣mα∣2

= nS2, ∀p, where ∣Si∣ = S, ∀i is an additional
hardcore constraint on the classical spins[52]. Not all irreps necessarily adhere to the local
constraint, requiring them to collaborate with others for existence. Such irreps ensembles may
lead to non-analyticity and fragmentation into an order-disorder mixed phase. Additionally,
the collapse of the eigenmodes m̃α into its constituent irrep mα causes distinct fragmented
excitation.

We have a 3nN-dimensional vector space S = ⨁′
pSp for a generic N-unit cell lattice,

commencing a 3nN×3nN-matrix valued quadratic-in-spin Hamiltonian (see SM[51] for further
details. Lets call this Direct Sum as constrained direct sum with a prime sign over it. While a
Direct Sum means different sectors are decoupled, but the definition of the constrained sum is
that different sectors are related by the local constraint on the spin shared between the different
plaquettes. This introduces a new type of frustration as well as correlation.). However, thanks to
nearest-neighbor interaction and discrete-translation-invariance of the lattice, the Hamiltonian
can be brought to a block-diagonal form in terms of the plaquette Hamiltonian Hp:

Hp =
1
2S

T
p HpSp. (5.3)

Here Hp is an orthogonal matrix-valued Hamiltonian, analogous to the second quantized
Hamiltonian, whose components consist of all possible interactions between Si and S j for
⟨i j⟩ ∈ p. However, lattice symmetries restrict the allowed finite components in Hp, which we
now consider for a square kagome lattice.
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5.2.1 Realizations in a square-Kagome lattice

The square-Kagome lattice belongs to the Dihedral (D4) group with n = 8 sublattice spins,
giving a 24-dimensional vector representation. Denoting the group element g ∈ D4 in the
Sp−representation by the matrix-valued operators D(g), we impose the symmetry criterion
that under a local symmetry transformation Sp →D(g)Sp, the local Hamiltonian Hp is invariant
if [D(g),Hp] = 0, ∀p,g. Since local Oi(3) and sublattice symmetries are abandoned, the
plaquette symmetry allows us to have bond- and spin-dependent interactions J

µν

i j with six
exchange and three DM interactions (see SM for the details), leading to a bond-dependent XYZ-
Heisenberg model with XY-DM interaction. However, imposing bond-independent interactions,
we consider an XXZ model with DM interaction as more appropriate for realistic materials
[43–45], H =∑⟨i j⟩,µν

JµνS
µ

i Sν

j . This can, for future convenience, be expressed as:

H = J ∑
⟨i j⟩,τ=±

(Dτeiτ(Θi+Θ j)S⊥i S⊥j +∆Sz
i S

z
j) . (5.4)

Here Jµν
= Jδµν + JDεµν for µ = x,y, and Jzz

= J∆, δµν is the Kronecker delta and εµν is the
Levi-Civita tensor. J is the exchange term, ∆ is the z-axis anisotropy ratio, and JD is the XY
DM interaction strength. By diagonalizing the tensor Jµν , we define two ‘circularly polarized’
fields: Sτ

i = ∣S⊥i ∣eiτΘi
∈Oi(2)≅Ui(1), where S⊥i =

√
S2 − (Sz

i )2 is the coplanar spin magnitude
and Θi is the azimuthal angle in the spin space, which interact via a complex (dimensionless)
interaction Dτ

= 1+ iτD.

5.2.2 Irreps in square-Kagome lattice

There are five conjugacy classes in this non-Abelian group, giving five irreps: mα ≡ A
(dα)
1,2 ,

B
(dα)
1,2 , and one two-dimensional irrep E

(dα), where the superscript denotes their multiplicity
(dα) = (2,4,3,3,6), respectively. Representative irreps configurations are shown in Fig. 5.1(b).
We organize these irreps into a coplanar set m⊥ ∶= {A(a,b)

1,2 ,B
(a,b)
1,2 ,E

(ax,x,bx,y,cx,y,dx,y)}, and an

out-of-plane/colinear set m∣∣ ∶= {A(c,d)
2 ,B

(c)
1,2,E

(ex,y,fx,y)}.

In the coplanar irreps basis A(a,b)
1,2 , B(a,b)

1,2 , even/odd under C4, the local spins Sτ

i are arranged
in a topological texture following Θi∈p = Qpθi + γp, where Θi and θi are the azimuthal angles
in the spin and position manifolds, respectively. γp ∈ [0,π) is the helicity angle, and Qp ∈

π1(S1) ≅ Z is the topological charge. As shown in Fig. 5.1(b), this leads to (anti-/) vorties
for A(a,b)

1,2 , B(a,b)
1,2 irreps. In fact, each (anti-/) vortex consists of two concentric (anti-/) vortices

in the outer and inner squares, which are not related by symmetry but interact with each
other by the interaction term Dτ . A(a,b)

1 consist of concentric vortices with the same/opposite
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Fig. 5.2 Computed phase diagrams within the MC simulation (also group theory analysis) are
shown for (a) for AFM (J = +1) and (b) for the FM (J = −1) couplings. We highlight spin
textures in a randomly chosen four-plaquette setting for representative phases (upper panel) and
respective ensembles of irreps in four plaquettes (lower panel). (c) CSL at (J,∆,D) = (1,1,0)
showing disordered values of mν from both in-plane and out-of-plane ensambles. (d) AO at
(1,0,−3) with degenerate irreps B(a)

1,2 are staggered. (e) FAA phase at (1,4,−1) where B
(a)
1,2

being ordered but B(c)
1 is disordered. (f) FFM phase at (−1,−2.5,0) where 2D irrep E

(a)

is ferromagnetically ordered in-plane, but out-of-plane irreps are disordered. Note that all
disordered values take random numbers between different plaquettes, while we display only
four representative plaquettes here.

helicities (γp = ±π/2), while A
(a,b)
2 , odd under reflection, have γp = ±π . B

(a,b)
1,2 irreps (odd

under C4) are similar, except they contain anti-vortices. The out-of-plane A
(c,d)
2 are colinear

FM/AFM irreps, while B
(c)
1,2 are colinear AFM irreps. Finally, among the six-fold multiplets of

2D E irreps, E(a−d) are coplaner FM/ nematic/AFM order parameters, while E
(e,f) are colinear

irreps. Notably, the colinear irreps B(c)
1,2 and E

(e,f) violate the local constraints, and hence their
low-energy configurations vitiate any long-range order.

5.2.3 Eigen energies:

The final task is to diagonalize the multiples of the irreps. In our case, the irreps’ multiplets split
as either Op(dα) = Op(2)⊕Op(2)⊕ ..., or Op(dα) = Op(2)⊕Z2 ⊕ ..., in which all Op(2)
operators have the same generator Lα = iσy. φα depends only on arg(Dτ) in the eigenstates of
Hp. The resultant diagonal Hamiltonian per plaquette is

Hp =

3n

∑
ν=1

Eν∣m̃ν∣2
. (5.5)
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Phase Acronym Irreps {νp} Parameters Color code
Classical Spin Liquid CSL m⊥∪m∣∣ J = 1, ∆ > 0, D = 0 Cyan

Vortex Order VO Ā
(a)
1,2 J = 1, ∆ < 2D, D > 0 Magenta

Anti-vortex Order AO B̄
(a)
1,2 J = 1, ∆ < 2D, D < 0 Red

Fragmented AFM-vortex FAV Ā
(a)
1,2 ∪B

(c)
1 J = 1, ∆ > 2D, D > 0 Black

Fragmented AFM-Anti-vortex FAA B̄
(a)
1,2 ∪B

(c)
1 J = 1, ∆ > 2D, D < 0 Black

Fragmented Ferromagnet FFM Ē
(a)∪m∣∣ J = −1, ∆ > 2∣D∣, ±D Black

Colinear Ferromagnet Order ∣∣-FM Ā
(c)
2 ∆J < 0, ∣∆∣ > 2∣D∣ Green

Coplanar Ferromagnet Order ⊥-FM Ē
(a) J = −1, ∣∆∣ < 2∣D∣ Blue

Table 5.1 We tabulate all the phases and the contributing irreps obtained consistently with the
MC simulation and the group theory analysis. The irrep with a bar in the third column reflects
it to be ordered; otherwise, it’s a disorder irrep.

Here ∣m̃ν∣2 serves as ‘occupation density’ to the ν
th energy level Eν . Henceforth, we omit

the tilde symbol for simplicity, and all irreps are considered eigenmodes unless mentioned
otherwise. The functional form of Eν in terms of J, D, and ∆ is given in the SM[51]. Constrained
by symmetry, Eν∈m⊥

depends solely on Dτ , while Eν∈m∣∣ is proportional to ∆
2. One or more

irrep (s) can form an ordered phase with a global energy minimum at NEν if they satisfy
the constraint and frustration; otherwise, they blend with other irreps to form a degenerate
ensemble, giving disorder, liquid, and mixed phases. A zero-temperature phase transition
occurs at the Eν = 0 line.

5.3 Phase diagrams and correlation functions

We solve the Hamiltonian in Eq. (5.4) both numerically using classical MC simulations and
the group theory analysis. The details of the MC simulation are given in the SM[51]. The
corresponding phase diagram is summarized in Table 1 and shown in Fig. 5.2. Note that the
same phase diagram is also reproduced by the lowest energy eigenvalue Eν , and the values of
mν are obtained from the MC result as shown in the lower panel in Fig. (5.2) agrees with the
group theory result.

2Specifically, the (anti-/) vortex irreps B(a,b)
1,2 , A(a,b)

1,2 are promoted by ∓D, while E
(a,b) do not depend on D.
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Remarkably, we find that all the phases can be understood in terms of an analytical definition
of the many-body ground state vector field as:

SGS =

′

⨁
p

∑
{νp}

mνpVνp. (5.6)

The ordered phase harbors a summated state of a fixed irrep ν̄ ∈ {νp} (with mν̄ = m̄, mν≠ν̄ = 0,
∀p); while the staggered phase features two alternating but fixed irreps ν̄p and ν̄q in neighboring
plaquettes. The CSL state, on the other hand, combines an ensemble of irreps {νp} within each
plaquette p. Within this ensemble, the probability amplitude mνp may vary randomly, subject
to local constraints, corresponding to the same plaquette energy. The random distribution of
mνp differs between plaquettes, resulting in an extensively degenerate ground state.

In addition, we also compare our results with a soft-spin approximation in the Fourier space
[4, 6, 34, 53–55], and the resulting dispersion relation is shown in SM[51]. Given that we have
experimental access to the correlation function of local spins Si∈p, we report its correlation
function. We project the structure factor χ(k) = 1/N ∑i, j⟨Si ⋅S j⟩exp{(ik ⋅ (ri − r j))} to the
irreps space as

⟨Si ⋅S j⟩ = ∑
νpνq

mνpmνq⟨V
T
νpP

T
i P jVνq⟩, (5.7)

with ri is the ith spin’s position in p and j ∈ q plaquette.

The phase diagram in Fig. 5.2 reveals a predominance of (uniform or staggered) order
phases in both J < 0 (frustration inactive) and J > 0 (frustration active) regions. A CSL phase
emerges only at the critical line of D → 0, which turns into distinct mixed/fragmented phases
for 2∣D∣/∆ < 1. For D → 0, J > 0, three distinct CSL phases emerge with increasing ∆ in
Fig. 5.2(a) (cyan color). As ∆ → 0, we have an XX model in Eq. (5.4), and the contributing
irreps arise from the degenerate manifold of the coplanar irrep ensemble {mνp} ⊆m⊥. This
gives a CSL phase of Sτ

i ∈ Oi(2) spins. The structure factor χ(k) displays a characteristic
disorder pattern without any magnetic Bragg peak but with a prominent pinch-point around
k = (±π,±3π). The pinch-point characterizes an algebraic correlation between the topological
charges. At ∆ = 1, the Hamiltonian is subject to a full Oi(3) symmetry constraint per site,
resulting in symmetry-allowed access to the entire ensemble {mνp} ⊆m⊥∪m∣∣. For example,
{mν} ∈ {m

A
(a,b,c,d)
1,2

,m
B
(a,b)
1,2

} are degenerate at Eν = −2J and {mν ′} ∈ {m
B
(c)
1,2
,mE(c,d)} at Eν ′ =

−4J, making a larger CSL ensemble degenerate at energy Ep = m2
νEν +m2

ν ′Eν ′ = −4J for
mν =

√
2mν ′ . Consequently, χ(k) displays pinch-point correlations among both Sτ

i and Sz
i .

Finally, as ∆ →∞, the Hamiltonian (last term in Eq. (5.4)) retains a residual local Z2 symmetry
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(a) (b)

(d)

(c)

(e) (f)

Fig. 5.3 Simulated χ(k) is plotted in the momentum space for the four phases discussed in
Fig. 2. (a) CSL at (J,∆,D)= (1,1,0), where red dots are plotted separately to signify additional
strong magnetic Bragg-like peaks that overwhelm the spectral density of the disordered pattern.
(b-c) FFA at (1,4,−1) where the plots for the ordered S⊥i and disordered Sz

i components are
separated in (b) and (c), respectively. (d) AO at (1,0,−3) showing Bragg peaks similar to S⊥i
components in (b). (e-f) FFM phase at (−1,−2.5,0) with FM ordered S⊥i and disorder Sz

i are
separated in (e) and (f). Panels (a) and (f) host pinch-points around (π,3π) and it;s equivalent
points.

constraint, and the disorder ground state solely stems from the {mνp} ⊆m∣∣ ensemble. χ(k)
is contributed solely by Sz

i with pinch-points at k = (±π,±3π). Based on their distinct local
constraints, it is convenient to refer to these phases as O(2), O(3), and Z2 CSLs, respectively,
without implying a Landau-type phase boundary between them.

Any finite D steers the CSL phase into either order or fragmented (mixed) phases. Note
that vortex irreps A(a,b)

1 and A
(a,b)
2 are degenerate at Eν = 2D± 2

√
D2 + (1+D)2, while the

anti-vortex irreps B(a,b)
1 and B

(a,b)
2 are degenerate at Eν =−2D±2

√
D2 + (1−D)2. This makes

all the phases in Fig. 5.2(a),(b) symmetric for D ↔ −D with vortices ↔ ant-vortices. Hence,
we mainly focus on the −D region with anti-vortices for the discussions.

For weak out-of-plane anisotropy ∆ < 2∣D∣, we have ordered phases of (anti-/) vortices for
∓D, which we call (Anti-/)Vortex Order (AO/VO) phases (red/magenta regions in Fig. 5.2). In
AO phase, the degenerate irreps B(a)

1,2 are mixed in an O(2) order parameter and are staggered
between the neighboring plaquettes with a γp = π phase shift. The extracted values of the order
parameter m from the MC data confirm the only finite and uniform weight of the m̄

B
(a)
1,2

irreps in
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the AO phase, as shown in Fig. 5.2(d) (lower panel). Interestingly, the CSL lies at the phase
transition line between the VO and AO phases. The ordering is also evident in χ(k) with a
magnetic Bragg peak at k = (π,π).

However, for strong ∆ > 2∣D∣ (with AFM anisotropy J∆ > 0 ), the coplanar ordered irreps
become scrambled with disordered out-of-plane irreps: {mνp}mix ⊆ m̄A/B∪m∣∣, in black region
Fig. 5.2(a). In particular, the outer (anti-/) vortex maintains co-planarity, while the inner (anti-/)
vortex mixes with the m

B
(c)
1

∈m∣∣ irrep. The combination produces a novel AFM-vortex/AFM-
anti-vortex texture within the inner square where neighboring spins possess opposite easy axes
3. Consequently, Si spin fragments into its Sz

i components become non-interacting and fail to
order or exhibit any significant correlation, while the Sτ

i fields exhibit long-range order with
magnetic Bragg peaks in the structure factor, see Figs. 5.3(b,c). We denote these phases as
fragmented AFM-vortex (FAV) and fragmented AFM-Anti-vortex (FAA) for ±D regions and
confirm the same the extracted values of mν from the MC result.

For strong ∆ > 2∣D∣ with FM anisotropy ∆ < 0 and J > 0 naturally select colinear FM order
of the A

(c)
2 irrep (green region Fig. 5.2(a)). We denote this phase as ∣∣−FM. The same phase

reemerges for ∆ > 0 and J < 0 in Fig. 5.2(b).
The interplay between the FM interaction, J = −1, and strong AFM anisotropy ∆ > 2∣D∣

generates a distinct fragmented phase, see Fig. 5.1(b) (black region). The extracted values of
m from the MC data show that the in-plane FM 2D irrep m̄E(a) is ordered while the out-of-plane
AFM irreps ∈ m∣∣ are disordered, see Fig. 5.1(f). These out-of-plane irreps violate the local
constraint, leading to an intriguing fragmented structure in χ(k), resulting in an in-plane FM
order in Sτ

i , but a pinch-point disorderin Sz
i , see Fig. 5.3(e-f). We dub this a Fargmented FM

(FFM) phase.
Any finite D disfavors this mixed phase, causing a phase transition at D > 2∆ to in-plane

VO or AO orders for ±D, as observed in the J = 1 phase diagram. The remaining two phases
are readily identifiable: a uniform coplanar FM (namely, ⊥-FM) order with m̄E(a) irrep at ∆ → 0
(blue region in Fig. 5.2(b)), and an out-of-plane ∣∣-FM order with m̄

A
(c)
2

for J∆ →∞ (green
region in Fig. 5.2(b)).

5.4 Conclusions and outlook

Discussions on their excitations and phase transition are merited. The VO/AO order phases
(red and magenta) exhibit novel collective excitations. Gapless collective excitations emerge
from the long-wavelength fluctuation of the helicity angle γp across the lattice, protected by

3This AFM-vortex topology is homotopically distinct from the known AFM skyrmion[56], and has not been
predicted previously
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the topology of the irreps space through the charge Qp ∈ Z. These modes, termed helicity
phase modes or phasons, possess novel characteristics. The two concentric vortices per
plaquette are coupled by interaction but not symmetry. Frustration affects only the outer vortex,
resulting in the fragmentation of the excitation spectrum into a collective mode for the ordered
fields and local excitations for the disordered components. The Mermin-Wagner theorem
dictates the instability of ordered states to gapless magnons or phason modes, while disorder
phases tend to order via thermal fluctuations according to the order-by-disorder paradigm
[14, 16–18]. Moreover, the VO/AO phases for ±D consist of different irreps, i.e., distinct
conjugacy classes, that do not couple in the Hamiltonian. Hence, their phase boundary at D = 0
signifies a topological phase transition associated with a spin liquid phase at the critical point,
reminiscence of the deconfined critical point [57]. The CSL critical point can be extended by
applying a magnetic field in the z-direction (see SM[51]). Finally, transitions between ordered
and fragmented phases, or within fragmented phases, offer intriguing avenues for studying
non-Landau-type phase transitions.



E
Appendices for chapter 5

E.1 Detailed derivation of the Symmetry properties

Here, we provide further details of the relevant mathematical constructions that are used in the
main text. We start with a system of N spins. Much like how one starts in the quantum case
with a direct product state basis to construct exotic entangled states, here we can also start with
a many-body 3N -dimensional vector field as a direct sum basis: S =⊕N

i Si, where Si=1 ∈O(3).
Then, the most general two-spin interaction Hamiltonian is written as H = STHS , where H is
the 3N ×3N matrix-valued Hamiltonian. Short-range interaction and (discrete) translational
symmetry drastically simplifies this Hamiltonian, giving a block-diagonal one.

We assume that there exists a (conventional) unit cell with sublattices that are invariant
under a point group symmetry G. The spins sitting at the cell coordinates interact with the spins
from the neighboring cells. This interaction term is translated back to a periodically equivalent
interaction between the spins within the cell. This allows us to define a plaquette containing n
sublattices (counting the sites fully that are shared with the neighboring cells, and hence, the
number of sublattices in a plaquette is larger than that in the primitive cell). In this prescription,
the Hamiltonian H becomes block diagonal into a 3n×3n plaquette Hamiltonian Hp, and the

many-body spin vector field splits as S =⊕
N=N/n
p=1 Sp, where Sp the vector field in the plaquette.
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Here, we focus on the square Kagome lattice, which has n = 8 sites in a plaquette, giving
a 24-dimensional reducible representation Sp, as shown in Fig.1 (a), while the primitive unit
cell has 6 spins Therefore, the ’completeness’ property of the plaquette spin turns out to be
∑N

p=1S
T
p Sp = 8N, whereas N = 6N is the total number of spin in the lattice of N unit cell. To

deal with this, we introduce a local weight factor ηp in the definition of the dual vector, say,
ST

p = ST
p ηp, where T corresponds to the transpose operator. Then, the length of the vector

is defined as ST
p Sp′ = ST

p ηpSp′ = ηpδpp′ . We approximate ηp = 6/8I in each plaquette. The
Monte Carlo result confirms that the obtained order parameters for phase phases are scaled
with the group theory result by 6/8.

Our first job is to find the irreducible representation of the Dihedral group D4 group in this
vector field representation. The group elements are denoted by D4 = {e,C4,C

2
4,C

3
4,σ

x
v ,σ

y
v =

C
−1
4 σ

x
vC4,σ

xy
v ,σ

yx
v = C

−1
4 σ

xy
v C4}, where C4 is the four-fold rotation, σv are the reflection

with respect to the verticle plane passing through the x,y− axis, or diagonal (xy/yx), as
shown in Fig. 1(a). In this Sp-representation, we can split each of the D4 group elements as
successive transformations on how the onsite spin Si ∈O(3) undergoes an internal spin rotation,
followed by how each component S

µ

i=1−8 of the 8 sublattices reorders in the plaquette vector
Sp. Noticeably further, the inner and outer squares of the square kagome lattice are decoupled
from each other in terms of the D4 symmetries and give a trivial transformation between the
two concentric squares of four sublattices. In what follows, if we denote the Sp-representation
of the group elements g ∈ D4 as D(g), then it can be decomposed into a direct product of three
symmetries: D(g) =RI(g)⊗RL(g)⊗RS(g), where RS(g) are the 3×3 rotational matrices
of the local Oi(3) spin, RL(g) are the 4× 4 rotational matrices of the four sublattices, and
RI(g) is the 2×2 transformation between the inner and outer squares.

D(C4) = [τ0 ⊗R(1)
L (C4)+ τx ⊗R(2)

L (C4)]⊗RS(C4),

D(C2
4) = τx ⊗I4×4 ⊗RS(C2

4),
D(C3

4) = [τ0 ⊗R(2)
L (C4)+ τx ⊗R(1)

L (C4)]⊗RS(C3
4),

D(σ
x
v ) = [τ0 ⊗R(1)

L (σ
x
v )+ τx ⊗R(2)

L (σ
x
v )]⊗RS(σ

x
v ),

D(σ
y
v ) = [τ0 ⊗R(2)

L (σ
x
v )+ τx ⊗R(1)

L (σ
x
v )]⊗RS(σ

y
v ),

D(σ
xy
v ) = [τ0 ⊗R(1)

L (σ
xy
v )+ τx ⊗R(2)

L (σ
xy
v )]⊗RS(σ

xy
v ),

D(σ
yx
v ) = [τ0 ⊗R(2)

L (σ
xy
v )+ τx ⊗R(1)

L (σ
xy
v )]⊗RS(σ

yx
v ). (E.1)
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Here τ0,τx are Pauli matrices defining the internal symmetry D4(g), and

R(1)
L (C4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,R(2)
L (C4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

R(1)
L (σ

x
v ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,R(2)
L (σ

x
v ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

R(1)
L (σ

xy
v ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,R(2)
L (σ

xy
v ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Under C4, the continuous Oi(3) symmetry simply becomes a discrete angle of rotation by 2π/4
with Lz being the angular momentum, while under the mirror, spin is rotated as an axial vector.
This gives

RS(C4) =
⎛
⎜⎜⎜⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞
⎟⎟⎟⎟
⎠
, RS(σ

x
v ) =

⎛
⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟
⎠
, RS(σ

xy
v ) =

⎛
⎜⎜⎜⎜
⎝

0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟⎟⎟
⎠
,(E.2)

and RS(C2
4) = (RS(C4))2, RS(C3

4) = (RS(C4))3, RS(σ
y
v ) =RS(C4)−1RS(σ

x
v )RS(C4), and

RS(σ
yx
v ) =RS(C4)−1RS(σ

xy
v )RS(C4).

E.1.1 Symmetry of the Hamiltonian

The generic plaquette Hamiltonian is expressed in the main text as Hp =
1
2S

T
p HpSp, where

Hp is the 24×24 symmetric matrix containing all possible nearest neighbor interactions. The
symmetry constraints make many terms vanish or be identical to other terms. Under a symmetry,
the vector field transforms to S ′

p =D(g)S , ∀g ∈ D4, and if the Hamiltonian to Hp is invariant,
then the Hamiltonian matrix transforms as DT (g)HpD(g) =Hp, ∀p.

Under these conditions, we find that the interaction terms among the four triangles are
related to each other by symmetry, while those within a triangle are independent of each other;
see Fig. 1 (a). Consider the one independent triangle at sites i = {0,1,2} in Fig. 1 (a), and we
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D4 dα E 2C4 2C′′
2 C2 2C′

2

A1 2 1 1 1 1 1
A2 4 1 1 -1 1 -1
B1 3 1 -1 1 1 -1
B2 3 1 -1 -1 1 1
E 6 2 0 0 -2 0
Sp 24 0 -2 0 -2

Table E.1 Character table of the group D4. The last row corresponds to the characters of the
reducible representation Sp for each class. NkCk notion is used in the first row. Nk is the
number of elements in each conjugacy class, Ck.

obtain three distinct 3×3 matrices between sites i and j :

(Hp)01 =

⎛
⎜⎜⎜⎜
⎝

Jxx Dxy 0
Dyx Jyy 0
0 0 Jzz

⎞
⎟⎟⎟⎟
⎠
,(Hp)12 =

⎛
⎜⎜⎜⎜
⎝

Jxx −Dyx 0
−Dxy Jyy 0

0 0 Jzz

⎞
⎟⎟⎟⎟
⎠
, and

(Hp)20 =

⎛
⎜⎜⎜⎜
⎝

J′xx D′xy 0
−D′xy J′yy 0

0 0 J′zz

⎞
⎟⎟⎟⎟
⎠
. (E.3)

Therefore, we have nine independent parameters: three exchange interactions Jµµ , J′µµ . and
three DM interactions Dxy, Dyx, and D′xy. Due to in-plane inversion symmetry, no in-plane DM
interaction is allowed. We take a simpler XXZ + DM interaction model in which Jµµ

= J′µµ ,
Jxx

= Jyy
= Jzz/∆ = J, and Dxy

=−Dyx
= D′xy

= JD. This gives us three independent parameters,
among which the global energy scaling by J is removed, except its sign ± is considered in the
main text.

E.1.2 Irreducible spin configurations

Finally, we find the irreducible representation of the Sp vector. There are five classes in the
group D4 denoted by E = {e},C4 = {C4,C

3
4},C2 = {C2

4},C′
2 = {σ

xy
v ,σ

yx
v },C′′

2 = {σ
x
v ,σ

y
v }. The

character table for this symmetry group is given in Table E.1.

We have five irreps, which we denote by mα for α = 1−5. Then the vector representation of
the irreps is a direct sum of the irreps M =⨁

α
dαmα with dα giving the number of times the

α-th irrep appears in the sum. dα is calculated from orthogonality relation with the characters:
χmα

(Ck),χM(Ck) of the 24-dimensional representations mα(Ck),M(Ck) respectively, for each
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conjugacy class Ck, where k runs over the five conjugacy classes:

dα =
1
h
∑

k

Nkχmα
(Ck)χ̄M(Ck) (E.4)

where h = 8 is the order of the group D4, and Nk is the number of elements in Ck conjugacy
class. The values of dα are given in the second column in Table E.1.

The final task in this section is to find the basis functions Vα of each irrep. We denote
the basis vectors as ∣Vµ

α ⟩, where α = 1 for one-dimensional irreps, and µ = 1,2 (which are
relabelled as x,y in Fig. E.1) for the two-dimensional irrep E. The basis vectors follow a

relation : D(g)∣Vµ

α ⟩ = ∑
µ ′(Uα(g))µµ ′∣Vµ

′

α ⟩, ∀g. (Uα(g))µµ ′ are the µ × µ-matrix for the
µ-dimensional irrep α defined for the group element g. For the one-dimensional irreps A1,2

and B1,2, Uα(g) simply gives the character of the group, and then ∣Vµ

α ⟩ are the simultaneous
eigenvectors of the group elements with the character being the eigenvalue. They can be
solved easily and the corresponding basis functions for the one-dimensional irreps are shown
in Fig. E.1(a-d). For the two-dimensional E irrep, the orthogonal condition of the basis vector

simplifies the above equation to (Uα(g))µµ ′ = ⟨Vµ

α ∣D(g)∣Vµ
′

α ⟩. We solve this matrix for
the E irrep for each group elements, which comes out to be UE(e) = I2×2, UE(C4) = −iτy,
UE(C2

4) =−I2×2, UE(C3
4) = iτy, UE(σ

x
v ) = τz, UE(σ

y
v ) =−tauz, UE(σ

xy
v ) = τx, UE(σ

yx
v ) =−τx.

τµ are the 2×2 Pauli matrices.
We have the multiplets as dα = 2,4,3,3 for the four one-dimensional irreps A1, A2, B1, B2,

giving 12 basis vectors, while the two-dimensional irrep with multiplicity dE = 6 gives another
12 basis vectors, as shown in Fig. E.1(e). Among them, sixteen are in-plane, defined in the
set m⊥, and eight are out-of-plane, defined in the set mz in the main text. Among them, six
out-of-plane irreps do not satisfy the local constraint of S = 1 per site.

E.1.3 XXZ and DM interactions

In the plaquette Hamiltonian, after substituting Sp =∑3n
α=1 mαVα , we obtain a Hamiltonian that

is block diagonal between the irreps but contains cross-terms along the multiplicity within an
irrep. So we define a dα -dimensional spinor field for each irrep as mα ∶= (m

(1)
α ... m

(dα)
α )T

∈

Op(dα), in which the plaquette Hamiltonian splits as

Hp =

5

∑
α=1

mT
αHαmα , (E.5)

where we have suppressed the plaquette index on the right-hand side. Hα is a dα ×dα matrix.
The Op(dα) symmetry of each irrep breaks into Op(2) and Z2 symmetry as follows.
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Fig. E.1 We plot all the irreps’ basis functions. The verticle dashed line demarcates the out-
of-plane irreps mz on the right-hand side, among which only the top row satisfies the local
constraint while the others do not. The horizontal arrows dive the spin direction for S⊥i , while
the filled and open dots correspond to Sz

i . The size of the dots corresponds to ∣Sz
i ∣. For A(c,d)

2 ,

the size of the dots is adjusted for ∣Sz
i ∣ = 1, while for B(c)

1,2, sites with symbols give ∣Sz
i ∣ =

√
2,

while sites without symbols have ∣Si∣ = 1. Similar consideration is used for the E irreps that do
not meet the local constraint.

For α = 1, the A1 irrep with d1 = 2 multiplets follows an Op(2) symmetry.

For α = 2, the A2 irrep with d2 = 4, we have an emergent Op(2)×Op(2) symmetry among

the multiplets, giving HA2 = H
A
(a,b)
2

⊕H
A
(c,d)
2

. This is obvious because A
(a,b)
2 consists of

coplanar spins while A
(c,d)
2 are the two out-of-plane spins.

For both α = 3,d, the B1,2 irreps with d3,4 = 3, we have an emergent Op(2)×Z2 symmetry

with HB1,2 = H
B
(a,b)
1,2

⊕H
B
(c)
1,2

. Here, the B
(a,b)
1,2 multiplets are coplanar spins forming O(2)

symmetry, while B
(c)
1,2 consists of out-of-plane spins that do not obey local constraints.
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For α = 5, the two-dimensional E irrep with d5 = 6, each component of each multiplicity
gives emergent Op(2) rotation as HE =HE(a,b) ⊕HE(c,d) ⊕HE(e,f) .

All the Op(2) invariant 2×2 Hamiltonian matrices for all irreps have this general form

(Hα)k,k′ = ε
(k+)
α σ0 + ε

(k−)
α σz +λ

(kk′)
α σx, (E.6)

where k,k′ = 1,2 ∈ (a,b) or (c,d) or (e,f), and ε
k±
α = [ε(k)

α ± ε
(k′)
α ]/2 and ε

(k)
α is the onsite

energy for the kth multiplet of the α-irrep, and λ
(kk′)
α is the ‘hopping energy’ between the k

and k′ multiples. The onsite energies of the two vortices with different helicities are ε
A
(a)
1

=

ε
A
(a)
2

= 2
√

2+2(
√

2−1)D, ε
A
(b)
1

= ε
A
(b)
2

=−2
√

2−2(
√

2+1)D, while the energy cost to change
the helicity angle is λ

A
(a,b)
1

= λ
A
(a,b)
2

= −4D. The same for the two anti-vortices are: ε
B
(a)
1

=

ε
B
(a)
2

= −2
√

2+ 2(
√

2+ 1)D, ε
B
(b)
1

= ε
B
(b)
2

= 2
√

2− 2(
√

2− 1)D, λ
B
(a,b)
1

= λ
B
(a,b)
2

= −4D. The
out-of-plane irreps with parallel and anti-parallel spins and spin-flip energies between them
as ε

A
(c)
2

= 6∆, ε
A
(d)
2

= −2∆, λ
A
(c,d)
2

= 4∆. The two irreps with only inner and out-square out-
of-plane spins have the onsite energy: ε

B
(c)
1

= ε
B
(c)
2

= −4∆. Each two-dimensional irreps is
degenerate. The in-plane FM E irreps have the energies εE(a) = 6, εE(b) = −2, and their hopping
energy εE(a,b) = 4. The in-plane AFM E irreps have the energies εE(c) = 4D−2, εE(d) =−4D−2,
and εE(c,d) = −4. The two out-of-plane E irreps that do not mix have the energies εE(e) = 2

√
2,

εE(b) = −2
√

2. All energies are multiplied with J.

The explicit form of Hamiltonian in terms of the matrix elements in the basis of the irrep
order parameter is

Hp = ∑
α=A1,2,B1,2

∑
k,k′

(Hα)k,k′m
(k)
α m

(k′)
α +∑

k,k′
(HE)k,k′m

(k)
E ⋅m(k′)

E + ∑
α=B1,2,k=c

(HE)k,k(mk
α)2

.

(E.7)

where k,k′ =a,b for all irreps, and in addition, we have k,k′ =c,d for A2 and k,k′ =c,d, and
k,k′ =e,f for E.

Then, for all Op(2) order parameters, diagonalize the corresponding 2×2 Hα matrices by
the orthogonal transformation:

⎛
⎜
⎝

m̃
(k)
α

m̃
(k′)
α

⎞
⎟
⎠
= [σ0 cosφ

(k,k′)
α − iσy sinφ

(k,k′)
α ]

⎛
⎜
⎝

m
(k)
α

m
(k′)
α

⎞
⎟
⎠
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where φ
(k,k′)
α is a fixed angle of rotation that diagonalizes the corresponding irrep multiplets.

Eventually, we obtain a fully diagonal Hamiltonian as

Hp = ∑
ν=(α,k=1,dα)

Eν∣m̃ν∣2
. (E.8)

We have abandoned the α and k symbols for the irreps and multiplicity and combined them
into a single symbol ν which runs from 1 to 3n in the eigenmodes, for simplicity. Here
Eν = ε

+
α ±

√
(ε

−
α )2 +λ

2
α for each Op(2) multipltes of α-irreps. Their explicit forms are

Eν=1,2 = −2D±2
√

D2 + (1+D)2, for α = A
(a,b)
1 ,

Eν=3,4 = Eν=1,2, for α = A
(a,b)
2 ,

Eν=5,6 = 2∆(1±
√

5), for α = A
(c,d)
2 ,

Eν=7,8 = 2D±2
√

D2 +2(1−D)2, for α = B
(a,b)
1 ,

Eν=9 = −4∆, for α = B
(c)
1 ,

Eν=10−12 = Eν=7−9 for α = B
(a,b,c)
2 ,

Eν=13,14 = 2±2
√

5, for α = E
(a,b)

,

Eν=15,16 = −2±2
√

1+4D2, for α = E
(c,d)

,

Eν=17,18 = ±2
√

2∆ for α = E
(e,f)

. (E.9)

All the energies are defined with respect to J. The values of the angle φ are:

φ
A
(a,b)
1

=
1
2 tan−1( D√

2(1+D)
) , φ

A
(a,b)
2

= φ
A
(a,b)
1

, φ
A
(c,d)
1

= −
1
2 tan−1(1

2) ,

φ
B
(a,b)
1

=
1
2 tan−1( D√

2(1−D)
) , φ

B
(a,b)
2

=
1
2 tan−1( −D√

2(1−D)
) ,

φE(a,b) = −
1
2 tan−1(1

2) , φE(c,d) =
1
2 tan−1( 1

2D) . (E.10)

E.2 Details of Classical Monte Carlo

In the classical Monte Carlo calculation, the final temperature is achieved by annealing from
the high temperature at each step with 8×105 Monte Carlo steps. The expectation values of the
observables are calculated by taking the average over the last 7×105 configurations of a total
8×105 Monte Carlo steps with system size N = 6L2 considering periodic boundary conditions,
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with L number of unit cells. All the static structure factor averages are performed over system
size, L = 20 at temperature 10−3. The position vectors of each sublattice (denoted with indices
0,1, ... in Fig. 1(a) of main text) are taken as considering the origin at the center of the square,

δ0 = (−1
4 ,

−1
4 ) , δ1 = (1

4 ,
−1
4 ) , δ2 = (1

4 ,
1
4) , δ3 = (−1

4 ,
1
4) , δ4 = (0,

−1
2 ) , δ5 = (1

2 ,0)
(E.11)

E.3 Structure Factor Plots

In this section, we list the real space spin configurations of all the phases and their respective
structure factors. As defined in the main text, the different structure factors are

χ(k) = 1/N ∑
i, j

⟨Si ⋅S j⟩exp{(ik ⋅ (ri − r j))}

χ
⊥(k) = 1/N ∑

i, j

⟨S⊥
i S⊥

j ⟩exp{(ik ⋅ (ri − r j))}

χ
z(k) = 1/N ∑

i, j

⟨Sz
i S

z
j⟩exp{(ik ⋅ (ri − r j))} (E.12)
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D = 3, Δ = 0

χ(kx,ky)
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(d)

(e)

(f)

1.00 0.50 0.00 0.50 1.00
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VO

FAV
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AO

Fig. E.2 The real spin configurations (left panel) and the corresponding structure factor (middle
panel) are plotted for various phases for the AFM coupling J = +1. The ensemble of order
parameters, which are mentioned in the main text, for each phase is presented in the right
panel. (a) Order phase (red region in the phase diagram) with staggered anti-vortices between
the neighboring sites, showing Bragg-like peaks at a finite but preferential wavevector. (b)
Mixed or fragmented phase where the inner anti-vortices turn into an AFM-anti-vortex with
opposite Sz

i components, while Sz
i = 0 for the outer anti-vortex. The Sz

i values, however, take
random values and show disorder features in the corresponding structure factor without any
pinch-point correlation. This is expected as the inner vortices become decoupled from each
other, lacking any significant correlation between them. (c) A CSL phase (close to the Z2 CSL
phase) showing larger spectral weight the Sz

i correlation function with pinch-points. (d) The
mixed or fragmented phase for D < 0 is similar to the mixed phase for D > 0, except here,
vortices replace the anti-vortices. (e) Orderd phase for D<0, similar to the D > 0 case in (a),
with vortices replacing anti-vortices. (f) A collinear out-of-plane FM phase arising in the limit
of strong our-of-plane anisotropy term ∆ → −∞.
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Fig. E.3 Similar to Fig. S2, but for the FM interaction J = −1. All three phases shown here are
the fragmented phases at different values of D and ∆, showing pinch-point in the Sz

i correlation
function, but FM ordering in the in-plane component.
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E.4 Soft-spin Approximation

In this section, we analyze the Hamiltonian in Eq. 5.4 with ’soft spin’ approximation i.e. spin
length constraint (|Si|

2
= 1) is softened from exact value of 1 per site to the global value of

∑N
i ∣Si∣2

= NS. Because of the global constraint, we have a uniform (fixed) chemical potential
(Lagrangian multiplier) in the theory. Then, following Ref. [26], we have diagonalized the
Hamiltonian in the Fourier space of the spin. There, a spin vector is defined per unit cell, not in
the plaquette, which means we have six sublattices as Si=(Sx

0, Sy
0, Sz

0, Sx
1, ..., Sz

5). We Fourier
transform the spin vector as S(q) = 1√

N
∑iSie

−iq⋅ri , where r = an1+bn2 with integers a, b and
unit vectors n1 = (1,0),n2 = (0,1). The Hamiltonian is then diagonal in the momentum space
as

H =∑
q
S(q)TH(q)S(q), (E.13)

where H(q) is a 18×18 matrix. We can now diagonalize the H(q) matrix, which gives the
energy eigenvalues Eν(q). The lowest energy state is the ground state, and then we plot a few
low-energy excited states in Fig. E.4.

We note that the analysis on the Fourier basis leads to a violation of the local constraint
and hence, inconsistency is expected between the real-space model and the Fourier space one,
especially in the spin liquid phase. In the CSL phase, we find an extremely flat band as the
lowest energy state, suggesting extensive degeneracy as expected here. We see the flat band in
all the mixed phases as well. In addition, the spectrum is gapless in both phases, with gapless
points present at (±π,±π),(±π,±3π), and (±3π,)± 3π), as shown in Fig. E.4. The band
degeneracy, denoted with d in the spectrum at each region is different: d=4(2) for ∆ < 1(> 1),
d=6 at ∆ = 1 in the CSL phase where D=0; and d=2 for mixed phases both for J = +1 and
-1. Hence, there is no simple positive sum of the constrainer rule here; the direct matching of
singular/non-singular bands to emergent gauge fields/fragility is not possible.

As discussed rigorously in the main text, the spin liquids (cyon(/black) colored phase for
J=+1(/-1)) phase has pinch points belonging to the algebraic class of CSLs with ’emergent’
low-energy gauge field excitations. The mixed (black-colored phase for J=+1) phase has no
pinch points and, hence, belongs to the fragile class of CSLs. All the other ordered phase
regions have dispersive bands.
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d = 6

(a) (b)

d = 2

(c)

d = 2

(d)

d = 2

Fig. E.4 Energy dispersion of the Hamiltonian H(q) at four with re)spective degeneracy of flat
bands d, for (a) ∆ = 1.0,D = 0.0 (CSL), (b) ∆ = 4.0,D = 1.0 (Mixed phase) for J = +1 and (c)
∆ = −2.5,D = 0.0 (d) ∆ = 4.0,D = 1.0 (Mixed phases) for J = -1

E.5 Finite Magnetic field

0 0.2 0.6 1.0 1.4 1.8
0
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0.9

1.2

h

Fig. E.5 Phase diagram at D=0, as a function of h and ∆. For ∆ < 1, the phase is a mixed phase
and spin liquid for another case. The mixed phase here is unstable for any finite value of D; the
phase becomes ordered in and out-of-plane for non-zero D value.

The external magnetic field is applied along the z-axis to the Hamiltonian, now written as

Hmag = HXXZ−DM −h∑
i

Sz
i . (E.14)
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The phase diagram as a function of h and ∆ is presented in Fig. E.5 for D = 0. A mixed phase
of disordered in-plane spins with ordered out-of-plane components is observed at D = 0 for
∆ < 1 with increasing h. The in-plane disordered spins exhibit a coexisting Bragg-like leak
at (0,4π), and pinch points at (±π,±3π). The ordering along the z components is FM type.
This phase is unstable for any finite value of D. A finite value of D gives an ordered phase
depending on the sign of the D value, where the in-plane spins form an ordered supercell
structure, and the out-of-plane spins are ferromagnetically ordered. As ∆ > 1, the spins become
disordered both in in-plane and out-of-plane components. This phase also has pinch-points in
the correlation function, indicating power-law correlations. This phase survives at finite values
of D. Therefore, we conclude that, by applying the external magnetic field, the spin liquid
phase can be stabilized in these materials.
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6
Summary

The interplay between the interaction, lattice frustration, and quantum statistics in many-body
systems are one of the main topics of interest in condensed matter physics. Both from the
fundamental point of view in understanding the richness of existing materials in nature to the
realization of a variety of new phases having diverse properties like fractionalization, emergent
gauge fields, and entanglement. One of the phases that this thesis mainly focused on is spin
liquids. Spin liquids have been actively studied for the last few decades, mainly with possible
applications in quantum computing and quantum information processing. Yes many open
questions await detailed theoretical investigations. In this thesis, I addressed several issues in
the quantum regime, including the intricate relationship between gauge and matter degrees
of freedom, the characteristics of gauge excitations under non-perturbative regimes, and their
influence on the properties of matter sectors. The thesis is summarised below.

In Chapter 1, I have briefly summarised the existing methodologies for studying quantum
spin liquids (QSLs) and their experimental signatures and realizations. One of the well-known
approaches to studying QSLs is via the variational wavefunctions, such as resonating valence
bond (RVB) states. The RVB states are effective in treating the QSLs numerically. Another
approach is an analytical one using Parton representations of spins. Further, the resulting
Hamiltonian is analyzed using mean-field theory to study effective low-energy physics. Parton
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mean field analysis is effective in understanding the emergence of gauge theories at low energy
and fractional statistics of quasi-particles. The states from Parton mean field theory may not
always be the same as that of the RVB states. The subtle comparisons and similarities between
these two approaches are also pointed out. For the gaped ground states, both descriptions give
rise to the same states. Z2 spin liquids are very well-studied examples to have a gaped spectrum.
In this regard, the Kitaev 2D Honeycomb model is proposed to have Z2 spin liquids in the
ground state. It is one of the exactly solvable 2D models demonstrating all the subtitles of
Parton theory. The ground state of the Kitaev model has excitations with both abelian and
non-abelian statistics in different parameter regimes. The existence of topologically non-trivial
quasi-particles with non-abelian statistics in this model and later in the various other models
has opened a surge in activities related to spin liquids aimed at potential applications in fault-
tolerant topological computing. Even though the model lacked any initial physical motivations,
Jackeli-Khaliullin later proposed the possible realization of the Kitaev model in real strong
spin-orbit materials. This proposal sparked a field of research of its own. The experimental
evidence for the existence of the Kitaev physics in these candidate materials, for example, in
α −RuCl3, is still open for debate. From the theoretical perspective, the ground state gauge
sector of the model with other external perturbations is one of the primary interests and has not
been studied previously. I have investigated this problem for the externally applied magnetic
field along [111], which is discussed in Chapter Three in detail.

Chapter 2 introduces the classical spin liquids (CSLs). The topic of spin liquids in classical
spin systems is relatively new compared to its quantum case. CSLs are cooperative paramagnetic
states with non-zero entropy at zero temperature, having power-law correlations. These are
discussed or started mainly from spin-ice pyrochlore materials. Starting with similarities
or dissimilarities of CSLs with QSLs, I have tried to summarise briefly the aspects like the
existence of power-law correlations, emergence gauge theories, and the low energy monopole
excitations in pyrochlore spin ice models. Interestingly, the quantum spin-ice models possess
low-energy photon excitations (from emergent Quantum electrodynamic theory at low energy)
when tunneling events between the degenerate states of classical spin-ice configurations are
considered. Hence, the classical spin ice materials are not only significant on their own but
also a source of interest in generating quantum spin liquids. Later, the key ideas of spin-ice
models are generalized further to construct models with more generalized higher-rank theories.
One more approach to studying the CSLs is the Luttinger-Tisza (LT) approximation. In this
approximation, the local unit-length constraint for classical spins is sacrificed to impose the
same on the whole lattice. In the simple approximation, the spins are treated as scalars, and
the low-energy is studied within the Fourier basis. This approximation provides a platform to
make progress in classifying and constructing other new CSLs. One of the key problems in
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CSLs is whether they exist in generic classical spin models that do not respect spin-ice rules or
not. If yes, then how to study them? I have provided an answer to this question in the work
with a unified group theoretical framework to treat them in generic classical spin models.

Chapter Three aims to address the ramifications of the coupling of gauge and matter sectors
in the Kitaev model, especially in the case of strong coupling beyond the perturbative limit. In
the pure Kitaev model, there is no term in the Hamiltonian that couples to gauge and matter
sectors. The perfect decoupling of these sectors is the main simplification in solving the model
exactly. But that is no longer the case with other terms. I have used the external magnetic
field along [111], which couples both the sectors where the field strength tunes the coupling.
This Hamiltonian is studied using the density matrix renormalization group (DMRG) method.
DMRG is performed with different lattice settings, such as a 1D ladder and a finite-width
cylindrical honeycomb strip with different system sizes. Since the plaquette operators, a product
of spin operators, calculate the flux passing through the plaquette. The expectation values
and correlation function of the plaquette operators in the ground state directly measure the
ground state gauge sector at a given field strength 1. For the 1d ladder setting, with all the
exchange couplings equal and anti-ferro, I found five distinct phases as a function of magnetic
field strength. Each phase is classified/identified with the structure of flux operators in all the
plaquettes of the lattice. The five phases are uniform-flux, vortex gas, amorphous phase, and
glassy phases, and finally, the polarised phase. The uniform phase, as the name suggests, has
uniform flux configurations throughout the lattice followed by the uniform configuration at
zero field case. This phase persists up to a field value equal to the single flux gap. As the
field increases, fluxes begin to emerge in the state, manifesting as ripples against a uniform
background. So, this phase is called the vortex gas phase because of the dilute gas of π-fluxes.
The corresponding flux configurations are amorphous in nature for the amorphous vortex phase
and random in the glass phase. The glassy nature of both these phases is primarily characterized
by an extensive number of local minima in the energy landscape. This is identified through the
fidelity of the ground state and confirmed through exact diagonalization (ED) calculations. In
the amorphous vortex phase, states stemming from each local minima, which are orthogonal to
each other, correspond to states with different positions of domain walls. In the glassy phase,
these states represent varying random configurations. The origin of the glassy phase, here, is
mainly due to restricted dynamics of excitations present in the model due to constraints. The
excitations in the Kitaev model are fluxes and matter Majorana fermions. These are not freely
movable. They always move in pairs. The pairs are connected by strings forming flux-flux or
flux-majorana excitation at their end. The constrained dynamics are also present in the generic

1In the strong coupling limit, understanding the behavior of the gauge sector doesn’t necessarily equate to
solving the physics of the matter sector.
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spin liquids where the spinon excitations also move in pairs. So, the QSLs are prone to show
slow dynamics. This further reiterates the need for probing techniques to diagnose the time
dynamics in these models. Such techniques, like tensor network methods, are often numerically
expensive, and only very few analytical methods are available due to the complexity of the
problem.

In Chapter 4, two main aspects are addressed: i) constructing the low-energy tight-binding
models for the fractional Majorana fermions present in the Kitaev model in the presence
of various background gauge fields. Furthermore, this includes the construction of Wannier
orbitals for Majorana fermions. ii) studying the flat-band physics for Majorana fermions and the
realization of the ’fractional Chern insulator’(FCI) phase for Majorana fermions. The FCI phase
is analyzed using gauge-invariant mean-field theory. As I discussed in Chapter 3, various gauge
sectors appear in the ground state as a function of magnetic fields. Crystallization of π− fluxes
is one such interesting configuration. These crystallized fluxes/vortices provide a perfect avenue
to modify the properties of the iterating Majorana fermions. Likewise, in other examples, like
in type-II superconductors, the periodic arrangement of vortices also modifies the properties
of other excitations, such as Bogoliubov quasi-particles. In the case of the Kitaev model, I
have considered various periodic π− flux configurations, denoted by d × d, where d is the
distance between the two π−fluxes, and studied the modified Majorana fermions dispersions.
This chapter provides a formal method to develop the low-energy tight-binding model for the
Majorana fermions and the fractional particles in general, keeping the flux constraint intact
in the effective model. Since the effective low-energy bands are not complete by themselves,
a formal methodology is needed to make them complete. This is done by implementing
self-consistent super-exchange-like potential, which allows virtual hoppings to higher energy
bands and then projecting them back to the effective energy bands. This, in general, results in
further neighbor hopppings in the effective model. This generic method is applied to modified
Majorana bands in the Kitaev model. The unit cell in each case has 2π flux with Majorana
fermions. The self-consistent procedure can be implemented by the Wannierization algorithm,
but the Majorana particle-hole symmetry must be imposed throughout. The Wannier orbitals
for Majorana fermions are constructed and further used to fit the band structure with hoppings
up to 9- neighbors. This method, in general, can be used for general anyons with any ’exotic’
statistics, at least abelian statistics. Interestingly, the Majorana Wannier orbitals are located
near Z2− fluxes and resemble the Majorana zero modes at the low energies.

Further, these effective models for Majorana fermions are used to study other interesting
flat-band physics for Majorana fermions. The bands for various configurations are nearly flat
with gap and gapless points. The bandwidth of these bands can be tuned by changing the d
value or by tuning the next-nearest neighbor hopping strength, K. These bands are topologically
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non-trivial with a non-zero Chern number. Varying K value, the Chern number changes via
topological phase transition where the bands become completely degenerate, which results in
singularity in the quantum metric. Also, these bands possess non-trivial quantum metric values
higher in magnitude than the flux-free case. Interestingly, these bands satisfy the criteria to be
’ideal’ Chern insulators when the band flatness ratio is low. Hence, these flat bands incorporate
the FCI phase in the presence of interactions. This phase is studied with gauge-invariant
mean-field analysis. The mean-field method promises to be more general and is useful in
getting an analytical handle on the FCI phase, where they are studied as of now numerically.

Chapter 5 discusses the group theoretical analysis for studying the CSLs in generic classical
spin models, which do not respect spin ice rules or LT approximation, which is generally the
scenario for models that are relevant experimentally. This analysis is used to study the generic
spin models by constructing the vector space from the spins in the plaquette. Then, the general
vector is decomposed into different irreducible representations (irreps) of the point group
symmetry of the underlying lattice. This is utilized to study one of the symmetrically allowed
Hamiltonian on the square-Kagome lattice, which is the XXZ Hamiltonian (with anisotropy ∆)
with Dzyaloshinskii–Moriya interaction (denoted by D). The group theoretical calculations are
further validated and endorsed with unbiased Monte-Carlo calculations. The exciting outcomes
of the phase diagram as a function of (∆, D) for both anti-ferro and ferro exchange interactions
are the appearance of topologically non-trivial AFM-vortex and AFM-non-vortex excitations
in the ordered phases. In addition, the mixed fragmented phases appear where the ordered
and disordered phases coexist. Furthermore, a disordered CSL phase exists with algebraic
correlations showing pinch points in the structure factor along the D = 0 line. This CSL phase
becomes unstable for any finite value of D, but it can be stabilized using the applied magnetic
field. In the general context of CSLs, the key results include that this analysis provides a unified
understanding of the CSLs, fragmented phases, and various other ordered phases where the
degenerate ensemble of irreps with varying weights of each irrep respecting the local spin
length constraint. The degenerate ground state manifold for CSLs and fragmented phases
comes from the degeneracy of irreps, which is not as direct as the spin-ice models. The weight
factors of order and disordered components in the fragmented phase for the classical continuous
spin case are calculated for the first time. The phase transitions between the fragmented phases
and fragmented to ordered phases promise to be non-Landau-type transitions in classical spin
models.

This work paves the way for delving into CSLs in the experimentally relevant classical
spin models, extending beyond traditional ice-rule models. Highlighting the existence of
numerous experimentally relevant spin models encourages the exploration of broader theoretical
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frameworks, offering the potential for deeper insights into their behavior and applications in
classical spin materials.

I hope this thesis inspires additional investigations into the diverse physics involved in
different gauge sectors in QSLs. As of now, there is no precise handle over gauge degrees of
freedom either experimentally or analytically. But there is certainly a potential chance that
these will change, given the overwhelming activities in simulating the phases with emergent
low-energy gauge theories in synthetic platforms like neutral Rydberg atoms or also with
non-equilibrium techniques. One of the central questions of recent interest is the stability
or the nature of the spin liquids (or any of the entangled phases) under open environmental
settings and their relevance in practical applications. Also, non-equilibrium settings can induce
interesting new characteristics to these phases, which the equilibrium counterpart may not offer.
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