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Preface

This thesis is an effort to understand some of the interesting features induced by strong

correlation - superconductivity, topology, non-Fermi liquid (NFL) in two dimensional (2D)

layered materials. 2D layered materials are exciting due to their extreme tunability and the

rich physics that can be invoked without worrying about the complexity of three dimension.

In this thesis I explore various interplay of these tuning parameters and their manifestation in

real 2D materials.

This thesis has five chapters. In Chapter 1, I introduce some basic concepts like Fermi

liquid (FL), NFL, superconductivity, topology etc. to facilitate the understandings in the

subsequent chapters. In chapter 2, I present the non-Fermi liquid (NFL) behavior due to

momentum-dependent density-density fluctuation method in cuprates. In Fermi-liquid (FL)

theory, the imaginary part of the self-energy scales quadratically with energy, which changes

to linear behavior in an NFL case. My calculation shows that due to strong momentum de-

pendent distributions of the itinerant, and local densities, the resulting self-energy becomes

strongly anisotropic. The computed self-energy exhibits a marginal-FL (MFL)-like frequency

dependence only in the antinodal region, and FL-like behavior elsewhere at all dopings. The

DC conductivity shows that the resistivity-temperature exponent n =1 near the optimal dop-

ing. Surprisingly, in the extreme NFL state (near the optimal doping in cuprates), MFL-like

self-energy occupies the largest volume in momentum space but the nodal region still contains

FL-like self-energies. Similarly, in the FL state (in overdoped region), not all quasiparticles

are necessarily long-lived and the antinodal region remains NFL-like.

Chapter 3 and 4 are about twisted bilayer systems. Condensed matter systems host a

plethora of emergent low-energy properties due to the interplay between electronic structure,

magnetism, correlation, and topology. Without losing lattice translational invariance, one can

tune this interplay with spatially averaged parameters such as doping, pressure, magnetic field,
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and temperature. Twisted bilayers systems give a new tool to achieve local tunability with

discrete translational invariance in the Moire supercell. This allows us to study emergent

spatial-dependent phases beyond the typical mean-field order parameters. In chapter 3, I study

the formation of superconducting pairs of Wannier orbitals in twisted bilayer graphene. Re-

cently, superconductivity is discovered in twisted bilayer graphene (TBG) which is believed to

be unconventional in nature. TBG has flat bands in the Moire supercell, which are describable

by Wannier orbitals spreading over many graphene unit cells. Here I have studied the spin-

fluctuation mediated superconductivity by employing an effective low energy model for TBG

and by solving the linearized superconducting gap equation due to spin-fluctuation mediated

pairing potential. I found an extended-s wave as the leading pairing symmetry in TBG, in

which the nearest neighbor Wannier sites form Cooper pairs. I have also studied similar sys-

tems like single-layer graphene (SLG) without a moiré pattern and graphene on boron-nitride

(GBN) possessing a different moiré pattern than TBG. Similar calculation shows that GBN

has p+ ip-wave pairing between nearest-neighbor Wannier states with odd-parity phase, while

SLG has the d+ id-wave symmetry for inter-sublattice pairing with even-parity phase.

Recent discovery of 2D Van der Waals (VdW) magnetic layers motivated me to study a

similar Moire physics in twisted magnetic bilayers. In Chapter 4, I explore the twisted bi-

layers of 2D VdW magnets where spatially modulated inter-layer interactions arise naturally

due to Moire geometry. By considering long-ranged Heisenberg exchange (J⊥) and dipole-

dipole (JD) interlayer interactions and ferromagnetic exchange and z-axis asymmetric intra-

layer interactions, I obtain the microscopic spin texture with Monte Carlo simulation. The J⊥ -

JD parameter space unveils a hierarchy of distinct skyrmions phases, ranging from point-, rod-

, and ring-shaped topological charge distributions. A novel topological antiferroelectric phase

is also found, where oppositely charged antiskyrmion pairs are formed, and the corresponding

topological charge distribution shows a dipole formation in the Moire supercell. The dipoles

become ordered in a Néel-like state, which form a topological antiferroelectric state.

In chapter 5, I conclude the thesis with a brief summary and impact of the works described

here and with a discussion on possible future prospects and outlook.
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Chapter 1

Introduction

In this thesis, I have studied a collection of physical properties connecting many body atomic

systems in the condensed matter compounds. My theoretical exploration ranges from model-

ing of non-Fermi liquid behaviour, superconductivity to topology in both electronic structure

and in spatial spin configurations (skyrmion). I have investigated these properties in three di-

mensional bulk material as well as in various 2D materials, heterostucture, twisted bi-layer

graphene and twisted magnetic bi-layer. In this chapter, I give introduction to some of the key

concepts in the field of strong correlation and topology, building on previous works, which

will set the stage for discussions of my various works in the subsequent chapters.

1.1 Fermi liquid

Landau’s Fermi liquid theory [1, 2] describes the behavior of electron gas with small density-

density interactions between the elctrons. It successfully predicts the low temperature elec-

tronic properties of many metals. According to Landau, the effect of (weak) electron electron

interaction in a system of electron gas can be captured by a smooth change in the distribution

function. In other words, the diferrence between non-interacting and interacting distribution

function is analytic. Physically it means we can take a non-interacting system and slowly

tune the interaction strength to the desired value without encountering any phase transition.[3]

According to Landau, any interacting system that can be prepared by such a process will

have excitations which are in one to one correspondence with the particle and hole excita-
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2 1. Introduction

tions of the non-interacting systems. These excitations of the interacting syatems are called

quasiparticles.[1, 4, 5, 6] However, there are two limits in the tuning process - the rate at which

the interaction is switched on (τ−1
s ), and the strength of the interaction. The tuning rate (τ−1

s )

should be slow enough so that the whole process is adiabatic and the switching time (τs) should

be smaller than the life time of the quasiparticle. Otherwise the quasiparticle will decay before

it is created. And the interaction strength must be smaller than a critical value and the critical

value denotes a point at which the ground state of the interacting system becomes unstable

(e.g., Stoner instability, Pomeranchuk or Mott instability, leading to phase transition).

The interacting systems that satisfy the above conditions preserve the quantum numbers

which are used to describe the non-interacting counterpart. In other words, quantities like total

particle number (N ), momentum (p) and spin (σ) are conserved, and are still good quantum

numbers for the interacting system. Let us take a non-interacting system at zero temperature

and suppose pF is the Fermi momentum the system (for simplicity here I consider an isotropic

Fermi Liquid i.e, the Fermi momentum does not depend on the direction in the momentum

space.) This ground state is called the Fermi sea. Now I put a fermion above the Fermi sea

with momentum p > pF . If the interaction strength is tuned, the Fermi momentum pF remains

unchanged, and a quasiparticle (excited) state with momentum p(p > pF ) and spin σ can

be defined, or if I remove a particle from Fermi sea with momentum p < pF , I can define a

quasihole state with momentum −p and spin −σ. The decay rate of such a quasiparticle or

quasihole state is proportional to (p − pF )2 and therefore such states only make sense when

the excitations are close to the Fermi surface i.e., |p− pF | << pF . This means the particles on

the Fermi surface have zero decay rate or infinite lifetime. So the Fermi surface remains well

defined in the FL theory.

The energy due quasiparticle excitations can be described in terms of change in occupation

number δnpσ = npσ − n0
pσ where n0

pσ is the occupation density of the ground state, and npσ

is the occupation number after adding the quasiparticle. Landau energy functional is given

by[3, 7]

ξ({npσ}) = E − E0 =
∑
pσ
ε0pσδnpσ + 1

2
∑

pσ,p′σ′
fpσ,p′σ′δnpσδnp′σ′ + ....., (1.1.1)

where the energy E is measured with reference to the ground state energy E0. In the above
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equation, the first term is for the energy of isolated quasiparticles(ε0pσ) and the second term

represents interactions between quasiparticles. Alternatively it can be said that energy of a

quasiparticle in an interacting system is

εpσ = ε0pσ +
∑
p′σ′

fpσ,p′σ′δnp′σ′ + ..... . (1.1.2)

The interaction part can further be split into a spin-dependent magnetic (fa) and spin inde-

pendent non-magnetic (f s) part. Because of fermionic property the spin-dependent part in

antisymmetric with respect to spin (fa), while the other one is symmetric (f s), written as

fpσ,p′σ′ = f sp,p′ + fap,p′σσ
′. (1.1.3)

In an isotropic Fermi liquid, these terms can further be simplified because the interaction only

depends on the relative angle θ between p and p′ which gives f s/ap,p′ = f s/a(cos θ). By introduc-

ing the quasiparticle density of statesN∗(0), the interaction terms can be turned dimensionless

as

F s/a(cos θ) = N∗(0)f s/a(cos θ). (1.1.4)

This dimensionless interaction term can be written in terms of a few parameters with the help

of multipole expansion such as

F s/a(cos θ) =
∞∑
l=0

(2l + 1)F s/a
l Pl(cos θ). (1.1.5)

These parameters are called the Landau parameters. Depending on the nature and symmetries

of the interaction only a few Landau parameters are sufficient to describe a FL system. One

of the key features of the FL theory is the feedback effect which enters via the dependence

of the quasiparticle energy on the quasiparticle number density, and vise versa. Quasiparticle

number density for a FL is given by

npσ = f(ε(0)
p + δεpσ) = f(ε(0)

p ) + f ′(ε(0)
p )δεpσ. (1.1.6)
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So the change in quasiparticle number density becomes δnpσ = npσ − n(0)
pσ = −δ(ε(0)

p )δεpσ,

assuming f ′(ε(0)
p ) → δ(ε(0)

p ) at low temperature. With this the feedback effect, the energy

functional becomes

δεpσ = δε(0)
pσ −

∑
p′σ′

fpσ,p′σ′δ(ε(0)
p )δεpσ. (1.1.7)

This feedback effect is an inportant feature of the FL theory which results in many interesting

outcomes in the response functions, like charge and spin suscedptibilities, mass renormaliza-

tion, scattering rate. In the above equation δε(0)
pσ is like change of the chemical potential of the

system by some external purterbation and δεpσ is the resultant change of the fully interacting

quasiparticle energy which can be seen as the response or effect of the external purterbation.

With the assumption that the change in bare quasiparticle potential has a particular multipole

symmetry and the response also has the same symmetry, I can write

δε(0)
pσ = νlYlm(p), (1.1.8)

δεpσ = tlYlm(p), (1.1.9)

where Ylm(p) is a spherical harmonic. By combining Eq. (1.1.4)- (1.1.9) I arrive at the impor-

tant connection between purterbation and response in a FL theory[3]

tl = νl
1 + F s/a

. (1.1.10)

If the interaction is repulsive F s/a > 0, the response is suppressed; where as in case of an

attractive interaction F s/a < 0, the response is enhanced. In particular, if the interaction is too

strong so that F s/a = −1, the response formula hits a singularity. Such an instability causes

the breakdown of FL theory and in known as the Pomeranchuk instability.[8] These general

concepts of the feedback effect can be shown to cause various interesting properties in the FL

theory, some of which I shall discuss now. The derivations of all the results are similar to the

general one described above.
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Mass renormalization and density of states: Fermi velocity of a FL can be defined as

vF =
(
dε0p
dp

)
p=pF

. (1.1.11)

Since, the Fermi momentum remains unchanged by interaction we can invoke the usual mo-

mentum formula to express effective mass m∗ in a FL as vF = pF/m
∗ and the density of states

can now be expressed in terms of m∗ as

N∗(ε) = p2

π2~3
dp

dε0p
,

N∗(0) = m∗pF
π2~3 . (1.1.12)

This implies that the density of states at the Fermi level can be increased with large effective

mass.

According to Landau, the effective mass is connected to the dipole component of the inter-

action, and the feedback effect for mass is expressed as m∗ = m(1 + F s
1 ). Since the Landau

parameter F s
1 = N∗(0)f s1 and the density of states itself depends on the effective mass, the

effective mass formula can be expressed in terms of unrenormalized density of states, which is

given by

m∗ = m

1−N(0)f s1
. (1.1.13)

The above equation shows that the effective mass becomes very large if the denominator is

small and it becomes a heavy electron system, and the electrons become slow. If the denomi-

nator is further pushed to zero or N(0)f s1 = 1, it leads to an instability, which can be identified

as Mott instability[9] where the electrons become immobile or localized. Apart from transport

properties, effective mass also changes the linear specific heat of the system.



6 1. Introduction

Specific heat: Spefic heat of a Fermi liquid system is given by[10]

CV = ∂ε

∂T
=
∑
pσ
ε(0)

pσ

(
∂f(ε(0)

pσ)
∂T

)
→ N∗(0)

∫ ∞
−∞

dεε

(
∂f(ε)
∂T

)
,

= γT where γ = π2k2
B

3 N∗(0). (1.1.14)

The leading order in temperature dependence is the same as that of a free electron gas. Only

the linear coefficient is modified with the renormalized density of states or in terms of effective

mass it has increased by a factor of m∗/m.

Charge and spin susceptibility: Charge susceptibility (proportional to compressibility), is

a measure of change in number density of quasiparticles for change in chemical potential,

which is given by

χc = 1
V

∂N

∂µ
. (1.1.15)

For a chemical potential shift δε(0)
pσ = −δµ, the response function changes in an isotropic

manner δεpσ = −λcδµ, which gives the expression for λc when the feedback effect is included

as

λc = 1
1 + F s

0
. (1.1.16)

Here the symmetric channel is used for non-magnetic effect, and l = 0 channel is used for the

isotropic process. The change in number density is then given by δN/V = δn = λcN
∗(0)δµ

and the charge susceptibility is given by

χc = λcN
∗(0) = N∗(0)

1 + F s
0
. (1.1.17)

In a similar manner, the spin susceptibility can be derived by the change in bare quasiparticle

energy due to an applied magnetic field B is δε(0)
pσ = −σµFB, and the response is δεpσ =

−σλsµFB, where µF is the magnetic moment of an isolated fermion. Taking the feedback
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effect leads to

λs = 1
1 + F a

0
, (1.1.18)

where assymetric channel is used for magnetic effect, and l = 0 for the isotropic process.

Change in number density of up-spin and down-spin particles in the presence of a magnetic

field is δn↑ = −δn↓ = λs
2 N

∗(0)µFB. The net change in magnetization is given by δM =

µF (δn↑ − n↓) = λsN
∗(0)µ2

FB. Spin susceptibility measures the change in magnetization in

unit volume for change in magnetic field, and is given by

χs = 1
V

∂M

∂B
= λsµ

2
FN

∗(0) = µ2
FN

∗(0)
1 + F s

0
. (1.1.19)

Both χc and χs is suppressed for a repulsive interaction F s/a
0 > 0, and for F a

0 = −1, there is

an instability called the Stoner instability[11] which indicates a ferromagnetic quantum critical

point.

Spectral function: Landau’s FL theory can be described in terms of Feynman diagrams in

many body diagramatic approach or Green’s function approach.[12, 13, 14] The Green’s func-

tion or the propagator for a non-interacting free particle is given by

G0(k, ω) = 1
ω − εk + iηk

, (1.1.20)

where ω is the frequency, εk is non-interacting disperson relation, and ηk → 0+ for k > kF and

ηk → 0− for k < kF which is added to avoid divergence at ω = εk. The Fourier transformation

of the Green’s function gives

G0(k, τ) ∝ e−iεkτe−|ηk|τ . (1.1.21)

The above equation shows that the imaginary part ηk is related to the decay of the particle.

Since for non-interacting particle ηk is infinitisimally small the particle does not decay fast, or

the particle remains stable in its ground state. Spectral function is defined as the imaginary
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part of the Green’s function

A(k, ω) = − 1
π
G0(k, ω). (1.1.22)

For non-interacting system (ηk → 0 limit) the spectral function is a dirac delta function. When

interaction is added the Green’s function is modified with the addition of a self energy Σ =

Σ′ + iΣ′′, and is given by

G(k, ω) = 1
ω − εk − Σ′ − iΣ′′ . (1.1.23)

By expanding Σ′ in linear ω and introducing quasiparticle weight Zk =
(
1− ∂Σ′

∂ω

)−1
, the

Green’s function and spectral weight can be written in terms of modified dispersion εk →

Zk (εk − Σ′(ω = 0)) and ηk = ZkΣ′′ as

G(k, ω) = 1
ω − εk − iηk

,

A(k, ω) = 1
π

ηk

(ω − εk)2 + η2
k
. (1.1.24)

From Eq. (1.1.24) the spectral function can be predicted as a function of ω. For a fixed value

of k, the spectral function has its heighest value when ω = εk and is proportional to 1/ηk. For

a FL, ηk ∝ Σ′′ ∝ −ω2. So the spectral function has a peak at ω = εk with a continuous back-

ground for other ωs, and the width of the peak goes as ηk ∝ ω2. So for k 6= kF the spectral

weight peak has a finite broadening proportional to quardratic power of ω, and at k = kF , the

spectral weight peak becomes infinitely sharp as ω → 0. This peak is called the quasiparticle

peak, and can be used to validate the FL ansatz. This suggests that a stable (long-lived) quasi-

particle can only be defined for small value of ω, which are the states lying near the Fermi

surface. For state at the Fermi surface, the fermions have infinite lifetime, or in other words,

in the FL theory the Fermi surface remains stable.

Quasiparticle scattering rate: Scattering process in the FL theory is controlled by the Pauli

exclusion principle, which restricts the phase space for scattering. The scattering phenomena

happen only within a small phase space volume near the Fermi surface due to conservation
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of momentum and energy. The dominant process is the scattering of a quasiparticle state to

another state via creation of a quasiparticle-quasihole pair. Suppose, a quasiparticle state with

energy ε1 > εF is scattered to a state ε2 < ε1 > εF . To conserve energy, a quasiparticle with

energy ε3 < εF will be excited to energy ε4, creating a quasihole at ε3 state. Such a process,

together with temperature contribution makes the scattering rate quadratic in excitation energy

and in temperature as

Γ(ε) ∝
[
ε2 + π2T 2

]
. (1.1.25)

When |εp| << πkBT thermal excitation is the main reason for scattering, which goes as T 2.

For |εp| >> πkBT , the higher energy quasiparticle is dominated by the ε2p dependence of the

scattering rate.

Resistivity: Starting from the Drude model and substituting the life time as above, one can

obtain the resistivity vs temperature relation as

ρ(T ) = ρ0 + AT 2. (1.1.26)

This resistivity is the electronic contribution. So the co-efficient A comes from the electron-

electron scattering, and ρ0 arises from the impurity scattering. T 2 dependence of ρ is consid-

ered as a halmark of Landau FL theory, and is used extensively in experiments to verify the

applicability of FL ansatz.

1.2 Non-Fermi liquid

Deviation from FL behavior, e.g., the T 2 dependence of resistivity or constant specific heat

coefficient, is considered as a signature of the non-Fermi liquid (NFL) behavior. One of the

main characteristics of FL state is the quasiparticle descriptions. On the basis of this ansatz

there are two distinct catagories of NFL state. First, there are a few cases of NFL state, where

it can be explained by approximate FL concepts. Such examples include FL with disorder

or Hertz-Millis model for quantum phase transition in 3D. Quasiparticle concept can still be
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used to derive the non-quadratic temperature dependence of resistivity or other temperature

dependent properties. In the second senario, the FL descriptions completely break down, and

new theoretical concepts and formalisms are needed to explain such states. Luttinger liquid,

fractional quantum Hall states are a few examples where fermionic quasiparticle excitations

do not appear. There are also other cases where a well-defined quasiparticle description is not

at all possible. E.g., incoherent excitations lead to non-analytic behavior. A well-established

theory for the NFL state is not yet known, and it remains an interesting and open field of

research.

There is a third way to look at the NFL states, and the non-analyticity that arises in such

states (Note that within FL theory also, instability such as Stoner, Pomeranchuk or Mott insta-

bility arises which are also signature of a NFL behavior. But, a generic NFL theory beyond

these instability is my present interest as seen in many materials). Instead of bulk proper-

ties like specific heat or resistivity, one can look into the NFL behavior in the spectral func-

tion in terms of self energy. In general the imaginary part of self-energy can be described as

Σ′′(ω) ∝ −|ω|p at low frequency (ω → 0). p = 2 is the FL case and when p < 2 the system

is said to be in NFL regime, which is reflected in the temperature exponent of resistivity. For

simplicity I assume no momentum dependence in p. The real and imaginary part of self-enegy

are related by the Kramers-Krönig relation as

Σ′(ω) = P
∫ Σ′′(ω′)
ω′ − ω

dω′, (1.2.1)

where P denotes the principle value. At low frequency the real part of self-energy becomes

Σ′(ω → 0) = P
∫ |ω′|p

ω′
dω′. (1.2.2)

From the above equation, it becomes clear if p < 1 the integrand diverges at zero frequency. So

the self-energy becomes non-analytic. Perturbative approach fails in such cases and demand a

completely new theoretical formalism. However, if 1 < p < 2 self-energy is analytic at low

frequency and perturbative methods may be used to describe such states. p = 1 is the marginal

case where the self-energy is still analytical, and this is known as the marginal Fermi liquid

(MFL) behavior. Below, I briefly describe a few well-established theoretical models that gives
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NFL states.

1.2.1 Theoretical models for NFL

Multichannel Kondo model: In multichannel Kondo model, developed by Nozières and

Blandin,[15] an impurity spin is coupled to several identical conduction bands which are also

called channels. The Hamiltonian is given by

HK =
∑
k,m,σ

εka
†
kmσakmσ + J

∑
k,k′,m,σ,σ′

S.a†kmσσσσ′akmσ, (1.2.3)

where S is the impurity spin, a†kmσσσσ′akmσ′ = s are the spins of condunction bands, J is the

Kondo coupling constant, and m denotes the orbital channels or degrees of freedom. Three

cases can arise depending on the number of conduction channels:

1. m < 2S, there are not enough conduction channels to fully compensate the impurity spin.

Such undercompensated case may give rise to nonanalytic corrections to local FL behavior.

2. m = 2S, when the conduction channels completely compensate the impurity spin. S =

1/2,m = 1 gives the normal Kondo problem. This leads to the usual FL behavior.

3. m > 2S, when the conduction channels overcompensate the impurity spin. Such case

leads to NFL behavior. The length scale over which the impurity spin affects the conduction

electrons diverges. Resistivity, specific heat etc. also show a NFL behavior. Exact solutions

of multichannel Kondo model for dilute impurities give the low-temperature power law be-

havior of the specific heat, and the spin susceptibility at zero magnetic field for S = 1/2,

as[16, 17, 18]

Cv/T ∼ χ(T ) ∼ T
4

m+2−1, for m > 2, (1.2.4)

Cv/T ∼ χ(T ) ∼ log
(
T

TK

)
, for m = 2. (1.2.5)
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The leading low-temperature power law for resistivity for S = 1/2 and m ≥ 2 is given by

ρ(T )− ρ0 ∼ Tα, where α = 2
2 + m . (1.2.6)

Disorder induced NFL: As discussed in the context of multichannel Kondo model, there is a

characteristic temperature TK below which FL behavior is observed. The Kondo temperature

can be expressed in terms of microscopic parameters J and N0, the density of states at Fermi

energy.[19, 20] However, if the system has disorder it can lead to a distribution of TK rather

than a well-defined value due to disorder induced fluctuations of J and N0. In such situa-

tions NFL behavior can exist below the average TK for the system. Such incidents have been

reported in metals near metal-insulator transition in alloys with two different non-magnetic

constituents.[21, 22, 23] In heavy fermion materials, NFL behavior is reported due to compe-

tition of Kondo screening and interactions of magnetic moments.[24, 25]

Near the critical point, disorder can lead to many anomalous behavior. It has been shown

that the interplay between disorder and spin fluctuation near a quantum critical point may

result into a NFL behavior with resistivity given by ρ ∼ ρ0 + ATα where 1 ≤ α ≤ 1.5. [26]

NFL behavior has appeared also in the context of Griffiths phase where the predicted NFL

behavior is described as a competition between RKKY spin interactions and Kondo-moment

compensation effect in disorder system.[27] In spin glasses, resistivity ρ = ρ0 + AT 1.5 has

been predicted in disorder model.[28]

Spin fluctuation mediated NFL: A quantum phase transition is charaterized by a contin-

uous phase transition at zero temperature, which is usually driven by quantum fluctuation due

to some non-thermal control parameter.[29] Near the critical value of this control parameter

(critical point), scaling laws with different temperature exponent deviate from the FL result. In

a classical phase trnsition (phase transition at finite temperature), there is an order parameter

φ which goes to zero at the transition point. Classical partition function Zcl can be written in

terms of this order parameter field φ(r) which is time independent, and the Landau-Ginzburg-

Wilson free energy functional Fcl{φ}[30] is defined by

Zcl = Z0
cl

∫
Dφe−βFcl{φ}, (1.2.7)
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where β = 1/kBT . In case of a quantum system, the order parameter field has a time de-

pendence, and the partition function can be written in a similar manner considering imaginary

time such as

Zq(β) = Z0
∫
Dφ(r, τ)e−S{φ}, (1.2.8)

where Dφ denotes path integral. The order parameter φ satisfies the condition φ(r, 0) =

φ(r, ~β) and S denotes the Euclidian action given by

S{φ} =
∫ ~β

0
dτ
∫
ddrL{φ(r, τ)}, (1.2.9)

where L is the Lagrangian density. The Fourier transformation of the action S (say for insu-

lating magnet) can be written as

S{φ} = 1
βV

∑
k,ωn

φ−k,ωn

[
ε0
(
δ + ξ2

0k
2
)
ω2
n

]
φk,ωn + S4, (1.2.10)

with ωn = 2πnkBT is bosonic Matsubara frequency, δ is the non-thermal control parameter,

k is the wave vector of order parameter field, and S4 is fourth order term. Distance to the

critical value of the control parameter (δc) is denoted by r = δ − δc. For finite temperature

phase transition, only the ωn = 0 term contributes, but for the T = 0 phase transition, all

other frequencies also contribute. Thus, in quantum phase transition, temporal fuctuations

become important. And because of the difference in the gradient of energy in spatial and time

direction, the system becomes anisotropic in time and space. This anisotropy is characterized

by a dynamical exponent z, which is defined by the relation ω ∼ kz. Thus the effective

dimension near the critical point is deff = d+z. Near the phase transition point, the correlation

length ξ and correlation time ξτ diverge, which is given by the relation

ξ ∼ |r|−ν , and ξτ ∼ ξz. (1.2.11)

The exponent ν in quantum phase transition is different from its classical counterpart νcl, where

the later is given by ξ ∼ |T − Tc|−νcl .

For T 6= 0 the quantum system has a finite length in time direction Lτ = ~β where
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(Quantum critical)
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Figure 1.1: (a) Schematic phase diagram of a generic quantum phase transition due to spin
fluctuation. (b) Schematic phase diagram of Millis model of quantum phase transition with
antiferromagnetic order. Region I is the FL region, region II is quantum to classical crossover
region and region III represents quantum critical region. In both figures (a) and (b), T denotes
temperature and δ is the non-thermal control parameter such as doping, pressure or external
magnetic field, and δc is the critical value of the parameter representing quantum critical point
(QCP).

β = 1/kBT . Fig. 1.1(a) shows a generic phase diagram near a quantum critical point. For

r < 0 and low-T , there is an ordered phase. The disordered phase on the other hand can be

divided into separate regions -

(i) At low T and r > 0, it is a quantum disordered state where Lτ >> ξτ , and thermal ef-

fects are negligible in this region. FL behavior is expected here with well defined quasiparticle

excitations.

(ii) T > Tc and r < 0 is the thermal disordered region, where the order in the ordered

phase is destroyed by thermal fluctuation. In this region quasiparticle is still well defined and

Lτ >> ξτ .

(iii) In the region above quantum critical point ξτ >> Lτ , the quasiparticle is no longer

well defined. Instead there is a critical continuum of excitations which results into unusual

power law in temperature.

Antiferromagnetic and ferromagnetic ordered phases near QCP has been studied exten-

sively by Hertz[31] and Millis,[32] which shows the value of the dynamical exponent for anti-

ferromagnet is z = 2 and for ferromagnet z = 3. So for three dimensional syatems, the effec-

tive dimension is always greater than the upper critical dimension [deff (= d+ z) > d+
c (= 4)].

A schematic phase diagram for the Millis model in the antiferromagnet phase is shown in
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Fig. 1.1(b). As discussed in the previous paragraph, antiferromagnetic order appears for low

T and r < 0. The disordered phase has different regions (see Fig. 1.1(b)). Region I is the

FL region where quantum fluctuation dominates over thermal fluctuation. Region II is quan-

tum to classical cross over region where fluctuations are of the order of kBT . Region III is

thermally controlled region with critical excitations where temperature exponent has different

values than FL. For the antiferromagnetic case, ρ = ρ0 + aT 3/2, C/T = γ0 − a
√
T and for

ferromagnetic case ρ = ρ0 + cT , C/T = a log(T0/T ).

Apart from Hertz and Millis theory, NFL behavior near QCP is also described by so-

called self-consistent renormalization (SCR) model developed by Moriya, Takimoto,Kawabata

Hasegawa.[33, 34, 35] This model includes some additional coupling between spin-fluctuation

than in the theory of Hertz and Millis. SCR model is a one loop approximation for spin fluctu-

ation scattering. It considers wealy inteacing spinfluctuation to give a systamatic treatment of

mode-mode coupling between spin fluctuations at wavevector q = 0 and at wavevector of an-

tiferromagnetic order q = Q. SCR theory successfully predicts the transition temperature for

a large number of d- and f - electron system. It also predicts the same temperature dependence

near QCP as in the Hertz-Millis model.

Marginal Fermi liquid (MFL): Marginal Fermi liquid theory proposed by C. M. Verma[36]

was aimed to describe linear resistivity behavior in context of high Tc superconductors. MFL

phenomenology assumes that polarizabilities (P ) has a low energy scale that depends on tem-

perature over a wide range of momentum, charge and spin which is given by

Im(P) ∼ −N0
ω

T
, ω << T,

∼ −N0, T < ω << ωc, (1.2.12)

Re(P) ∼ N0 ln ω
T
, (1.2.13)

where ωc is a cut-off energy. For momentum independent model, which occurs if the Fermi

surface is circular, the self energy depends on the frequency ω and temperature T , and takes



16 1. Introduction

the simple form[37]

Σ(ω, T ) =
(
i
π

2 max(|ω|, πT ) + ω ln
(
ωc
x

))
, for x = max(|ω|, πT) . ωc,

= i
π

2ωc, for max(|ω|, πT) >> ωc. (1.2.14)

An anisotropy of band structure and consequently anisotropy in Fermi surface would modify

the self energy with an additional momentum dependent term as Σ → g(k)Σ where g(k)

describes the momentum dependence. It is straightfroward to calculate specific heat CV and

resistivity from the above self-energy correction. Heat capacity in the leading order of temper-

ature goes as CV ∼ T ln (1/T ) and the dc conductivity can be calculated from Kubo formula

and for T → 0 is given by

σdc(T ) ∝ 1
2ImΣ(0,T) (1.2.15)

which gives a temperature dependence of resistivity as ρ(T ) ∝ T .

My work as presented in chapter 2 extends the above calculations to momentum dependent

exponent pk and its manifestation to the NFL behavior.

1.3 Unconventional superconductivity

First successful microscopic theoretical description of superconductivity was given by Bardeen,

Cooper, and Schrieffer (BCS theory) in 1957.[38] They assumed a coherent ground state which

consists of pair of electrons known as Cooper pair. Such a ground state gives lower energy than

the ground state energy of the Fermi sea. Such a pairing between electrons can be obtained

from an one-band interacting Hamiltonian as

H =
∑
k,s
εkc
†
kscks +

∑
k,k′,q

Vkk′c
†
k+q,↑c

†
k′−q,↓ck′↓ck↑. (1.3.1)

A Cooper pair order parameter is defined as
〈
c†k+q,↑c

†
k′−q,↓

〉
. The most relevant contribution

to superconductivity comes from the case where the total linear momentum of a Cooper pair
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Σ = + + + + …

(a)

(b)

(Doyson’s equation)

(RPA diagrams for self-energy)

Figure 1.2: Feynmann diagrams for (a) Dyson’s equation, and (b) the RPA self-energy. The
single solid line represents non-interacting Green’s function, the double solid line represents
interacting or dressed Green’s function, and the curly line represents the Coulomb interactions.

vanishes and the Hamiltonian becomes

H =
∑
k,s
εkc
†
kscks +

∑
k,k′

Vkk′c
†
k,↑c

†
−k,↓c−k′↓ck′↑. (1.3.2)

In BCS theory, the interaction term is given by the electron-phonon coupling, which results

into an attractive channel between the electrons to form a pair. The resulting Cooper pair has

the most symmetric form, which is the s-wave pairing with vanishing relative orbital angular

momentum. For the s-wave symmetry, the spin has to be singlet to satisfy the antisymmetry

condition for fermions. This is refered to conventional superconductivity. In the unconven-

tional superconductivity, the pairing happens in lower symmetric (p-wave, d-wave etc.) forms

and in the singlet or triplet channels.[39, 40, 41, 42] The mechanism of unconventional su-

perconductor is still an open field of research and there exist many theoretical proposals. As

presented in chapter 3, I am interested in a superconductivity from repulsive Coulumb interac-

tion, which arises from spin-fluctuations.

I start with a Coulomb interaction term as

Hint =
∫
drdr′Ũδ(r− r′)ρ↑(r)ρ↓(r′), (1.3.3)

where Ũ is the strength of repulsive contact interaction, ρs(r) = c†s(r)cs(r) denotes the density
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of electrons with spin s. Polarized electron spin acts like a local magnetic field, which is given

by

Beff (r, t) = − U

µB~
S(r, t), (1.3.4)

where U = Ũ/Ω (Ω is the volume). Linear response theory can connect the electron spin and

the magnetic field with the response function dynamical susceptibility χ as

S(r′, t′) = µB

∫
drdtχ(r′ − r, t′ − t)Beff (r, t), (1.3.5)

which results into the spin fluctuation Hamiltonian as

Hsf = −U
2

~2

∫
drdr′dtdt′χ(r′ − r, t′ − t)S(r, t)S(r′, t′)

= −U
2

4

∫
dω

∑
q,k,k′

Re [χ(q, ω)]
∑

s1,s2,s3,s4

{
c†k+q,s1

σs1,s2ck,s2

}
.
{
c†k′−q,s3

σs3,s4ck′,s4

}
.

(1.3.6)

By following the similar procedure as the BCS Cooper pairing with vanishing linear momen-

tum, one arrives at the pairing potential due to electron-paramagnon coupling from spin fluc-

tuation exchange mechanism, which is given by

Hsf =
∑
k,k′

∑
s1,s2,s3,s4

Vk,k′;s1,s2,s3,s4c
†
k,s1

c†−k,s2
c−k′,s3ck′,s4 , (1.3.7)

where

Vk,k′;s1,s2,s3,s4 = −U
2

4 Re [χ(q = k− k′, ω = εk − εk′)] σs1,s2 .σs3,s4 . (1.3.8)

The susceptibility can be split into spin and charge channels, and can be evaluated by RPA

approximation by considering the diagrams as shown in Fig. 1.2(b). By summing over the

diagrams, one arrives at the RPA susceptibility expression given by

χs/c(q, ω) = χ0(q, ω)
1∓ Uχ0(q, ω) , (1.3.9)
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where χs/c represents spin/charge susceptibility, and χ0(q, ω) is the Linhard susceptibility

given by

χ0(q, ω) = −
∑

k

f(εk)− f(εk+q)
ω + iδ − εk + εk+q

. (1.3.10)

With this definition of susceptibility and from Eq. (1.3.8), the pairing potentials for singlet and

triplet channels are given by[43, 44, 45]

V singlet
k,k′ = U2

4 Re [3χs(q, ω)− χc(q, ω)] , (1.3.11)

V triplet
k,k′ = U2

4 Re [−χs(q, ω)− χc(q, ω)] . (1.3.12)

With these pairing potentials, the generalized BCS theory can be used to solve for supercon-

ductivity. The generalized BCS Hamiltonian can be written as,

Hgen =
∑
k,s
εkc
†
kscks +

∑
k,k′

∑
s1,s2,s3,s4

Vkk′;s1s2s3s4c
†
k,s1

c†−k,s2
c−k′s3ck′s4 . (1.3.13)

The mean-field Cooper pair field is defined as bk,ss′ = 〈c−kscks′〉, and the mean field Hamilto-

nian becomes

Hmf
gen =

∑
k,s
εkc
†
kscks −

1
2
∑

k,s1,s2

[
∆k,s1s2c

†
k,s1

c†−k,s2
+ ∆∗k,s1s2cks1c−ks2

]
− 1

2
∑
k,k′

∑
s1,s2,s3,s4

Vkk′;s1s2s3s4

〈
c†k,s1

c†−k,s2

〉
〈c−k′s3ck′s4〉+ small terms,

(1.3.14)

where ∆k,ss′ is the generalized gap function defined by

∆k,ss′ = −
∑

k′,s3s4

Vk,k′;ss′s3s4bk,s3s4 ,

∆∗k,ss′ = −
∑

k′,s1s3

Vk′,k;s1s2s′sb
∗
k,s1s2 . (1.3.15)
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In this notation the generalized gap function is represented by a matrix in the spin basis as

∆̂k =

∆k,↑↑ ∆k,↑↓

∆k,↓↑ ∆k,↓↓

 . (1.3.16)

And this gap function is related to the Cooper pair wave function by Eq. (1.3.15). The gap

function can be written in terms of momentum and spin parts as

∆k,ss′ = φ(k)χss′ , (1.3.17)

where φ is the spatial momentum part, and χ is the spin part. Due to antisymmetry property of

Fermions, the momentum and spin part are related as follows

Even parity : φ(−k) = φ(k)χss′ (l = 0, 2..),

χss′ = 1
2 (↑↓ − ↓↑) singlet (1.3.18)

Odd parity : φ(−k) = −φ(k)χss′ (l = 1, 3..),

χss′ = ↑↑
1
2 (↑↓ + ↓↑) triplet .

↓↓ (1.3.19)

In this generalized BCS set up, conventional superconductivity of the BCS theory due to elec-

tron phonon coupling corresponds to l = 0 singlet s wave pairing. However, there are other

unconventional s (l = 0) wave pairing like extended-s or s± pairing, where pairing eigenval-

ues change sign on the Fermi surface. The other lower symmetry gap functions (l = 1, 2, ..)

are considered as unconventional superconductivity. In chapter 3, I extend the formalism in

Eq. (1.3.15) to a multiband case and solve for twisted bi-layer graphene.

1.4 Topology

In this section the topology in physics is introduced in a general framework of field theory.

I start with the Fermionic σ-model in d (= 1, 2) spatial dimensions. The Lagrangian for the
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model is given by[46]

L1 = ψ∗
(
iD̂ + im (∆1 + iγ5∆2)

)
ψ for (1 + 1) dim, (1.4.1)

L2 = ψ∗
(
iD̂ + imn.τ

)
ψ for (2 + 1) dim, (1.4.2)

where ψ represents a Dirac fermion, D̂ = γµ(∂µ − iAµ), Aµ is the abelian gauge field, γµs are

γ-matrices, and τµs are Pauli matrices. Further, a positive value of mass (m > 0) is assumed.

The chiral fields (∆i) introduced in the above equations for d = 1 can be written as a phase

∆1 + i∆2 = eiφ, and for d = 2, it is a unit vector n = (n1, n2, n3). The topological charge for

the system can be written as a spatial integral Q =
∫
ddxJ0, where J0 is the zeroth component

of the topological current in (d+ 1) dimension, which is given by[46]

(1 + 1) : Jµ = 1
2πεµν∂nuφ, (1.4.3)

(2 + 1) : Jµ = 1
8πεµνλn . ∂νn× ∂λn. (1.4.4)

From the above equations the zeroth component can be written as

(1 + 1) : J0 = ∂φ

∂x
, (1.4.5)

(2 + 1) : J0 = 1
8πn .

(
∂n
∂x
× ∂n
∂y
− ∂n
∂y
× ∂n
∂x

)

= 1
4πn .

∂n
∂x
× ∂n
∂y
. (1.4.6)

For d = 1, Q can be associated with winding number in 1D system and for d = 2, Q can

be associated with the topological invariant of the system like Chern number for topological

insulators or skyrmion number for topological spin-texture. In the following sections, various

topological concepts and their physical origins are briefly described for electronic structure

(topological insulators) and spin systems (magnetic skyrmions). These concepts will be useful

in Chapter 4 and 5, where skyrmions and topological insulators in the bi-layer systems are

described.
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1.4.1 Berry Phase and Chern number

Quantum mechanical wavefunction can be changed under a U(1) transformation |ψ〉 = eiφ|ψ〉

without changing its properties. Such an ambiguity of phase does not appear in the expectation

values of the observables. In case of a lattice, the quantum mechanical states are represented

by the Bloch states, and similar phase ambiguity appears |uk〉 → eiφ|uk〉, where k is the

crystal momentum and u has the periodicity of the reciprocal lattice vector uk+G = uk. If φ

is independent of k, then the phase does not appear in defining various properties. But such a

global gauge can not always be defined in the entire Brillouin zone. Therefore, one needs to

use a k-dependent gauge transformation as

|uk〉 → eiφ(k)|uk〉. (1.4.7)

But such a local gauge transformation in the momentum space requires a gauge field to make

the derivative term in the Hamiltonian to be gauge invariant. This is called the Berry connection[47]

as defined by

Ak = −i〈uk|∇k|uk〉. (1.4.8)

Under the gauge transformation of Eq. (1.4.7), the Berry connection changes as Ak → Ak +

∇kφ(k), which is analogous to the electromagnetic vector potential. By following the analogy

further, the gauge invariant Berry phase can be defined as

γC =
∮
C

A.dk =
∫
S
Fdk, (1.4.9)

where the first integration is along a closed loop C, and the second one is a surface integration

in k-space, and F is the Berry curvature defined as F = ∇×A.

To explore a simple physical meaning to the Berry phase, I consider a Hamiltonian of

the form H(k) = d(k).σ, where σ denotes Pauli spin matrices. Berry phase for such a

Hamiltonian along a closed loop C in k-space is the solid angle covered by d̂(k) as k goes

around the loop. Then the Berry curvature is interpreted as the solid angle per unit area in the



1.4. Topology 23

k-space, which is given by

F = 1
2εijd̂.(∂id̂× ∂jd̂). (1.4.10)

And when F is integrated over the Brillouin zone, we can count the number of times d̂ wraps

around the unit sphere created by it. This is denoted by the Chern number[48, 49] given by

n = 1
2π

∫
S
Fdk, (1.4.11)

which serves as the topological invariant of the system. More physical insights into the Chern

invariant can be gained from considering Thouless charge pump.[50, 51]

1.4.2 Thouless charge pump and bulk boundary correspondence

Berry phase can be connected to the polarization of the band structure. To illustrate the idea,

let us consider 1D system for which polarization can be given by

P = e

2π

∮
BZ

A(k)dk. (1.4.12)

In 1D the above expression is not gauge invariant, because a gauge transformation |uk〉 →

eiφ(k)|uk〉 (or equivalently Ak → Ak + ∇kφ(k)) will change the polarization as P → P +

ne (note that φ(π/a) − φ(−π/a) = 2πn). To remove the gauge dependence, I consider a

Hamiltonian with a tuning parameter t such that when t = T the system comes back to the

initial state; Or in other words the Hamiltonian is periodic in t : H(k, t + T ) = H(k, t). Now

the change in polarization can be shown to be gauge independent as

∆P = P (t = T )− P (t = 0)

= e

2π

[∮
Ct=T
−
∮
Ct=0

]
A(k).dk

= e

2π

∫
S
Fdkdt = ne. (1.4.13)

In the above equation, the line integral is taken in two dimensional space spanned by k and t.

At every cycle, n number of electrons are transported from one edge to the other, even if there
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is a bulk band gap. In this manner, the polarization which is a phenomena at the boundary can

be connected to the Chern number which is a bulk property. In 1D P is called Zack phase. In

case of a finite size 2D system, similar argument can show the appearance of the conducting

edge states when n 6= 0.[52] These edge states have interesting properties. Since these states

depend only on the topology of the system they are robust against disorder, and they are chiral

since they propagate only in one direction. Although the number of these edge states (NR for

right moving states, NL for left moving states) is not fixed, the difference between the number

of right moving and left moving states is fixed, and is connected to the Chern number as

NR −NL = ∆n, (1.4.14)

where ∆n is the difference in Chern numbers of the two systems accross the boundary.

1.4.3 Z2 topological invariant

If the system has time reversal symmetry, then the total Chern number vanishes. But a new

topological invariant can be defined, which takes two values of Z2, and such systems are called

Z2 topological insulators.[53, 54] The time reversal operator is an antiunitary operator given

by Θ = eiπSy/~K, where Sy is the spin operator, andK is the complex conjugation operator. Θ

has the interesting property that Θ2 = −1 for spin 1
2 systems. If a Hamiltonian is time reversal

(T ) invariant, then it should follow Kramer’s theorem, which states that if T symmetry is

maintained, all eigenstates of the Hamiltonian are at least twofold degenerate (For spin 1/2 it

is twofold, and for other half-integer spin, degeneracy can be twofold or more). In a system,

where spin-orbit coupling (SOC) is absent, Kramer’s degeneracy is the degeneracy between

up and down spins. And if SOC is present, then spin is no longer a good quantum number,

but the same conclusions can be drawn in some other basis, which is called helical basis. At

the high symmetry k points in the BZ, k point coincides with its T partner, which is −k.

These are called T invariant momentum points. For example, in 1D, there are two such k

points (k = 0, π/a) in the half BZ. Only the half BZ is considered because the other half

should be symmetric due to the T symmetry. In 2D square lattice, there are four such points

((kx, ky) = (0, 0), (π/a, 0), (0,−π/a), (0, π/a)), and in 3D cubic lattic, there are eight such
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Figure 1.3: Two different types of edge states with Kramer’s degeneracy - (a) the edge states,
crossing the Fermi energy, are not connected to the valence or conduction bands, and have
even number of crossings at the Fermi energy leading to topologically trivial state; (b) The
edge states are connected to the valence and conduction bands with odd number of crossings
at the Fermi energy leading to toplogically non-trivial state.

points and so on. The T invariant Hamiltonian satisfies the relation ΘH(k)Θ−1 = H(−k),

and has Kramer’s degeneracy of the edge states at the T invariant momentum points. Away

from T invariant momentum points, if the Hamiltoninan has SOC, the degeneracy is lifted.

With this picture in mind, it is possible to argue that there can be only two values of the

topological invariant for such systems.

Let us consider a T symmetric 2D system with periodic boundary condition in one direc-

tions (x direction) and edges in the other direction (y direction). If this system is topologically

nontrivial, it should have gapless edge states. Since kx is a good quantum number in this sys-

tem, half of the BZ is taken in the kx direction 0 < kx < π/a. Two T -invariant k points kx = 0

and kx = π/a have degeneracies, which can be fulfilled in two ways as shown in Fig. 1.3(a)

and (b).[55] This is a generic bandstructure with Kramer’s degeneracy, which consists of bulk

bands which are gapped and the edge states are metallic. In Fig. 1.3(a), the edge states maintain

the degeneracies in a way that they do not connect to the vallence and conduction bulk bands.

With disorder, such edge states can be moved so that it does not cross the Fermi level, and thus

has a trivial topological property (topological index ν = 0). On the other hand, Fig. 1.3(b)

shows the edge states, which connect the vallence and conduction bulk bands, and cross the
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Fermi level, which cannot be removed by disorder. This has non-trivial topology (ν = 1). In

general, if there are NK number of points, where Kramer’s pair cross the Fermi level in the

half BZ, then the topological index is given by[56]

ν = mod (NK , 2). (1.4.15)

If the full BZ is considered, then there are always even number of edge states. For example,

where the z-direction of spin is conserved, the sum of the Chern numbers for both up and down

spins is zero; but their difference gives a nonzero value, and topological invariant is given by

ν = mod ((n↑ − n↓)/2, 2). For more general formulation of Z2 invariant, Bloch functions

can be used to define a unitary matrix[57]

wmn =< um(k)|Θ|un(−k) >, (1.4.16)

where the indices m and n run over occupied bands. At the T -invariant points Γa, the w matix

is antisymmetric, and one can define

δa = Pf[w(Γa)]√
det[w(Γa)]

= ±1. (1.4.17)

Thus, δa can be defined in each T -invariant k point. Since there is a gauge ambiguity in

defining eigenvectors |un(k)〉, the gauge must be chosen continuously in the whole BZ, which

is always possible for Z2 topological insulators, because the total Chern number of occupied

bands is zero in these systems. There are various numerical methods like parallel transport

of eigenvectors, Wannier function method, Wilson loop method to define a continous Bloch

wavefunctions. The Z2 invariant, ν, is given by[57, 55]

(−1)ν =
n∏
a=1

δa, (1.4.18)

where n is the total number of T invariant k points in the half BZ.
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Figure 1.4: Band structure (red) and zeros of Green’s function (blue) for Kane-Mele model[54]
with three stes of staggered potential λv and spin orbit coupling strength λSO - (a) for λv >
3
√

3λSO, zeros of Green’s fuction does not cross in the band gap region, giving a topological
trivial state, (b) λv = 3

√
3λSO is the transition point, where zeros of Green’s fuction just cross

in the band gap region, giving a topological non-trivial state, and (c) for λv < 3
√

3λSO zeros
of Green’s fuction cross in the band gap region, giving a topological non-trivial state.

1.4.4 Green’s function method to detect topological insulators

A recent study by Misawa and Yamaji showed that the Green’s functions can be used to detect

the topological non-trivial states in 2D and 3D.[58] Other methods mentioned above require

the knowledge of the eigenvectors and are numerically expensive for large Hamiltonians. For

multiband systems, the Green’s function is a matrix in band basis Gmn(k, ω), with m and n

representing band index. Green’s function method considers only the diagonal component of

the Green’s function Gn(k, ω) for m = n. Zeros of the diagonal component of the Green’s

function cross each other in the band gap region for topological insulators (see Fig. 1.4(c)),

and the crosses are guarenteed by the existence of gapless edgestates. Diagonal component of

Green’s function, expressed in terms of Bloch wavefunctions is given by

Gn(k, ω) = (ωI −H(k))−1
nn =

N∑
i=1

|u(n)
i (k)|2

ω − Ei(k) , (1.4.19)

where Ei(k) is the ith eigenvalue of the HamiltonianH(k), and uni (k) is the nth component of

the ith eigenvector, and N is the rank of the Hamiltonian matrix. It can be shown that the nth
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component can be written in terms of eigenvalues of the Hamiltonian and the minor matrix as

Gn(k, ω) =
N∑
i=1

det(ωIN−1 −Mn(k))
det(ωIN − H(k))

=
∏N
i=1 [ω − Ei(Mn(k))]∏N
i=1 [ω − Ei(H(k))]

, (1.4.20)

where Ei(A) denotes the ith eigenvalue of matrix A, and Mn is the minor matrix created by

removing nth row and nth column from H . From the above equation, it can be seen that

the zeros of Green’s function can be determined from the eigenvalues of the minor matrices,

and the poles of the Green’s function are the eigenvalues of the Hamiltonian. The poles will

give the bulk band structure, and if the zeros are plotted along with the bulk bands, there will

be crossing of zeros in the band gap energy region (see Fig. 1.4) for a topological insulator.

The number of crosses of zeros is gauge invariant. Further it can be shown that the m-fold

degeneracy in the edge states implies m-fold degeneracy in the zeros of bulk Green’s function,

which crosses in the band gap region. Thus the edge states induce the crosses of zeros of the

Green’s function.

1.4.5 Topology in spin texture

Topology in O(3) spin system in 2D can be described by a skyrmion number. The concept

of skyrmions was originally proposed by Skyrme in the context of high energy physics.[59]

In quantum field theory, particles are described by the excitations of the fields. Hence, the

stability of particles is very difficult to explain by considering energy. According to Skyrme,

the paricles are stable due to topological protection, which is characterized by some topological

invariant (integer number). This cannot be changed by a continuous deformation of the field.

Thus, skyrmions can be viewed as a topologically stable field configuration. Apart from high

energy physics, it also appears in condensed matter systems in various fields like quantum

Hall system[60], liquid crystal[61], Bose condensate[62]. In 2D chiral magnets, the local

magnetization can play the role of fields, and the skyrmions can be described by the spin

texture of the system.[63, 64] These are called magnetic skyrmions, which will be the topic of

discussion in chapter 4 of this thesis. A magnetic skyrmion can be characterized by an integer
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winding number also called the skyrmion number, which is given by[65, 66]

Q =
∫ dxdy

4π n .
∂n
∂x
× ∂n
∂y

. (1.4.21)

Here n(x, y) denotes the field configuration of unit magnitude (|n(x, y)| = 1). Depending

on the values of Q, the spin texture can be categorized in different classes like bi-skyrmion

(Q = −2), skyrmion (Q = −1), meron (Q = −0.5). Here, we assume that the magnetization

or spin orientation at the core center is negative. For the same magnetization direction at the

core center, there can be topological stucture like antiskyrmion Q = 1 or antimerron Q = 0.5.

For core magnetization with opposite direction, all the topological numbers change sign. Apart

from these structures, there can also be combinations of them, e.g., a bimeron (Q = −1)

consisting of a meron with Q = −0.5 and an antimeron with Q = −0.5.

There can be distinct skyrmion types with the same topological charge Q. Degenerate

skyrmion solutions can exist with different in-plane spin-orientation. This can be distin-

guished with additional quantities - vorticity number Qv, and helicity number Qh.[66, 67]

To extract these numbers, we use the polar co-ordinates r = (r cosφ, r sinφ). The symmetry

of skyrmionic structure permits us to write n(r) in terms of polar angles as[68]

n(r) = (cos Φ(φ) sin Θ(r), sin Φ(φ) sin Θ(r), cos Θ(r)), (1.4.22)

where Φ depends only on φ, and Θ depends only on r because of symmetry of skyrmionic

structure. The skyrmion number can now be written as Q = [cos Θ(r)]r=∞r=0 [cos Φ(φ)]φ=2π
φ=0 .

Assuming a spin down state at the core center r = 0, and spin up at r → ∞, we have

[cos Θ(r)]r=∞r=0 = 2. Then vorticity Qv can be defined by the nature of in-plane orientation of

the spins, which is given by

Qv =
[cos Φ(φ)]φ=2π

φ=0

2π . (1.4.23)

The helicity Qh can be defined as a phase, as given by

Φ(φ) = Qvφ+Qh. (1.4.24)
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These three numbers (Q,Qv, Qh) completely catagorizes skyrmionic stucture. There are mainly

two types of skyrmion depending on the in-plane spin orientation - Bloch skyrmion (Qh =

−π/2 or π/2), and Néel skyrmion (Qh = 0 or π).

Magnetic skyrmions were first observed in MnSi in the presence of an external magnetic

field.[69] The observed spin structure indicates the formation of a lattice, which consists of

two-dimensional skyrmions. The periodicity of skyrmionic lattice defines a new magneic unit

cell, determined by some long-ranged interactions like dipole, or by some chiral interaction

like Dzyaloshinskii Moriya interaction (DMI). There have beeen intense theoretical and exper-

imental studies of skyrmions in 2D lattices and thin films. Magnetic skyrmion often appears

as a spin configuration allowed by classical solution of the non-linear sigma model. However,

the main challenge lies in stabilizing a skyrmion solution at a saddle-point energy minimum,

requiring distinct magnetic interactions and frustration. Long-range dipole-dipole interaction,

in addition to easy-plane magnetic anisotropy and magnetic field, was initially proposed to

mediate skyrmion solution.[70] DMI brings in the chiral spin-spin interaction required for a

skyrmion solution [71, 72, 73, 74, 75, 76] and favours coplanar stucture. On the other hand, the

ferromagnetic exchange interaction favours spin alignment in z direction. But presence of both

DMI and ferromagnetic exchange interactions makes a spatially varying magnetic texture to

have a lower energy than the mean-field long-range magnetic order. Geometrical and magnetic

frustration can also stabilize skyrmion structures [77, 78, 79, 80]. This is induced, for example,

in a triangular lattice by the competition between a ferromagnetic nearest neighbour (NN) ex-

change with an antiferromagnetic next nearest neighbour (NNN) interaction. Apart from these,

more recently, spin-orbit coupling[81], Kondo coupling[82], and magnetic disorder with the

application of magnetic pulse [83] are shown to assist skyrmion solution. Proposals to obtain

skyrmions via quantum Hall substrates[84] and optical lattices[85] are also presented.

In chapter 4, I’ll return to this topic where we describe more details of skyrmions in thin

films of Van der Waals (VdW) magnets and explore the formation of exotic skyrmionic phases

in twisted bilayer geometry.
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1.5 Moiré pattern and twisted bi-layer

Recent development has made it possible to construct bi-layer lattice. Physics in bi-layer sys-

tems sometimes are markedly different from the original 2D lattice. For example, in single

layer graphene, the band dispersion shows a linear behaviour near the Dirac point in the mo-

mentum space; whereas bilayer graphene with Bernel stacking shows quadretic dispersion.[86]

There are also various other possibilities to construct a bilayer depending on the stacking (AA

stacking, AA1/3 stacking) of the lattice points between two layers, which also influence the

inter-layer tunneling. Interlayer tunneling plays an important role in bilayer systems. In fact,

many interesting physics can be interpreted as a result of the inter-layer tunneling. In case of

magnetic bi-layer, both layers are connected by the weak Van der Waals force. Therefore, mag-

netic interactions between them is very weak. But even such weak magnetic interaction can

change the properties of the system considerably. For example, bulk CrI3 shows ferromagnetic

behaviour whereas a bilayer (AA stacking) of CrI3 shows the ferromagnetic spin allignment in

each layers, and antiferromagnetic spin allingment between the layers.[87] Interlayer tunnel-

ing becomes even more interesting, if the stacking is position dependent; or in other words, as

we move from one position to other the nature of the stacking changes. Such things happen if

there is a mismatch betwwen the two layers, and this gives rise to the Moiré pattern.

Moiré pattern in bi-layer system can arise in two different ways - by lattice mismatch δ, or

by a relative twist angle θ between the layers, or by the combined effect of both.[88] Let us

assume two layers of hexagonal lattice with lattice constant a1 and a2 (for layer 1 and layer

2[see Fig. 1.5]), and their latice vectors are oriented in the same direction. Mismatch between

a1 and a2 is given by 1 + δ = a1/a2, with the assumption a1 > a2. If the relative rotation

between layer 1 and layer 2 is θ, then the relation between lattice vectors are given by

a1
i = MRa2

i ,

a2
i = R−1M−1a1

i , (1.5.1)

where M = (1 + δ)I , and R is the rotation matrix with angle θ, and I is the identity matrix.

The displacement vectors between a1 and a2 is ∆(a1
i ) = a1− a2

i = (I −R−1M−1)a1
i . At the

Moiré lattice vector ami , the displacement vector must coincide with a2
i (∆(ami ) = a2

i ) and we
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Figure 1.5: Bi-layer Moiré pattern created (a) by twist between the layers with twist angle θ,
and (b) by lattice mismatch between the layers. For both cases, unit cells of single layer are
shown at the bottom (blue for bottom layer, magenta for top layer).

obtain

ami = (I −R−1M−1)−1a2
i . (1.5.2)

The reciprocal lattice vector is given by

bmi = (I −M−1R)b2
i , (1.5.3)

where bli is the i-th reciprocal lattice vector of layer l. The length of the Moiré lattice vector

am = |ami | is given by

am = 1 + δ√
δ2 + 2(1 + δ)(1− cos θ)

a2, (1.5.4)
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and the angle between a2
i and ami is given by

φ = tan−1
(

− sin θ
1 + δ − cos θ

)
. (1.5.5)

When there is no twist, we set θ = 0 and if there is no missmatch, we set δ = 0. Below we

discuss both the cases seperately.

If there is mismatch δ between the lattice constants a1 and a2 of the two layers without any

twist, then the lattice costant of the Moiré pattern is given by am = (1 + 1/δ)a2. In defining

the Moiré lattice constant this way, one must assume δ << 1. It is evident that the Moiré

lattice consists of many lattice points of the original 2D lattices, and as δ becomes smaller, am

becomes larger, and more 2D lattice points are added, which eventually lead to the continuum

limit as δ → 0.

If there is no mismatch of lattice constants (a denotes the lattice constant of the 2D lattice),

for a small twist angle θ, the Moiré lattice constant is given by

am = a

2 sin θ
2
. (1.5.6)

There are some values of the angle θ, for which commensurency occurs, which is given by

cos θ =
3p2 + 3pq + q2

2
3p2 + 3pq + q2 , (1.5.7)

where p and q are coprime integers. Although commensurate angles appear at small as well as

large angles (from 0 to π/3) the formula for am holds for small angles, and as θ becomes small

the number of commensurate angles increases, and for θ → 0, one approaches the continuum

limit.

Fig. 1.5 shows the formation of Moiré pattern in a 2D hexagonal bilayer. a1, and a2 denote

lattice vectors of the single layer hexagonal lattice. When two such layers are brought on top

of each other and are given a twist of angle θ, the magnitude of the lattice vector of the Moiré

superlattice is given by ami ≈ ai/θ, and ami is perpendicular to ai (see Fig. 1.5(a)). So one can
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write

ami = 1
θ
ẑ × ai. (1.5.8)

In a similar manner, we can connect the reciprocal lattice vectors of the 2D hexagonal lattice,

and the reciprocal vector of the Moiré super lattice and is given by

bmi = θẑ × bi. (1.5.9)

Note that the prefactor here is θ instead of 1/θ, which indicates that a large super lattice im-

plies a small BZ. In Fig. 1.5(a), we can see that different region of the Moiré super lattice

have different stackings (AA,AB or BA). Such variations in stacking give rise to nontrivial

inter-layer tunneling for electronic structure,[89] and nontrivial magnetic coupling for spin

systems.[90, 91] We briefly discuss both of these aspects.

Band structure of twisted bi-layer graphene (TBG) has been studied earlier by Mcdonald

and his group.[89] After the recent discovery of superconductivity in TBG,[92] the field is

explored in great details, and there are many papers on various aspects in recent years.[93]

One of the most interesting properties is the emergence of flat bands at some specific twist

angles, called the magic angles. Flat bands imply a large density of states (DOS) at the flat

band energy, because DOS ∝ 1/∇εk. And since the band velocity ∝ ∇εk, velocity is very

small. This means that electrons move slowly in a densely populated region and such electron’s

motion is influenced by the other ones. In other words, their motions are correlated. Such a

strongly correlated physics is interesting in its own right. And in TBG, it is mostly caused

by the interlayer interaction in twisted geometry because its properties are markedly different

from the original graphene. The superconducting phase diagram in TBG has similarities with

the famous cuprate phase diagram. In addition, tunability is very high in TBG. As a result,

it is possible to tune different parameters to explore the phase diagram experimentally and

thereby unravel the mystries of superconductivity, specially unconventional superconductivity

as in cuprate. There are also many studies about the phonon mediated superconductivity in

twisted bi-layer systems.[94] Topological band structure is also being studied in Moiré pattern

in TBG and bilayer dichalcogenides.[95]
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Apart from electronic structure, spin texture is also interesting in Moiré patterns. For

different nature of stacking in different region, the spin-spin interaction may vary. One DFT

study indeed showed that the inter-layer coupling may be ferromagnetic or antiferromagnetic

depending on AB or AA stacking in bilayer hexagonal lattice.[90] Such a position dependent

exchange coupling can be expressed as Φ(x,x′), where x and x′ denote position vectors in

the top and bottom layers respectively. However, in continuous model (small twist angle), the

position vector in a Moiré unit cell can be expressed by a single variable x for both the layers

and the classical energy density can be written as[91]

Hcl = −J ′Φ(x)M1.M2, (1.5.10)

where J ′ is a constant, Φ(x) is the spatial modulation of the exchange coupling, and M1,

M2 are the order parameter (local magnetization) of the 2D layer spins. By considering the

symmetry of the Moiré super lattice, Φ(x) can be written as

Φ(x) = Φ0 +
∑
q 6=0

eiq
m.x, (1.5.11)

where qms are the rescaled Moiré reciprocal lattice vectors (qm = bm). For a simple case, only

first harmonics are present and the space modulation part is given by

Φ(x) = Φ0 +
3∑
i=1

cos(bmi .x), (1.5.12)

where only first three reciprocal lattice vectors are present. In chapter 4, I’ll discuss Fer-

romagnetic bilayers with such a simple interlayer coupling, which leads to many interesting

spin-texture in twisted bilayer systems.
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Chapter 2

Co-existence of Fermi liquid and

non-Fermi liquid

2.1 Introduction

In the previous chapter, Fermi lquid (FL) and non-Fermi liquid (NFL) theories were described

along with various models that give rise to non-Fermi liquid behaviors. In the cuprate materi-

als (La2−xSrxCuO4,YBa2Cu3O7−x etc.), the development of NFL phase in the optimal doping

region, as shown in Fig. 2.1, is studied extensively.[96, 97, 98, 99, 100, 101, 102] The super-

conducting phase diagram (see Fig. 2.1) indicates the NFL region dissects the phase diagram

between an ordered phase and the FL state and the superconducting optimum transition tem-

perature (Tc) occurs in the NFL region. Interestingly, the temperature exponent of resistivity n

decreases smoothly from n = 2 at the FL region to n = 1 at the NFL region and Tc increases

as n decreases. Such a change in resistivity (ρ)-temperature (T ) dependence between FL and

NFL sysytem is also reflected in the frequency (ω) dependence of the imaginary part of the

self-energy (Σ′′) which goes as ω2 for FL and ω for marginal Fermi liquid (MFL). Simpli-

fied picture provides a direct correspondence between the two behavior by assuming that the

scattering rate (τ ) for resistivity solely comes from its finite-lifetime (τ ) feature as τ−1 ∝ Σ′′.

Applying the scaling analysis at low-temperatures, we find that a FL transport behavior im-

plies long-lived, coherent quasiparticles (τ−1 → ω2 ∼ T 2), while the NFL resistivity means

incoherent many-body states (τ−1 → ω ∼ T ). [103, 104, 105, 106, 107, 108, 109, 110, 111]

37
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Figure 2.1: Schematic phase diagram of LSCO, showing the evolution of the Fermi surface
across the NFL state and superconductivity. Around x ∼ 0.2, the topological Fermi surface
transition occurs where the VHS crosses the Fermi level, and the corresponding resistivity
exponent becomes also minimum.

Such a one-to-one mapping fails to explain several experimental features in cuprates as well

as in other correlated materials. For example, it is observed that the transition from the NFL to

FL state is smooth, i.e., at a given temperature, the resistivity exponent n changes continuously

from 2 to 1 or even below 1 with doping, pressure etc.[112, 113, 101, 106, 114, 115, 116, 117,

118] It also does not explain strong k-dependence of the self-energy which is observed in an

angle-resolved photoemission spectroscopy (ARPES) experiment in La-based cuprate.[119] It

was found that in overdoped LSCO , as we move from the nodal to antinodal region, the inverse

of the quasiparticle lifetime τ−1 changes from ω2- to ω-dependence. Moreover, the linear ω-

dependence, which is reminiscent of NFL self-energy, persists to the overdoped sample where

the transport data suggest a simple FL behavior. Again, angle-dependent magnetoresistance

(ADMR) measurements on overdoped Tl-based cuprate also exhibited the similar behavior

in that the scattering rate changes from T 2 to T behavior as we move from the nodal to the

antinodal region at the same doping.[120, 121] In addition, it is also observed that the FS is

coherent in both NFL (optimal doping) and FL (over doping) states. Recently, coexisting NFL

and FL state is also observed in a heavy-fermion system.[122] Therefore, the leading questions

concerning the mechanism of the NFL state near the optimal doping, the analytic behavior of
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the self-energy in the entire k-space and doping, smooth crossover with a wide region of the

coexistence of the NFL and FL states in both spectroscopic and transport properties have so-far

remained open.

The main objective of this chapter is to answer the above questions and to explain the

FL and NFL behavior in a single self-consistent theoretical framework and describe the co-

existence of FL and NFL self energies at all doping in Cuprates.

2.2 Momentum anisotropy in self energy

To capture the strong momentum anisotropy in selfenergy, momentum resolved density fluctu-

ation (MRDF) model is employed, which uses RPA and fluctuation-exchange approximation

(FLEX) [123, 124, 125, 126, 127] to calculate the self energy in a self consistent manner.

Details of the MRDF method is described in the next section. The momentum anisotropy

arises in the present model due to charge and spin fluctuations and is different from the mo-

mentum anisotropy that arises in the AF phase. The low-energy AF fluctuations dominates

near the Q = (π, π) where as high energy paramagnons (marginal) fluctuations dominate

along the q = (π, 0)/(0, π) directions. In the large ordering limit (Q > 2kF ), Sachdev et

al. have pointed that the paramagnons (particle-hole continuum) become decoupled from

the AF fluctuations in both energy and momentum domains[128, 104] and the AF fluctua-

tions dies off around the AF QCP near 5% hole doping, and do not survive up to the optimal

dopings.[129, 130, 131] This study shows that the dominant contributions to the NFL state at

the optimal doping come from the density fluctuations near k ∼ (π, 0)/(0, π) and the VHS in

cuprates is also present around these antinodal points. Therefore, density fluctuations induced

self-energy dominates in the antinodal region of the BZ and have its maximum effect when

the Fermi level passes through the VHS (at the Lifshitz transition). Such density fluctuations

are marginal, occur in the energy range of 300 − 500meV, and survive at all dopings up to

overdoped samples.[132] We emphasize that due to the self-energy correction and the momen-

tum anisotropy, the VHS does not have a true singularity, rather a broad hump. Therefore,

neither the density fluctuations, nor the spectral functions possess any non-analytic behavior

at all dopings, and the complex self-energy remains analytical at all momenta, energies, and
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dopings in our model.

Anisotropy in the self-energy can be conveniently encoded by a k-dependent exponent (pk)

in the imaginary part of the self-energy Σ′′, as

Σ′′(k, ω) = αk|ω|pk . (2.2.1)

The quasiparticle residue is defined as Zk = (1 − ∂Σ′/∂ω)−1
ω=0, where Σ′(k, ω) is the real

part of the self-energy. Due to analyticity of the self-energy, both the real and imaginary

parts of the self-energy are related to each other by Kramers-Kronig relation at all k-points.

Note that exponent pk ≥ 1 as we go to the limit ω → 0. So real part of self-energy does

not have any singularity. In what follows, both pk and Zk have characteristically similar and

strong k-dependence in the BZ: in the antinodal region (NFL ‘hot-spots’) pk → 1, and Zk is

minimal, giving NFL self-energy, while the remaining low-density region (‘cold-spots’) gives

pk ∼ 2, Zk is maximal (see Fig. 2.6). This allows a coexistence and competition between

the NFL and FL physics in the same system. It is important to note that Σ′′(kF , 0) = 0 at

all dopings, implying that all quasiparticles in the BZ (including in the NFL region) have well

defined poles on the FS. However, due to the strong momentum dependence of Zk, the spectral

weight gradually decreases in the antinodal region, giving the impression of a ‘Fermi arc’ in

the spectral weight maps. Such a momentum dependence of pk obtained in the MRDF method

is in qualitative agreement with a QMC calculation of a single band Hubbard model[133].

2.3 Purturbative approach and MRDF model

Correlation strength of the studied material is crucial for the success of perturbative approach.

If I start with small coupling limit (where FL theory is valid) and gradually inrease the cou-

pling strength I move away from FL behavior and hit a critical coupling strength where FL

theory breaks down. Such a critical coupling usually indicates a QCP. Perturbative approach

is usually valid if one approaches NFL regime from the above mentioned FL side. There ex-

ists a number of perturbative approaches of the self-energy calculation based on QCP,[107,

108, 109, 110, 111, 134, 102], along with other theories like Hertz-Millis theory of quantum

phase transition,[135, 103, 104, 105, 106] nearly antiferromagnetic model,[136, 137] spin-
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fluctuation model,[138, 97] large-N expansion of bosonic field,[139] ε-expansion of the bare

dispersion,[140] dimension regularization[141] method. These methods often suggest that the

self-energy becomes non-analytic at the critical point, and quasiparticles can no longer be de-

fined. In such cases, the perturbative theory itself becomes inapt at the QCP[109, 111, 100]. On

the other hand, in the strong coupling limit, one approaches the NFL limit from the other side,

i.e., one basically studies how localized electrons gradually become conducting via many-

body effects. A number of non-perturbative treatments, such as spin-Fermion model[142],

two-fluid model,[143] slave-boson,[144] t − J model,[145], fractional FL,[99, 96] hidden

FL,[146] dynamical mean-field theory (DMFT)[147, 148] holographic NFL,[149] dimension-

regularization method[150] are used here. In these cases, conductivity bears out from the

localized states via quantum fluctuations between the localized and conducting states. Both

approaches, however, indicate a commonality that in the NFL state, the low-energy conduct-

ing states are neither fully itinerant, nor fully localized but reside in a dissonant state between

them. Such a dual nature of electrons is the characteristics of the intermediate coupling region

where the correlation strength is of the order of its kinetic energy term. In this correlation limit,

the quantum fluctuations become either massless, or marginal, and produce the imaginary part

of the self-energy Σ′′ ∝ max(|ω|, T ). Hence, a marginal FL (MFL) state arises in the low-T

limit.[151, 152]

The correct correlation strength of cuprates must be in intermediate regime for the pur-

turbation theory to be applied on it. Quantum Monte-Carlo (QMC),[153] DMFT,[154, 155]

and random-phase approximation (RPA) based fluctuation-exchange theory[123, 156] consis-

tently suggest that, indeed, cuprates lie in the intermediate correlation strength, at least in the

doped samples. The non-interacting band structure of cuprate can be described by a single and

strongly anisotropic band passing through the Fermi level. I consider a realistic band structure

including up to fourth order tight-binding hoppings (t, t′, t′′, and t′′′) as

ξk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky

−2t′′(cos 2kx + cos 2ky)− 4t′′′ cos 2kx cos 2ky − ξF. (2.3.1)

The second nearest neighbor hopping t′ has a special importance in cuprates as it controls

the flatness of the band near k = (π, 0) and its equivalent points. This generates a paramount
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Figure 2.2: Schematic diagram showing the self consistent loop of MRDF method.

degeneracy in the DOSs, and hence VHS arises. As t′ increases, the degeneracy also increases,

and the system becomes more NFL like. Interestingly, an earlier Density Functional Theory

(DFT) calculation demonstrated that the optimal Tc in different cuprates scales almost linearly

with the corresponding t′/t ratio.[157] This produces a link between the NFL physics and Tc

with a single, ab-initio parameter.

Table 2.1: Full tight binding parameters for LSCO. All energies are given in eV.[158]

Material LSCO
t 0.4195
t′ -0.0375
t′′ 0.018
t′′′ 0.034
U 1.6

To add the effect of correlation I start with a single band Hubbard model and calculate the

effect of the correlation by computing the full spectrum of both charge- and spin-fluctuations

in a self-consistent way. The correlation part is included within the RPA approximation, by

summing over the bubble diagrams (see Fig. 2.3), where the ladder diagrams are included in

the Bethe-Salpeter vertex correction.[159] The higher-order Maki-Thompson (MT),[160] and

Aslamasov-Larkin (AL)[161] terms, beyond the RPA diagram, are shown in 2.8.6 to scale as
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U/W2, and U2/W6 (W is the band gap and U is the onsite Hubbard interaction), respectively,

and thus can be neglected in the intermediate coupling regime. The coupling between den-

sity fluctuations and electrons gives rise to a complex self-energy, which can be calculated

within the Hedin’s approach.[162] Here we use the self-consistent momentum-resolved den-

sity fluctuation (MRDF) method[123, 124, 125, 126] in which all quantities including single-

particle Green’s function, two-particle correlation functions, and the three-point vertex correc-

tions are calculated self-consistently with the self-energy correction. In this way, the present

method is an improved version of the FLEX model[134] without self-energy corrections in

the two-particle term, or the single-shot GW calculation without a vertex correction.[163, 164]

A schematic diagram of our self-consistent method is shown in Fig. 2.2. In the first iteration

we calculate the bare Green’s function G(k, ω) from the tight-binding model. This Green’s

function is used to evaluate the bare correlator χ as

χ(q, ε) = 1
N

∑
k

∫ dω1

2π

∫ dω2

2π A(k, ω1)A(k + q, ω2)Γ(k,q, ω1, ω2) f(ω1)− f(ω2)
ε+ iδ − ω2 + ω1

.

(2.3.2)

Here f(ω) is fermionic distribution functions, A(k, ω) = −ImG(k, ω)/π is the spectral

weight and Γ(k,q, ω1, ω2) is the density vertex correction. For bare Green’s function A(k, ω)

is a Dirac delta function and Γ(k,q, ω1, ω2) = 1. Next I include the correlation part of the

Hubbard model by computing the back-reaction potential of quasiparticle density fluctuations

Vν(q, ε) which are separated into the spin (ν = 1) and charge (ν = 2) density channels within

the RPA model as

Vν(q, ε) = ην
2 Im

[
U2χ(q, ε)

1∓ Uχ(q, ε)

]
, (2.3.3)

where η1 = 3, and η2 = 1, and U is the onsite Hubbard interaction. This potential Vν(q, ε) is

used to calculate the self-energy within Hedin’s approach which can be written as (see A.2):

Σν(k, ω) = 1
N

∑
q

∫ ∞
0

dε

2π

∫ ∞
−∞

dω′

2π Vν(q, ε)Γν(k,q, ω
′, ε)

×A(k− q, ω′)
[

1− f(ω′) + n(ε)
ω + iδ − ω′ − ε

+ f(ω′) + n(ε)
ω + iδ − ω′ + ε

]
, (2.3.4)
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(e)

(f)

(g)

Figure 2.3: (a-d) Diagrams of various quantities of the MRDF model. (a) MRDF potential,
(b) self energy, (c) Bethe-Salpeter vertex equation, (d) Dyson equation. (e-g) Diagrams of
various quantities for conductivity calculation: (e) bubble diagram from Kubo formula (f)
Maki-Thomson (MT) diagram, (g) Aslamasov-Larkin (AL) diagram. Double solid line rep-
resents self-energy dressed Green’s function G, while single solid line is for the bare Green’s
function (G0). Double wavy line represents the fluctuation-exchange potential. Γ(0), and Γ(1)

are the bare and self-consistent vertex corrections (the same diagram applies to both density
and current vertex corrections).

where n(ε) is bosonic distribution functions and N is the total number of lattice sites. This

self energy is used to calculate the self energy dressed Green’s funtion or interacting Green’s

function G(k, ω) = [ω − ξk − Σ(k, ω)]−1. In the next step this G(k, ω) is used to calculate

χ(q, ε), which closes the self-consistent loop. The spectral function is now self energy dressed

which is given by A(k, ω) = −ImG(k, ω)/π and Γ(k,q, ω, ε) is the density vertex correction

which is no longer equal to one. Please note that due to the strong anisotropy in the self-

energy, the Midgal’s approximation is not valid here, and vertex correction becomes important.

Furthermore, the k-dependent Σ(k, ω) prioritizes the current-current vertex term Γ, which also

affects the density vertex Γ due to conservation principles (it is customary to denote the current

and density vertices by vector and scalar symbols Γ, and Γ, respectively)[165]. Since the

system possesses both gauge- and spin-rotational symmetries without and with the self-energy

corrections, the conservations of charge and spin densities lead to a simplified algebraic form

of the vertex correction, as known by Ward’s identity.[166] This identity imposes a specific
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Figure 2.4: Density fluctuation spectrum for (a) spin, (b) charge channels. Here we plotted
the imaginary part of the RPA susceptibilities: χ/(1 ∓ Uχ) for spin and charge densities as
a function of ω along three high symmetric momentum directions: Γ(0,0)-M(π, π)-X(π, 0)-Γ
for 20% hole doped LSCO. These RPA susceptibilities are directly linked to the fluctuation
potential Vν in Eq. (2.3.3) with the multiplication of the constant factor U2ην/2. The main
feature of the density fluctuation is the dispersive paramagnon-like mode along the X - Γ
direction. Such a mode is observed in RIXS spectrum in various cuprates.[168] This mode is
responsible for the NFL state in the antinodal region.

relation between the self-energy and the density vertex correction as (see Sec. 2.8.7 for the

derivation) [167]

Γ(k,q, ω, ε) ≈ 1− ∂Σ′(k, ω)
∂ω

= Z−1
k (ω). (2.3.5)

Such a vertex correction is not only important to preserve the sum-rules, but also it helps to

produce the correct frequency values (∼ 500meV) and the strength of the fluctuation-exchange

potential V , the self-energy Σ, as well as spectral functions A, in consistence with their corre-

sponding experimental results.[132]

In the present MRDF model, calculations are carried out in the self-consistent loop de-

scribed above untill the Green’s function converges. This model is restricted to the intermedi-

ate coupling regime, where the value of Hubbard U is just below the self-energy renormalized

bandwidth W (evaluated self-consistently). This is the Brinkman-Rice criterion.[169] The

value of U determines the overall strength of the NFL state, but interestingly, it does not affect

much the anisotropy in the self-energy (as shown in Sec. 2.7).

While the numerical computations involve the full self-energy anisotropy, some interesting

properties can be extracted if the FL ansatz of the self-energy is imposed. That means, the self-

energy is approximated as Σ(k, ω) = Σ(k, 0)+(1−Z−1
k )ω, where Zk is the anisotropic quasi-

particle residue at the Fermi level, defined before. The dressed quasiparticle band is obtained
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as ξ̄k = Zkξk. Substituting the corresponding spectral function as A(k, ω) = Zk/(ω+ iδ− ξ̄k)

in Eq. (2.3.2), we find that χ(q, ε) = ΓZ2χ0(q, ε) = Zχ0(q, ε), where χ0 is the bare Lindhard

susceptibility (without a self-energy correction), and Z is the momentum averaged renormal-

ization factor. This means, both the kinetic energy and the correlation function are renormal-

ized in the same way, a consequence of the Ward’s identity. Furthermore, the MRDF potential

in Eq. (2.3.3) is also renormalized by the same value if the interaction U is also renormal-

ized similarly, i.e., if U = ZU0, where U0 denotes the bare Hubbard interaction. This yields

Vν(q, ε) = ZV 0
ν (q, ε), where V 0

ν (q, ε) is the bare fluctuation-exchange potential consisting of

bare χ0, and bare U0 in Eq. (2.3.3). Since the kinetic and interaction terms scale in the same

way, the system always maintains the intermediate coupling strength. Once the momentum

dependence of the renormalization factor is tuned on, such a simple, analytical proof is diffi-

cult to achieve. However, the f -sum rules remained valid as shown in Sec. 2.8, and the MRDF

method maintains the intermediate coupling scenario.

2.4 Self energy results

For the presentation of the self-energy results in this section, I focus on La2−xSrxCuO4 (LSCO)

cuprate. Its tight-binding (TB) band parameters are obtained from the corresponding DFT band

structure (see Table 2.1). The self-energy result is shown near the optimal doping (x = 0.2)

with U = 1 eV (where the bandwidth is W ∼ 4 eV). The self-energy is plotted for several

representative momenta in Fig. 2.5. The results can be compared with the corresponding results

obtained from ARPES for the same sample. Both experiment and theory consistently exhibit

a characteristic momentum dependence of the self-energy. Σ′′ varies linearly with frequency

in the antinodal region, while it gradually becomes quadratic as we move towards the nodal

region.

The origin of the momentum dependence of the self-energy can be traced back to the mo-

mentum dependence of Vν [Fig. 2.4] and the spectral weight maps [Fig. 2.6]. I focus the

discussion on the two momentum regions, namely, the NFL region around kv ∼ (π, 0), and

the FL regions kh ∼ Γ, and (π, π). The self-energy creates incoherent, localized states at the

bottom and top of the bands at the Γ, and (π, π) point, which are reminiscences of the lower
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(a) (b)

Figure 2.5: (a) Calculated Σ′′(ω) at different k-points for 20 % hole dopped LSCO. (b) Loga-
rithmic plot of Σ′′(ω) vs ω with ω0 = 0eV . Colors represent the same k-points in (a) and (b).
Pink and black dashed lines are guide to the eyes to a quadratic and linear behavior, respec-
tively. Inset: Corresponding k-points in the first quadrant of the BZ where the self-energy is
plotted. Bottom-left corner is at the Γ-point, while the top-right corner is the (π, π)-point. The
black line indicates the non-interacting Fermi Surface.

and upper Hubbard bands (L/UHBs), respectively. The low-energy VHS states around kv near

the Fermi level become renormalized and remain ‘itinerant’[127, 123]. These two states are

separated by the so-called ‘waterfall’ energy (∼500 meV) where the spectral weight is strongly

suppressed (see Ref.[123] for details of spectral function). Vν(q, ε) arises mainly from den-

sity fluctuations between the itinerant (at VHS) and localized (at the L/UHB) states in the

particle-hole channel. Below the NFL-doping where the VHS lies below EF , the density fluc-

tuations arise between the VHS at kv and the UHB at (π, π). Above the NFL-doping, the VHS

crosses above the Fermi level, and the corresponding fluctuation switches channels between

the VHS and the LHB at the Γ-point. In both cases, the momentum conservation principle

localizes Vν at (qv, εsf), where εsf ∼ 300 − 500meV, and qv ∼ (π, 0)/(0, π). The self-energy

dressed density fluctuation spectrum is visualized in Fig. 2.4 for the spin and charge chan-

nels. Consequently, these fluctuations persist from underdoping to overdoping, as observed

by resonant-inelastic X-ray scattering spectroscopy (RIXS)[168]. A direct comparison of the

computed density fluctuations spectrum with the corresponding RIXS data for different dop-
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ings have been shown in the references[170, 123]. Substituting Vν(qv, εsf) in Eq. (2.8.1), we

find that Σ′′ν(k, ω) ≈ Vν(qv, εsf)A(k − qv, ω + εsf). Therefore, we can relate the NFL self-

energy at kv, i.e., Σ′′ν(kv, ω) to depend mainly on the high-energy Hubbard statesA(kh, εsf+ω).

In other words, the NFL self-energy arises from the ‘high-energy’ localized Hubbard bands,

which transfer the localized spectral density via density-density fluctuation channels to the

low-energy states at the antinodal region. On the other hand, the FL self-energies near kh-

points depend mainly on the itinerant VHS spectral weights at A(kv). Since the spectral func-

tion has isolated poles at all momenta and frequencies, both the NFL and FL self-energies are

analytic functions in the present case. This way the present model is different from the prior

perturbative treatments of the NFL state.[107, 108, 109, 110, 111, 100, 171]

In Fig. 2.5(a) the imaginary part of self-energy (Σ′′) is plotted as a function of frequency(ω),

and the corresponding log-log plot is shown in Fig. 2.5(b) (a detailed procedure is given in

A.1). From the log-log plot, we can conclude that the exponent is ∼ 1 in the antinodal region

(NFL-state), and ∼ 2 away from the antinodal region (FL-states). In addition, the fitting is not

monotonic with frequency, because both the exponent pk and the coefficient αk in Eq. (2.2.1)

are also frequency dependent. But for the low-temperature transport properties, the low-energy

fitting suffices a good explanation.

Fig. 2.6 shows the momentum dependence of the exponent pk, and compare it with that of

the mass renormalization m∗/mb = Z−1
k (mb = bare band mass), and the spectral weight map

A(kF , 0). The results are compared for three different dopings: at x = 0.1 (left), optimal dop-

ing x = 0.2 (middle), and x = 0.3 (right). It immediately shows a one-to-one correspondence

between the three quantities at all dopings, further justifying that the self-energy is always

non-singular. The spectral weight can be defined in terms of Zk and Σ′′ as

A(k, ω) = − 1
π

Zk(Σ′′(k, ω) + δ)
(ω − ξ̄k)2 + (Σ′′(k, ω) + δ)2

. (2.4.1)

Since Σ′′ = 0 at ω = 0 at all k, the spectral functions have a delta function-like peak at the

Fermi energy. This suggests that the FS remains coherent at all momenta and dopings. The

self-energy dressed FS deviates from the bare FS (black line) both in shape and spectral weight.

The spectral weight renormalization on the FS is solely governed by the quasiparticle residue

Zk. The shift of the FS is dictated by Σ′(k, 0) which is also related to pk via Kramer’s-Kronig
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Figure 2.6: (a-c) The self-energy exponent pk in the entire first quadrant of the BZ is shown in
the underdoped, optimal doped, and the overdoped regions, respectively. Bottom-left corner
is at the Γ-point, while the top-right corner is the (π, π)-point. The black lines indicate the
corresponding Fermi Surface and the colorbars indicate the value of exponent pk. (d-f) Inverse
of quasiparticle weight Z−1

k = m∗/mb at Fermi energy (ω = 0) is plotted for the same dopings
in in (a). (g-i) Spectral weight plots at the Fermi level, including the momentum dependence
self-energy. Each column corresponds to the same doping.

relation:

Σ′(k, 0) = 1
π

∫ ∞
−∞

dω
Σ′′(k, ω)

ω
. (2.4.2)

Therefore, we observe that the renormalized Fermi momenta kF deviate more from its non-

interacting values in the antinodal direction, compared to the other points. Finally, the number

of electron is kept fixed by recalculating the chemical potential ξF with the self-energy correc-

tion. Therefore, the Luttinger theorem remains valid at all dopings.

The above analysis demonstrates that due to the analytic form of the self-energy, pk, Zk,

and Ak all are related to each other at all k-values. All three quantities are minimum at the

antinodal point, suggesting that the states near this region are more strongly correlated than
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the rest of the BZ. Also, from Eq. (2.4.2), it is found that Σ′(k, 0) is maximum at the antinodal

point, and thus the corresponding Fermi momenta kF deviate more from its non-interacting

values here. To have the Luttinger theorem valid, the Fermi momenta elsewhere must be

smaller.

The overall k-dependence of pk remains similar at all dopings: pk attains its minimum

value around the antinodal region. In the underdoped region, where the VHS is well below

ξF, we find that the overall pk profile is less k-sensitive. Near the optimal doping, where the

VHS exactly crosses above ξF, the k-dependence of pk becomes strongest, and the NFL region

occupies larger BZ volume. Also at optimal doping, pk obtains its minimum value near the

antinodal region, which is the minimum possible value of pk at all dopings and momenta for

this material. Similar trend in the resistivity-temperature exponent can be found in the next

section. Finally, as the VHS crosses above εF, again the value of pk increases. Interestingly, in

the overdoped region, where FL-behavior is expected from transport properties, the antinodal

regions continue to show NFL self-energy behavior, in consistent with the ARPES data on

LSCO at x = 0.23.[119]

The result suggests that the quasiparticles have well-defined poles in both FL and NFL

states at all kF , but owing to the k-dependent Σ′(k, 0), the deviation of the poles from its

non-interacting FS is not monotonic on the FS. The only source of the spectral weight renor-

malization on the FS is the momentum dependent Zk. Expectedly, spectral weight gradually

decreases as we move to the antinodal directions, giving the shape of a coherent ‘Fermi arc’,

often observed in underdoped cuprates.[172]

2.5 Resistivity calculation

When the k-dependence of the self-energy is neglected, a direct link between the microscopic

single-particle spectral properties and the macroscopic transport behavior (n ≈ p) can be es-

tablished. However, as the system acquires strong anisotropy in pk, it becomes less intuitive

to deduce the overall correlation landscape from transport properties. I compute the DC con-

ductivity by using the Kubo formula. I consider a one-loop bubble diagram with the current-

current vertex correction Γ. Because of the vertex correction, the higher-order MT,[160] and
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(a) (b)x=0.1 x=0.2 x=0.3

Figure 2.7: (a) Resistivity is plotted as a function of temperature for different doping for
LSCO. (b) The resistivity-temperature exponent in the low-T region is plotted as a function of
dopings for LSCO which exhibits minimum in exponent near the optimal dopings where the
corresponding VHS passes through the Fermi level.

AL terms[161] for the current-current correlation functions give vanishingly small contribu-

tions, unless one enters into non-analytic self-energy[173] or if the self-energy has pseudogap

behavior.[174] Such an one-loop Kubo formula, with and without vertex correction, is also

used previously in cuprates within DMFT calculation.[154, 155, 146] The current vertex is

calculated from the same Bethe-Salpeter form,[159] which is calculated self-consistently us-

ing Ward identity[166] (see Sec. 2.8.7). Within the linear response theory, in the limit of

q → 0, we obtain:

σ = e2

3~2m2
1
N

∑
k

Γ(0)(k, ω) · Γ(k, ω)
∫ dω

2πA
2(k, ω)

(
−df(ω)

dω

)
, (2.5.1)

where e and ~ have the usual meanings, and Γ(0)(k, ω) and Γ(k, ω) are the bare and full current

vertices. For q → 0, the bare vertex reduces to Γ(0)(k, ω) = mv(k), where v(k) is the band

velocity, and the full vertex is

Γ(k, ω) = mv(k) +m∇Σ(k, ω) = −m∇G−1(k, ω). (2.5.2)

The conductivity obeys the f -sum rule as shown in Sec. 2.8. Only σxx component is consid-

ered here. In the absence of any anomalous term, the resistivity is obtained as ρxx = 1/σxx.

Please note that the imaginary part of the self-energy is expected to be finite at ω = 0 at finite
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temperature due to thermal broadening. So the finite temperature scattering rate is neglected in

this study. It is challenging to find the form of finite temperature self-energy within the present

MRDF method. The resistivity results are presented in Fig. 2.7(a) for LSCO at different dop-

ings. It is observed that the resistivity exponent becomes minimum near the optimal doping

where the VHS crosses ξF, see Fig. 2.7(b). Here, the system acquires dominant NFL-behavior

with n ∼1. At the same doping, the self-energy exponent pk in Fig. 2.6(b) not only obtains

its minimum value, but also it occupies larger k-space area. However, the other parts of the

BZ remain FL-like with pk as large as ∼1.8. Similarly, in both under- and overdopings, where

n→ 2, the antinodal region continues to have pk ∼ 1. Cautionary remarks are in order. I have

extended the one-band model to the deep underdoped region without including the pseudogap

and other competing orders. Therefore, our calculation does not represent the experimental

results in the deep underdoped region.

ADMR technique has the ability to probe the angular variation of the resistivity by tilting

the magnetic field with the sample orientation. This allows to effectively measure the scattering

life-time 1/τ ∝ ρ as a function of Fermi surface angle θ = tan−1(ky/kx). An earlier ADMR

study on overdoped Tl2Ba2CuO6+x found that 1/τ varies as T 2 in the nodal region (θ = 0) and

it gradually changes to T in the antinodal region (θ = 45o).[120, 121] This result is consistent

with my findings of quasiparticle life-time variation shown in Fig. 2.6(a-c). Note that even the

angle-integrated resistivity exponent is close to 2 in the overdoped region, however, its angle-

dependent data reveals that both the single-particle life-time and scattering rate consistently

remain NFL-like in the antinodal region. Such kind of angle dedendent technique can be used

to verify my predictions in cuprates in a wide range of region near critical doping.

2.6 Materials dependence of n and its correlation with Tc

The celebrated paper by Pavarini et al.[157] pointed out an intriguing relationship between

the t′/t ratio obtained in different materials with their Tc. t′/t triggers higher degeneracy in

the DOS (see Fig. 2.10(b)), and hence it is natural to expect that the strength of the NFL

state would also increase. I calculate the resistivity exponent n for different values of t′/t

by fixing the VHS at the ξF , and the result is plotted in Fig. 2.8. Indeed, I find that with
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Figure 2.8: The resistivity exponent n, at the doping where the VHS passes through the Fermi
level, is plotted for different values of t′/t, representing different cuprate materials.[157] This
is the minimum value of n obtained across the doping range for a given t′/t since the DOS
at EF is maximum here (see the circle symbols for the DOS in the right-hand panel). At
the top of the figure, we mention the corresponding cuprate materials with corresponding Tc,
having different values of t′/t as obtained from the DFT calculation in Ref. [157]. Chemical
compositions of cuprate materials are: La2CuO4 (La214), Bi2Sr2CuO6 (Bi2101), Tl2Ba2CuO6
(Tl2201), YBa2Cu3O7 (Y123), HgBa2Ca2Cu3O8 (Hg1223).

increasing t′/t, n decreases, that means, the system becomes more NFL like. With increasing

t′/t, both the DOS at VHS increases and the bandwidth decreases (see Sec. 2.7), and thus

the NFL phenomena also increases. It is already known that the optimal Tc increases with

increasing t′/t,[157] and with decreasing n. This phenomenon is consistently observed in

various cuprates, pnictides and heavy-fermions.[101] My results thus shows that there is a

microscopic connection between the NFL phenomena and Tc in the context of this empirical

observation.
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2.7 U dependence of various results

All results and conclusions presented above are obtained for material specific values of the

Hubbard U (see Table 2.1). Here, I investigate them for different values of U and study their

evolution. The following results also demonstrate the distinction between the doping depen-

dence of the static correlation (U ) and the dynamical correlation (V (ω)) in Eq. 2.3.3).

(a) 

U=1.2 eV 

(b) 

U=1.0 eV 

(c) 

U=0.8 eV 
0.6 

1.7 

0.7 

1.75 

0.8 

1.8 

Figure 2.9: (a-c) Plots of the self-energy -frequency exponent pk (defined in Eq. 1) for three
different values of U for LSCO at x = 0.20. In all three cases, we notice that the overall
momentum profile of pk remains very much the same. This is expected since the anisotropy
is related to the anisotropy in the electronic structure and correlation function, but not directly
on the onsite U . The overall range of pk (seen in the adjacent colorbars) however decreases
with decreasing U . This means the system moves towards the FL state at a fixed doping as U
decreases.

Keeping all other parameters the same, it is expected that the system would tend to trans-

form from NFL to FL like as I decrease the values of U . This is what is observed in Fig. 2.9

where I plot the momentum profile of pk at a fixed doping of x = 0.20 for LSCO for three

different values of U . In all three cases, the momentum profile remains very much the same, as

expected, since the momentum dependence is governed by the anisotropy in the band structure

and correlation function. A characteristic change in the overall range of pk (as highlighted by

red circles in the adjacent colorbars) is observed. The result shows that both the minimum

and the maximum values of pk increases with decreasing U . In addition, it is also observed

that the k-space area of the region, that deviates maximally from FL (pk ∼ 1), decreases with

decreasing U , reflecting that the system moves towards FL as correlation weakens.

Finally I study the evolution of the t′/t vs. n plot for different values of U in Fig. 2.10.

As mentioned before that n decreases as the t′/t ratio increases, keeping the corresponding
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Figure 2.10: (a) Plots of t′/t vs. n for different values of U . As expected, the exponent n
decreases with increasing U , but for all values of U , the t′/t dependence on n is maintained.
(b) Non-interacting density of states (DOS) is shown as a function of energy for different
values of the t′/t ratio. Note that the DOS at the VHS gradually increases with increasing t′/t
ratio, as the flatness of the band increases at the antinodal point. The Fermi level for all cases
is fixed at the VHS.

VHS fixed at the Fermi level for all cases. This is because the DOS at the VHS increases with

increasing t′/t and the bandwidth simultaneously decreases. Therefore, the system becomes

more NFL-like as t′/t increases. This conclusion remains intact as the values of U are tuned.

For different values of U , the general trend of t′/t vs. n remains the same, however the overall

range of n increases with decreasing U which is consistent with my observation in Fig. 2.9.

2.8 Discussions

2.8.1 Analytic self-energy in the NFL state

One of the important properties of the present results is that the self-energy is free from any

essential singularity and non-analytic form at all momenta, energy, and doping. Please note

that here the word analytic is used in the sense that Kramers-Kronig relation is valid. In

other words, the self-energy needs to be analytic in the upper half of the complex ω plane.

This is achieved in the calculation by putting a small broadening ω → ω + iδω. This δω

is different from thermal broadening and appears only for numerical calculation and can be

taken arbitrarily small to approach the zero limit. Introduction of this broadening removes all
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non-analyticity of imaginary part of self-energy (Eq. (2.2.1)) from the upper half complex ω

plane. However, from Eq. (2.3.4), it can be deduced that the self-energy can become non-

analytic when either the potential Vν(k, ε) or the spectral function A(k, ω), has a non-analytic

form. Both these cases are discussed separately below.

(a) Near a Hertz-Millis QCP, there arises a singularity in the spin and/or charge potential

Vν at a characteristic wavelength, causing massless magnons or plasmons, respectively. Here

we focus on the near-optimal doping region which is far away from the AF and CDW QCPs.

And as discussed ealier, paramagnons remain massive at all momenta and doping, and gives

no singular behavior. So, Vν has no essential singularity in the doping range of present interest.

Yet we can make few remarks. An AF QCP induced NFL model have been used earlier by

Moriya et al.[138]. They found that the T -linear behavior in resistivity and d-wave supercon-

ductivity both arise from the strong AF fluctuations.[102] If this result holds in cuprates, one

would obtain a T -linear NFL state at 5-7% doping. But the T -linear behavior is rather shifted

to the optimal doping, where the AF fluctuations are negligibly small.[101, 130] The model

was extended by Monthoux and Pines,[136] Millis-Monien-Pines[97] with a phenomenologi-

cal model of the spin-fluctuation. Bicker et al. used a similar self-consistent FLEX model[134]

of the spin-fluctuation mediated NFL calculations. But in all these models, the driving insta-

bility has been the the same Q = (π, π) AF fluctuation, and thus the realistic region of NFL

state should be 5-7% doping. In a fully self-consistent scheme, the spin-fluctuation spectrum

is modified by the self-energy effect, and such a renormalization effect is sometimes distin-

guished as the ‘mode-mode coupling’ effect.[175] In the mode-mode coupling theory, the

magnetic instability is clearly modified, or sometimes removed due to the suppression of the

spin-susceptibility from the self-energy correction. As a result, the long-range AF order does

not occur in pure 2D systems, which means that the Mermin–Wagner theorem is satisfied here.

In reality, the hole-doped cuprates exhibit an AF critical point around 5-7% doping without any

apparent T -linear resistivity.[115, 176, 101, 98] There can be various reasons, such as finite

three-dimensionality in cuprates,[158] second-order vertex correction (AL term),[173, 174]

non-perturbative corrections,[100] etc., but it is not the main topic of our present work.

(b) Another possible source of singularity is the VHS in the single-particle spectral function

A(k, ω). An earlier DMFT calculation in a single band Hubbard model showed that as the VHS
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is positioned exactly at the Fermi level, it gives rise to a non-analytical self-energy and thus

one cannot treat the transport relaxation rate coming from the single-particle broadening.[171]

Such a singularity is removed in our case due to multiple reasons and analytical self-energies

are obtained even at the extreme NFL region. To understand this, the imaginary part the of

self-energy can be written in an approximate from (from Eq. (2.3.4)) as

Σ′′ν(k, ω) ∝
∑

q

∫
dεVν(q, ε)A(k− q, ω + ε). (2.8.1)

In a local approximation where the potential is replaced with a q-averaged potential, the ana-

lyticity of the self-energy is solely determined by the analyticity of the VHS. Therefore, if the

VHS has the non-analytic cusp even after including the self-energy correction, the self-energy

also becomes non-analytic.

When the k-dependent self-energy is introduced, it can be seen in another way that the VHS

is substantially weakened. Near the VHS region around kv = (π, 0), the first k-derivative of

the bare dispersion vanishes, and thus the leading term in the band is ξk ≈ k2/m∗, where k

is measured with respect to kv (~ = 1). Since ξk is a slowly varying function in momentum,

one obtains a ‘flat-band’, leading to a non-analytic cusp in d ≥ 2, and a logarithmic diver-

gence in d = 1. In the k-dependent self-energy correction, the renormalized band obtains an

effective k-linear term from the self-energy as ξ̄k ≈ ∇Σ′ · k + (1/m∗ +∇2Σ′)k2, where the

k−derivatives are taken at kV. This linear-in-k terms effectively destroys the essential criterion

for a singularity at the VHS.

2.8.2 Sum rules and Luttinger theorem

Luttinger theory remains valid with the self-energy correction. This can be easily seen by the

fact that Σ′′(k, 0) = 0 at all momenta. The spectral function obtains isolated poles on the FS

at ξ̄kF = ξkF − µ̄ + Σ′(kF , 0), where ξk is understood to be the non-interacting dispersion

without the chemical potential. Please note that the chemical potential µ̄ is different from that

without the self-energy correction. When the self-energy is included, the chemical potential is

adjusted to keep the number of electron conserved.

The f -sum rule in the spin and charge channels are also individually satisfied. This can
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be proven in two ways. The vertex correction is important in the self-consistent scheme and

usage of the Ward identity in the vertex correction ensures that the sum-rules remain intact.

The basic principle in maintaining the sum rule is that one invokes the similar approximation

in both density-, current-correlations functions as well as in the vertex function, and make sure

that the Ward identity is followed. The f -sum rule for the densities[174] is

1
π

∫
dεεΓν(q, ε)Vν(q, ε) = 1

N

∑
k

(ξk+q − ξk−q − 2ξk)〈n↑ ± n↓〉. (2.8.2)

± signs indicate charge (ν = 1) and spin (ν = 2) densities. Since the spin is conserved here,
1
π

∫
dεεV2(q, ε) must vanish. In the mean-field level without the self-energy correction, the

potential V 0
ν satisfy Eq. (2.8.2). Let us assume V̄ν(q, ε) is the Z-renormalized potential which

is obtained from Eqs. (2.3.3)-(2.3.2) by replacing the spectral function with its quasiparticle

form A(k, ω) = Z/(ω − ξ̄k). This gives Vν(q, ε) ≈ ZV̄ν(q, ε). Then we can easily show that

the energy range (=bandwidthW) of V̄ is reduced by Z (since the band is renormalized by the

same Z). Since the vertex correction is Γ ∼ 1/Z, we obtain Γ(q, ε)Vν(q, ε) ≈ V 0
ν (q, ε). This

is a direct consequence of the Ward identity in which the kinetic energy and the interaction

potential are renormalized by the same factor Z, and thus the intermediate coupling scenario

remains valid with and without including the self-energy correction.

Similarly, it can be proved that the optical sum rule also remains valid here. As mentioned

in Sec. 2.5, the momentum dependent self-energy leads to a current-current vertex correction

Γ which arises from the k-derivative of the self-energy[167]. The current vertex is again

related to the density vertex Γ via the Ward identity. The optical conductivity in terms of the

Matsubara frequency, in the limit of q → 0, can be written as

σ(iεm) = e2 1
N

1
β

∑
k,n

vk · Γ(k, iωn, iεm)G(k, iωn)G(k, iωn + iεm). (2.8.3)

Now from the Ward identity (see Eq. (2.8.11)), I substitutemvk·Γ(k, iωn, iεm) = G−1(k, iωn)−
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G−1(k, iωn + iεm) + iεnΓ(k, iωn, iεm), where Γ(k, iωn, iεm) is the density vertex which gives

σ(iεm) = e2

m

1
N

1
β

∑
k,n

[G(k, iωn + iεm)−G(k, iωn)

+iεnΓ(k, iωn, iεm)G(k, iωn)G(k, iωn + iεm)] .

(2.8.4)

In a homogeneous charge medium, the first two terms cancel each other. The last term

1
N

1
β

∑
k,n

Γ(k, iωn, iεm)G(k, iωn)G(k, iωn + iεm)

is bare charge density susceptibility χ(q → 0, iεm). Now the f -sum rule for density in

Eq. (2.8.2) gives 1
β

∑
m iεmχ(q → 0, iεm) = πn/2, where n is the total charge density and

this leads to 1
β

∑
m σ(iεm) = πne2

2m = ω2
pl/8, where ωpl is the plasma frequency. The optical

sum rule implies that the total absorbing power of the solid characterized by σ does not depend

on the details of the interactions and is determined only by the total number of particles in the

system.[177, 178] Such a sum rule is modified if the FS is partially or fully incoherent,[179]

which is not the case in the model considered here.

2.8.3 Other angular-dependent self-energy calculations

Angle-dependent self-energy and NFL state have been studied earlier in a variety of ap-

proaches. Usually in cluster DMFT[180] and Dynamical Cluster Approximation (DCA)[181],

the momentum dependent calculation is done in small clusters and some of the results are

in agreement with this MRDF calculation. However, there are other works where QCP ap-

pears near optimal doping. The disagreement may be attributed to taking only RPA correc-

tions and neglecting higher-order diagrams in the present MRDF method. In FLEX and GW

methods, which can retain the full spectrum of the correlation potential, one can account for

the full-momentum dependence of the self-energy.[182, 183, 127, 126] In an earlier FLEX

calculation[182], it was found that the self-energy effect is maximum at the AF ‘hot-spot’,

rather than at the antinodal points. The apparent discrepancy between the FLEX and our

MRDF method arises from how the spin-fluctuation potential is treated. FLEX calculation
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only included the AF fluctuation, and does not include paramagnons. So, its range of va-

lidity is limited below x < 0.10 where the AF fluctuation is present. Also, in the context of

heany-fermion compounds, it was shown that a strongly anisotropic hybridization can generate

angular dependent quasiparticle residue.[184] There are also non-perturbative calculations of

the angle-dependent NFL state in the strong coupling region.[185] Their results are in general

agreement with the FLEX calculation that the NFL state is stronger at the AF ‘hot-spot’. My

method includes both AF and paramagnons fluctuations and show strong paramagnon dresssed

self-energy effect at the antinodal points in the optimal doping region. Finally, the obtained

self-energy anisotropy is in qualitative agreement with a QMC calculation of a single band

Hubbard band where the correlation is treated mainly for the paramagnon fluctuations.[133]

2.8.4 NFL induced Hertz-Millis QCP

As discussed above in various context, within the self-energy picture, two sources of NFL

behavior are primarily discussed; through the singularities in the bosonic spectrum, or through

that of the single particle spectral function. A major part of the literature discusses the origin

of NFL state from the QCP physics, in which one obtains singularities in the bulk properties

due to the singularities in the bosonic spectrum Vν(q, ε). In another case, mass divergence of

the quasiparticle spectrum A(k, ω) can introduce non-analytic self-energy. A related situation

arises in the case of a Pomeranchuk instability due to ‘soft’ FS, which gives strongly enhanced

decay rate for single-particle excitations and NFL behavior.[186] More such cases are reviewed

by Löhneysen et al. (in Sec. IIIG of Ref. [106]). Here, we obtain a different model where the

dynamical itinerant-local density fluctuation causes the NFL behavior only in certain parts

of the BZ, and it adiabatically connects to the FL region with analytic self-energy. So, one

can ask the question: can the NFL state (without the QCP origin) give a QCP? Mermin-

Wagner theorem prohibits the order induced by density fluctuations in two-dimensions. In

the mode-mode coupling theory,[175, 138] it is shown that, for a AF fluctuation the self-

energy reduces the spectral weight at the magnetic ‘hot-spot’ and thereby weakens the static

nesting. Therefore, NFL state would oppose the formation of a QCP. According to the Hertz-

Millis theory[135] both dynamical and static fluctuations are related to each other at the QCP.

In my momentum dependent calculation, I find that the anisotropic self-energy is actually a
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nonlocal effect (see Sec. 2.4). What I mean by this is that the dominant self-energy values

at the antinodal point are mainly contributed by the incoherent, high-energy Hubbard bands

at the BZ center and corner [Γ, (π, π)]. Therefore, the states away from the NFL momenta

[(π, 0)/(0, π)] can develop static orders if a suitable FS nesting is present. As in the case

of cuprates, the NFL state at the optimal doping resides at the antinodal point, while the AF

state and the d-wave superconductivity arise from the FS nesting at the magnetic ‘hot-spot’

(within a weak/intermediate coupling scenario). In fact, as the spectral weight is transferred

from the antinodal to the rest of the BZ, the magnetic ‘hot-spots’ gain more spectral weight

and the corresponding nesting can be enhanced. The present NFL state will however disfavor

the charge density wave (CDW) which is believed to arise from the antinodal nesting.[98] My

prior calculation indeed showed that the CDW nesting is shifted from the antinodal region to

the tip of the ‘Fermi arc’ below the magnetic BZ, which is consistent with experiments.[172]

However, such a CDW is also predicted to give a discontinuous, first-order phase transition

near the optimal doping to avoid the nesting at the antinodal point.[172]

2.8.5 Pseudogap

The discussion of a pseudogap feature follows from the above section. First of all, the present

calculation only deals with density-density correlation, and does not include Hartee/Fock

terms. The correlation induced dynamical self-energy does not naturally give a suppression

of the density of states at the Fermi level, namely a pseudogap, althoguh it gives a ‘Fermi arc’

feature (discussed below). Therefor, the impact of any pseudogap on the NFL/FL behavior is

not well captured here, and the result may depend on the specifics of the pseudogap physics

one additionally invokes in the underdoped region. The present model however gives a good

description of the normal state phenomena above the pseudogap temperature. Moreover, in

the present model, there is a ‘Fermi arc’ due to strong suppression of the spectral weight at

the antinodal points, see Fig. 2.6. However, the entire ‘Fermi arc’ remains coherent. In the

angle-integrated density of states, no suppression of the spectral weight is obtained at the Fermi

level. In other words, the ‘Fermi arc’ does not produce a pseudogap in the DOS. The doping

dependence of the ‘Fermi arc’ is discussed in a separate work.[172] There is an increasing

discussion that the pseudogap originates from some sort of a competing order, whose origin
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is yet to be determined. Any competing order induced gap in the low-energy state may not

affect much the NFL state. This is because the pseudogap is typically of the order of 50-80

meV, while the itinerant-local density fluctuations energy is 300-500 meV even at the optimal

doping. Therefore, we expect that the pseudogap will have less influence on the NFL physics.

Experimentally, the resistivity-T exponent is derived above the pseudogap temperature T ∗.

2.8.6 Optical conductivity

Kubo formula works well in the weak-coupling region. Maki-Thomson (MT)[160], and later

Aslamasov-Larkin (AL)[161] extended the calculations to include higher order diagrams. Af-

ter deriving them, I will argue below that they can be neglected even in the intermediate

coupling region of present interest. In the linear response theory, optical conductivity can

be written as σxx(ω) = 1
ω

ImKxx(q → 0, ω), where Kxx is the current-current correlation

function. (This formula works when σ, and K have no singularity). Here Kxx(q, τ) =

i〈Tτ [jx(q, τ), jx(−q, 0)]〉, where jx(q, τ) = ∑
k,σ vx(k)c†k,σ(τ)ck+q,σ(τ) is the current op-

erator. Substituting them, we get

Kxx(q, τ) = C

N

∑
k,k′,σ,σ′′

〈TτS(∞)vx(k)vx(k′)c†k+q,σ(τ)ck,σ(τ)c†k′−q,σ′(0)ck′,σ′(0)〉,

(2.8.5)

where the constant factor C = e2

~2 . Onari et. al.[165], and Bergeron et al.[174] have derived

the explicitly the Kubo, MK and AL terms using diagram approach and the results hold for

the MRDF approach. Following the same procedure as in Eqs. (A.2.4)-(A.2.6), we can arrive

at the first three leading terms. The diagrams for the three terms are given in Fig. 2.3, and the
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results are

KKubo(q, εm) = C

3Nβ
∑
k

v(k) · Γ(k, k + q)G(k)G(k + q), (2.8.6)

KMT(q, εm) = C

(Nβ)2

∑
k,k′

v(k) · Γ(k′, k′ + q)G(k)G(k + q)G0(k′)G0(k′ + q)V (k′ − k),

(2.8.7)

KAL(q, εm) = C

(Nβ)3

∑
k,k′,q′

v(k) · Γ(k′, k′ + q′)G(k)G(k + q)G0(k′)G0(k′ + q)

×[G0(k′ + q′ + q) +G0(k′ − q′)]G0(k + q′ + q)V (2)(q′, q′ + q). (2.8.8)

I continue to use the compact notation k = (k, iωn), and k + q = (k + q, iωn − iεm). V =

V1 + V2 (spin+charge) is the total density fluctuation, and V (2)(q′, q′ + q) = V1(q′)V1(q′ +

q) + V2(q′)V2(q′ + q). Γ(k, k + q) is the current-current vertex. G0, and G correspond to

the Green’s function without and with self-energy correction, respectively. The corresponding

diagrams are given in Fig.2.3. It is now easy to deduce that the MT and AL terms scale as

V/W4 and V 2/W6 where V is the fluctuation potential which scales as U2/W . Therefore, as

long as coupling strength U ≤ W these terms have negligible contributions, except near the

critical region where either V and/or the Green’s function has a singular contribution. Since I

am far away from any singular behavior, and I work in the intermediate coupling regime, I can

neglect these high order terms.

Finally, using the spectral representation of the Green’s function and performing the Mat-

subara frequency summation as in Eqs. (A.2.7)-(A.2.9), I arrive at a similar equation for the

Kubo term

KKubo(q, εm) = C

3N
∑

k

∞∫
−∞

∞∫
−∞

dω1

2π
dω2

2π A(k, ω1)A(k + q, ω2)

×v(k) · Γ(k, k + q)f(ω1)− f(ω2)
iεm − ω2 + ω1

. (2.8.9)

Now substituting for the bare current vertex as v = Γ(0), and taking the limit of ε → 0, and

q → 0, we obtain Eq. (2.5.1).
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2.8.7 Vertex correction

Vertex correction is an important subject in the theories of strong correlation physics. Owing

to the conservation laws, there always arise both density-density and current-current vertices

in a homogeneous system. One often denotes both by the same symbol Γ, where a vector

symbol Γ is used for the current vertex, and a scalar symbol Γ is used for the density vertex.

In the present bubble diagrams for both density-density correlation functions χ, as well as

current-current correlation function σ, the relevant vertex corrections are the three-point vertex

functions, as shown by Bethe and Salpeter.[159] Thanks to the conservation laws, the density

and current vertices are related to each other, as shown by Ward, and their relation is known as

the Ward identity.[166]

In the following descriptions, I use four-component vertex Γ which encode the density

and current vertices as (Γ,Γ). The Bethe-Salpeter vertex correction[159] is written by the

self-consistent equations (see Fig. 2.3 for the relevant diagram)[187]:

Γν(k, k + q) = Γ (0)(k, k + q) + Γ (1)
ν (k, k + q), (2.8.10a)

Γ (1)
ν (k, k + q) = 1

β

∑
k′,q′

Vν(k, k + q, k′, k′ + q)G(k′)G(k′ + q′)Γν(k′, k′ + q),

(2.8.10b)

where ν = 1, 2 are for spin and charge components, respectively. Γ (0)(k, k + q) is the four-

component bare vertex, whose density component is Γ(0) = 1. The current components are

obtained as q · Γ(0) = ξk+q − ξk, where ξk is the bare electronic dispersion. Γ (1)
ν (k, k + q) is

the first order correction (see Fig. 2.3) to be evaluated self-consistently. Since both spin and

charge densities are conserved here, one obtains the same Ward identity for them as

iεmΓν(k, k + q)− q · Γν(k, k + q) = G−1(k + q)−G−1(k). (2.8.11)

Please note that in both Eqs. (2.8.10b), (2.8.11), the Green’s function G(k) is the full self-

energy dressed Green’s function, which remain the same in both spin and charge sectors. The

current vertex does not directly contribute to the density-density correlation, and it is self-

consistently related to the current vertex by the Ward identity. Therefore, in an ideal case,
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one needs to solve Eqs. (2.8.10a), (2.8.10b), (2.8.11) inside the self-consistent cycles for the

self-energy calculation.

Since vertex corrections often make the calculations computationally unmanageable, ap-

proximations are inevitable. The zeroth order rule is to make sure the the sum rule is main-

tained. However, the choice of a given approximation is usually determined by the type of

fluctuations one is interested in as well as its region of validity. The simplest one is to neglect

the vertex correction. Such an approximation is good enough for electron-phonon coupling

(Midgal’s theorem),[167] or in the single-shot GW method for electron-electron interactions.

Omission of vertex correction can lead to violation of sum rule(s) when self-consistency is

invoked.[182, 123] The next level approximation is to assume that the density and current ver-

tices are proportional to each other, i.e., Γν = q ·Γν/iεm at all momenta and frequencies.[167]

Such an approximation yields good result when the momentum dependence of the self-energy

is weak as often used in DMFT calculations. However, this can lead to problems when the

momentum dependence is significant, simply because the current vertex arises mainly from

the momentum derivative of the self-energy.[167] A momentum and frequency dependent ra-

tio function between the density and current vertices was introduced in the literature for the

particle-hole bubble interactions[188, 187] as Γν(k, k + q) = Bν(k, k + q) · Γν(k, k + q).

B = q/iεm in the above approximation. Altshuler, et al.[188] assumed that the current vertex

along the dimension of motion is proportional to the density vertex, which means they ignored

multiple scattering channels along the direction of the applied voltage. Takada[187] used the

full ratio function, but assumed a local approximation for the potential V (V (q) was replaced

by its momentum averaged value), which is again suitable for weak k−dependent self-energy.

Eqs. (2.8.10a), (2.8.10b) are required to be solved for either the density or the current term,

and then the other term can be evaluated by using the Ward identity (Eq. (2.8.11)). This is

in fact the best strategy which guarantees that the conservation laws remain intact no matter

what approximation is invoked in the calculations. I calculate the current vertex explicitly, and

obtain the density vertex from the Ward identity.

For the susceptibility calculation, I assumed a local-field approximation. Therefore, I can

make the same local-field approximation for the fluctuation-exchange potential V , i.e., I as-

sume Vν(k + q, k′, k′ + q) = Vν(k + q)δk,k′ (note that I invoked a local filed approximation
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for both the momentum and frequency axes). Such an approximation should be relaxed when

Umklapp scattering or any translational symmetry breaking field is present. From Eq. (A.2.11),

I can write Vν(k + q) = 1
Γν(k,k+q)

δΣν(k)
δG(k+q) . Substituting this in Eq. (2.8.10b) gives

Γ(1)
ν (k, k + q) ≈ G(k)Σ(k)Γν(k, k + q)

Γν(k, k + q) . (2.8.12)

I define a function uν(k, k + q) = G(k + q)Σν(k). Then substituting this in Eq. (2.8.10a)

gives

Γ(1)
ν (k, k + q) ≈ uν(k, k + q)/Γν(k, k + q)

1− uν(k, k + q)/Γν(k, k + q)Γ(0)(k, k + q). (2.8.13a)

Γν(k, k + q) ≈ 1
1− uν(k, k + q)/Γν(k, k + q)Γ(0)(k, k + q). (2.8.13b)

Substituting Green’s functionG−1(k) = iωn−ξk−Σ(k), in the Ward identity in Eq. (2.8.11),

I obtain

Γν(k, k + q) = 1− Σ(k + q)− Σ(k)
iεm

+ q · Γ(1)
ν (k, p+ q)
iεm

.

(2.8.14)

I define two symbols m∗(k, k + q)/m0 = 1 − (Σ(k + q) − Σ(k))/iεm, and v(k, k + q) =

q · Γ(0)(k, p+ q)/iεm. Then substituting Eq. (2.8.13b) in Eq. (2.8.14), I get

Γ = m∗

m0
+ v

u/Γ
1− u/Γ , (2.8.15)

where I have kept the k, and ν dependence on each term, except m0, implicit, for simplicity.

Eq. (2.8.15) is an algebric equation which can be solved to get

Γ =
m∗/m0 + u±

√
(m∗/m0 − u)2 + 4uv

2 . (2.8.16)

Eq. (2.8.16), and (2.8.11) can be solved in each self-consistent cycles to obtain both density



2.9. Outlook and conclusions 67

and current vertices.

If the self-energy is linear in frequency (FL-ansatz), and linear in momentum, I can further

approximate the vertex corrections. Here I get

mν(k, k + q)∗
m0

≈ Z−1(k + q)− q
iεm
· ∇kΣ(k), (2.8.17)

and

Γ(1)
ν (k, k + q) ≈ ∇kΣ(k). (2.8.18)

This reduces the density and current vertices as[167]

Γν(k, k + q) ≈ m∗ν/m0 = Z−1
ν (k + q), (2.8.19a)

Γ(1)
ν (k, k + q) ≈ Γ(0)

ν (k, k + q) +∇kΣ(k)

≈ −m0∇G−1(k, ω). (2.8.19b)

2.9 Outlook and conclusions

The important message of my result is that for strongly anisotropic materials where the dynam-

ical fluctuations have significant momentum dependence, the resistivity-temperature exponent

is not a robust measure of the full correlation spectrum of the underlying quasiparticle states.

I have found that even in the underdoped and overdoped regions, where resistivity exponent

n → 2, there are considerable amount of NFL self-energies lying in the antinodal regions.

Similarly, in the extreme NFL region near the optimal doping regime (determined by n ∼ 1),

the nodal quasiparticles continue to behave FL-like (with Σ′′ ∝ |ω|2). Both as a function of

temperature and doping (and other tunnings), the spectral weight is transfered between the

NFL and FL regions and the system adiabatically transforms from a dominant NFL to a FL-

like state, as seen in experiments. This work suggests that the microscopic and macroscopic

landscapes of the NFL behavior can be characteristically different and that a direct correspon-

dence between k-resolved spectroscopy (such as ARPES, and quasiparticle interference (QPI)

pattern) and the transport, and thermodynamical properties are necessary to deduce the global
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and local NFL behavior of a given system.



Chapter 3

Wannier pairs in superconducting twisted

bilayer graphene and related systems

3.1 Introduction

In this chapter, I look into the unconventional superconductivity in strongly correlated sys-

tems, which appears as a result of Moiré pattern formation. Unconventional superconductivity

is well-studied in the context of cuprates, pnictides and heavy fermions. But, superconduc-

tivity in bilayer Moiré systems makes the field equally interesting. Most of the important

characteristics of bilayer Moiré system come from interlayer interactions. And with increas-

ing tunability of interlayer tunneling with twist angle, all the strongly correlated phenomena,

including superconductivity, can be probed experimentally and can be studied theoretically

with great variety. This may lead to a new understanding and discovery in the field of uncon-

ventional superconductivity. Here I study the spin fluctuation mediated superconductivity in

single-layer graphene (SLG) and in Moiré pattern created by graphene on hexagonal Boron

Nitride (GBN) and in twisted bilayer graphene (TBG). In GBN and TBG the superconducting

pairing becomes complicated due to involvement of many lattice sites in a Moiré unit cell.

This complexity is simplified by restricting within the flatbands and by considering the Wan-

nier orbitals of the flat bands, which are localized at the Moiré lattice points. Thus in this study

of superconductivity in Moiré systems, I propose an unconventional paring between Wannier

orbitals and predict the nature of paring symmetries arising from such pairings.

69
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Strongly correlated quantum phases and superconductivity have long been predicted in

single-layer graphene (SLG) at the van-Hove singularity (VHS).[189] However, their experi-

mental realization has so far remained elusive. Recently, both correlated insulating gap[190]

and superconductivity [92] have been observed in a twisted bilayer graphene (TBG) at a nar-

row range of twist angles, namely the ‘magic’ angles ∼ 1o. In this region, the single-particle

density of states (DOS) acquires a sharp peak near the Fermi level, with an effective band-

width reducing to ∼ 5 meV.[89, 191] The emergence of this flat band is intrinsic to the

physics of Moiré pattern, formed in TBG as well as in graphene on hexagonal Boron Nitride

(GBN).[89, 191, 192] The Moiré superlattice produces ‘cloned’ Dirac cones at the Moiré zone

boundaries, in addition to the primary Dirac cone at the Moiré zone center. The band dis-

persion between the primary and cloned Dirac cones passes through saddle-points or VHSs,

and hence yields a flat band. It is tempting to assume that the ‘magic’ angle creates a similar

VHS-like state as in SLG and/or GBN, and thus the predicted correlated physics of SLG/GBN

are also at play in TBG. However, a closer look at the electronic instabilities at the VHS and

their characteristic localizations into unique Wannier states in the direct lattice reveals stark

differences between them (see Fig. 3.1). This leads to an essential question: How do such

Wannier states, enveloping many graphene unit cells, condensate into Cooper pairs?

The relationships between the k-space electronic structure and direct lattice localized Wan-

nier states of the SLG, GBN, and TBG are delineated in Fig. 3.1. I should caution the reader

that Fig. 3.1 is only schematic and it denotes the localization of the flat bands in case of TBG

and GBN. Although Wannier orbitals are not exactly same as local density of states (LDOS),

still the LDOS gives an idea of the wave function localization. A more detailed description of

the localization of the flat bands from ab initio calculation can be found in the Ref. [192]. The

effective bandwidth of the VHS/flat band decreases from∼1 eV in SLG to∼100 meV in GBN

to∼3-5 meV in TBG, making the latter more prone to correlation. Fermi surface (FS) of SLG,

GBN, and TBG are compared in Fig. 3.1 at their corresponding VHS position. The FS of SLG

is most flat (producing large nesting), while that for GBN is most circular (weak nesting), and

TBG lies in between. In addition, we observe a systematic transition from six-fold to three-

fold rotational symmetry in going from SLG to GBN to TBG, rearranging the corresponding

Wannier states accordingly in the direct lattice. The three-fold symmetic FS of TBG is for
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Figure 3.1: (a-c) Computed FSs of SLG, GBN, and TBG, respectively at their corresponding
VHS energies (dashed line depicts the 1st BZ). (d-f) Corresponding positions of the Wannier
states of the VHS/flat band in the direct lattice. For SLG [(a) and (d)], the VHS’s Wannier
states are localized on the ‘A’, and ‘B’ sublattices in the primitive unit cell. In GBN [(b) and
(e)], the Wannier states are localized on the corners of the hexagonal Moiré-supercell. In TBG
[(c) and (f)], the Wannier states show a fully formed triangular lattice at the flat band for each
valley, where ‘A’ sublattices of the original two graphene lattices merge on top of each other
(defined as ‘AA’ site). The Wannier states in both Moiré-lattices spread over several graphene
unit cell. a = 2.46Å is the graphene’s lattice constant, while a′ is the Moiré lattice constant.

a given valley band, while the other valley band has the complementary three-fold symmetry

so that the FS becomes six-fold symmetric when both valley bands are included.[193, 194]

This three-fold symmetric FS makes TBG distinct from other hexagonal[189] and triangular

lattices[195] with six-fold symmetric FS and plays an important role in stabilizing a distinct

pairing symmetry here.

One of the most striking differences emerges when the corresponding Wannier states of

individual flat band in the direct lattice are investigated, see Fig. 3.1(lower panel). In the flat

region of the VHS in SLG near the K-point, the states are localized on the ‘A’ sublattices,

while the states near the K′ point are localized on the ‘B’-sublattice and vice versa. In GBN

and TBG, the situation changes drastically due to Moiré-supercell formation.* In the low-

*For SLG, the three nearest-neighbor (NN) distances for the pairings are[196] δ1,2 = (1,±
√

3)a/2, and
δ3 = (−1, 0)a, where a = 2.46Å is the lattice constant. For GBN, the next nearest neighbor (NNN) sites are
involved in pairing with odd-parity (as shown in Fig. 3.3), where the NNN positions (on both sides) are δ′

1,2 =
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energy model of the GBN Moiré-lattice, the band structure can be described by that of a SLG

under an effective supercell potential due to BN substrate with the supercell periodicity being

much larger than the graphene unit cell. The corresponding Wannier states are maximally

localized only on the corners of the hexagonal Moiré-supercell (enclosing several ‘A’ and ‘B’

sublattices of the original graphene unit cell),[191] see Fig. 3.1(e). On the contrary, in TBG the

Wannier states of a given valley band are maximally localized on the ‘AA’ lattice sites (where

‘A’ sublattices of both graphene layers become aligned on top of each other) at all Moiré-

supercell corners, as well as at the center, forming a full triangular symmetry,[190, 92, 197]

see Fig. 3.1(f). The other valley band is also localized on the same ‘AA’ sites, forming a

unit cell with two Wannier orbitals per site, with different orbitals possessing complementary

rotational symmetry.[89, 191, 193, 194]

The pairing symmetry calculation is performed using materials specific, multiband Hub-

bard model. Hubbard model has a SC solution arising from the repulsive many-body pair-

ing interaction which mediates unconventional, sign-reversal pairing symmetry.[198] Such a

mechanism, often known as spin-fluctuation mediated unconventional superconductivity, ba-

sically depends on strong FS nesting instability at a preferred wavevector, say Q. The nesting

can promote a SC solution with a momentum-dependent pairing symmetry ∆k such that the

pairing symmetry changes sign on the FS as: sgn[∆k] = −sgn[∆k+Q]. This sign reversal

is required to compensate for the positive (repulsive) pairing potential. This theory of spin-

fluctuation driven superconductivity consistently links between the observed pairing symme-

try and FS topology in many different unconventional superconductors.[199, 200, 201, 202]

A k-dependent pairing symmetry incipiently requires that pairing occurs between different

atomic sites in the direct lattice. In what follows, the characteristic momentum structure of the

pairing symmetry is intimately related to the underlying pairing mechanism, FS topology, and

its contributing Wannier sites.

For each material, the non-interacting, low-energy band structures are obtained by tight-

binding model in the unit cell or Moiré cell, as appropriate. Next I solve the pairing eigen-

value (SC coupling constant) and eigenfunction (pairing symmetry) solution of the linearized

(3,±
√

3)a′/2, and δ′
3 = (0,−

√
3)a′, with a′ ∼ 40a is the Moiré-lattice constant. For TBG, the triangular lattice

sites have the NN distances (on both sides) as: δ1 = (−1, 0)a′, δ2,3 = (±1,
√

3)a′/2, where the corresponding
Moiré-lattice constant a′ ∼ 40a near the magic angles
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Eliashberg equation, where the pairing potential stems from many-body spin- and charge

fluctuations.[199, 200, 201, 202] The obtained eigenfunction for the largest eigenvalue gives

the pairing symmetry in the momentum space. The real-space mapping of the pairing sym-

metry is obtained by inverse Fourier transform. This illuminates the Cooper pairs between the

nearest neighbor Wannier orbitals with corresponding phase factor.

In SLG, the computed pairing eigenfunction agrees with a d + id-wave symmetry, which

arises from inter-sublattice pairing between the ‘A’ and ‘B’ Wannier sites in a hexagonal prim-

itive lattice. In GBN, the pairing solution changes to a p + ip-symmetry where the inter-

sublattice pairing occurs between the nearest neighbor (NN) Wannier orbitals with odd-parity

phases. On the other hand, in TBG, we find an extended s- pairing with even parity phases

between the same Wannier orbitals in NN sites. Note that the extended s-wave solution can

produce accidental nodes when the FS is large near the VHS doping.

3.2 Model Hamiltonians for different systems

3.2.1 SLG

A tight-binding (TB) model is used for SLG taking into account nearest neighbour (NN) and

the next nearest neighbour (NNN) hoppings. I start by describing the graphene lattice in terms

of sublattices A and B with three NN translation vectors connecting sublattice A to three NN-

sublattices B as δ1 = (1
2 ,
√

3
2 )a0, δ2 = (1

2 ,−
√

3
2 )a0, δ3 = (−1

2 , 0)a0 with a0 denoting the

carbon-carbon distance in graphene lattice. Six NNN traslation lattice vectors can be written

as a1 = ±(δ1 − δ2), a2 = ±(δ2 − δ3), a3 = ±(δ3 − δ1). We can write the Hamiltonian as

HSLG = Hon−site +HNN +HNNN (3.2.1)
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where,

Hon−site =
∑
i,σ

εaa
†
i,σai,σ +

∑
j,σ

εbb
†
j,σbj,σ (3.2.2)

HNN = −t
∑
〈i,j〉,σ

(
a†i,σbj,σ + h.c.

)
(3.2.3)

HNNN = −t′
∑
〈〈i,j〉〉,σ

(
a†i,σaj,σ + b†i,σbj,σ + h.c.

)
(3.2.4)

with εa and εb are sublattice energies for sublattice A and B respectively, t and t′ are nearest

neighbour and next nearest neighbour hopping amplitude respectively, a† and b† are creation

operators on sublattices A and B respectively. Next I Fourier transform the creation and anihi-

lation operators to get the band dispersion as

Hon−site =
∑
k,σ

(
εaa
†
k,σak,σ + εbb

†
k,σbk,σ

)
(3.2.5)

HNN =
∑
k,σ

(
εNN

k a†k,σbk,σ + h.c.
)

(3.2.6)

HNNN =
∑
k,σ

(
εNNN

k a†k,σak,σ + h.c.
)

(3.2.7)

with

εNN
k = −t

∑
i=1,2,3

eik.δi (3.2.8)

εNNN
k = −t

∑
i,j(i 6=j)

eik.(δi−δj) (3.2.9)

The model with more tight-binding parameters and their values is given in Ref. [203].

3.2.2 GBN

The low energy model for graphene on hBN is constructed by following Ref. [191]. The

four-band model in terms of 2× 2 blocks is given by

HGBN =

 HBN TBN,SLG

TSLG,BN HSLG

 , (3.2.10)
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whereHBN andHSLG are Hamiltonians for Boron Nitride and SLG layers, respectively. TSLG,BN,

TBN,SLG are corresponding tunneling matrices in sublattice basis. The effective simplified

model for this case is obtained by integrating out the boron nitride orbitals as H = HSLG −

TSLG,BNH
−1
BNTBN,SLG. Now the sublattice dependent terms in the Hamiltonian can be written

as

Hss′ = H0
ss′ +HMB

ss′ , (3.2.11)

where H0
ss′ is the Hamiltonian that describes Dirac cones and HMB

ss′ gives the Moiré band

modulation as

H0
ss′ = H0

ss′(k,G = 0)δk,k′, (3.2.12)

HMB
ss′ =

∑
G6=0

HMB
ss′ (k,G)δk′−k−G. (3.2.13)

All the terms of the effective Hamiltonian now can be determined by the following equations

H0 = C0e
iφ0 , Hz = Cze

iφz , (3.2.14)

HAA = H0 +Hz, HBB = H0 −Hz, (3.2.15)

HAB,G1 = H∗AB,G4 = CABe
i(2π/3−φAB), (3.2.16)

HAB,G3 = H∗AB,G2 = CABe
−iφAB , (3.2.17)

HAB,G5 = H∗AB,G6 = CABe
i(−2π/3−φAB). (3.2.18)

In Ref. [191], it is shown that this effective model can be completely specified by six numbers

C0 = −10.13 meV, φ0 = 86.530, Cz = −9.01 meV, φ0 = 8.430, CAB = −11.34 meV,

φAB = 19.600.

3.2.3 TBG

The Hamiltonian for the TBG is constructed by following the work of Bistritzer and MacDon-

ald [89]. The low-energy Hamiltonian can be written by considering two SLGs which were

rotated by an angle θ with respect to each other and tunneling between the SLG layers (see
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ky 
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Figure 3.2: Momentum-space formulation of TBG Moiré pattern. Red and blue BZ of SLG
denotes the upper and lower layer, respectively. The upper layer is rotated by an angle θ/2 and
lower layer by −θ/2 with respect to the kx, ky axis shown in the figure. Smaller (solid black)
hexagons represent the Moiré BZ of the TBG for a given valley state. Dashed black hexagon
represents the Moiré BZ for the other valley state.

Fig. 3.2). Low-energy continuum model Hamiltonian for SLG can be written in a 2× 2 matix

as

hk (θ) = −vk

 0 ei(φk−θ)

ei(φk−θ) 0

 , (3.2.19)

where v = 3.2 eVÅ−1 is the Dirac velocity, k is the momentum measured from Dirac point, and

φk = tan (ky/kx), and θ is twist angle [see Fig. 3.2]. Next we consider the inter-layer hopping

integrals, which can be accurately described by three distinct tunnelings with three distinct

wavevectors qj (j = 1, 2, 3) [see Fig. 3.2], whose directions are given by (0,−1) for j = 1,

(
√

3/2, 1/2) for j = 2, and (−
√

3/2, 1/2) for j = 3. The magnitude is |qj| = 2kD sin (θ/2)

where kD is the magnitude of BZ corner wavevector for a SLG. Corresponding tunneling
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matrices Tj are given by

T1 = c

 1 1

1 1

 , T2 = c

 e−iζ 1

eiζ e−iζ

 , T3 = c

 eiζ 1

e−iζ eiζ

 ,
(3.2.20)

where ζ = 2π/3 and c = 0.9 eV is the inter-layer tunneling amplitude. The k-cutoff is

choosen in the first Moiré pattern BZ given by reciprocal lattice vectors G1 = |qj|(
√

3, 0) and

G2 = |qj|(−
√

3/2, 3/2). Now the Hamiltonian for TBG is a 8× 8 matrix given by

Hk =



hk (θ/2) T1 T2 T3

T †1 hq1 (−θ/2) 0 0

T †2 0 hq2 (−θ/2) 0

T †3 0 0 hq3 (−θ/2)


.

(3.2.21)

In this calculation k-points beyond the first shell approximation is considered, which results

in a 400 × 400 matrix. After diagonalizing this matrix, I downfold the eigenvalues to the two

(four) low-energy flat bands for a single valley (both valleys) that are near the FS, and all the

subsequent calculations are performed considering only these bands.

3.3 Electronic structure and FS nestings

As presented in the last section, I use a typical two band tight-binding (TB) model [196, 203]

for SLG. And for the Moiré-lattices in GBN and TBG, I directly use the low energy model.

In Fig. 3.1 (top panel), I show the computed FS topology for the three systems under study

with the chemical potential placed at the VHS/flat band. In the corresponding lower-panel of

Fig. 3.1, I show the Wannier states for the Fermi momenta on the flat band.

To estimate the FS nesting features, and the corresponding pairing potential, the multiband
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Lindhard susceptibility χαβ(q, ω) is computed as:

χαβ(ω,q) = −
∑

k
Fαβ
νν′(k,q)

f(ενk)− f(εν′k+q)
ω + iδ − ενk + εν

′
k+q

, (3.3.1)

where ξνk is the νth band, and f(ξνk) is the corresponding fermion occupation number. α, β

give the orbital indices, and q and ω are the momentum and frequency transfer, respectively.

Fk,q as form factor arising from the eigenvectors as

Fαβ
νν′(k,q) = uν†α (k)uνβ(k)uν

′†
β (k + q)uνα(k + q), (3.3.2)

where uνα represents the eigenvector for the νth-band projected to the αth basis (Wannier or-

bitals). The form-factor is evaluated numerically.*

The 2D profile of the susceptibility (total χ = ∑
αβ χαβ) for ω → 0 is presented in Fig. 3.3

(top panel) for all three systems. I find stark differences in the nesting features. In SLG, the

FS is extremely flat, causing paramount FS nesting at Q ∼ (2/3, 1/3) r.l.u., and its equivalent

points. The nesting is considerably weak in GBN since here the FS is quite circular, with some

residual nesting occurring at small wavevectors. For TBG, the nesting is strong at Q ∼ (1/3, 0)

r.l.u.. Such a FS nesting drives translation symmetry breaking into various density-wave orders

in the particle-hole channels and/or unconventional pairing instability. The FS nesting driven

superconductivity stabilizes a characteristic symmetry which changes sign on the FS.

3.4 Pairing potential calculation

I start with an extended Hubbard model with both the valleys:

Hint =
∑

αβ,σσ′,q
Uαβnασ(q)nβσ′(−q)

= U
∑

α,k,k′,q
c†kα↑ck+qα↑c

†
k′α↓ck′−qα↓ + V

∑
α 6=β,k,k′,q,σ,σ′

c†kασck+qασc
†
k′βσ′ck′−qβσ′ ,

(3.4.1)

*For simple two-band tight-binding model of SLG, F can be evaluated analytically by substituting the ana-
lytical form of the eigenvectors, yielding Fαβνν′(k,q) = (1 + νν′ cos θ), where ν, ν′ = ±1 for the two bands, and
θ is the angle between k, and k + q.[204, 205]
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where α and β are valley indices, taking values of 1 and 2 for two valleys in TBG. c† and

c are creation and annihilation operators, respectively. U and V are intra-valley and inter-

valley coupling strength respectively. In Eq. 3.4.1 first term is the intra-valley interaction and

second term is inter-valley interaction. By expanding Eq. 3.4.1 to include multiple-interaction

channels, we obtain the effective pairing potential Γαβ(k−k′) for the singlet and triplet states.

The corresponding pairing Hamiltonian is

Hint ≈
∑

αβ,k,k′,σ,σ′
Γαβ(k− k′)c†kασc

†
−kασ′c−k′βσ′ck′βσ.

(3.4.2)

The pairing potentials are

Γ̃s
αβ(q) = 1

2Re
[
3Ũ sχ̃sαβ(q)Ũ s − Ũ cχ̃cαβ(q)Ũ c + Ũ s + Ũ c

]
,

(3.4.3)

Γ̃t
αβ(q) = −1

2Re
[
Ũ sχ̃sαβ(q)Ũ s + Ũ cχ̃cαβ(q)Ũ c − Ũ s − Ũ c

]
.

(3.4.4)

Here U s/c = U for α = β and U s/c = V for α 6= β. From the superconducting Hamiltonian

Eq. 3.4.2, we can construct the superconducting gap (SC) equation as

∆α
n,k = −

∑
β,k′

Γnαβ(k− k′) 〈c−k′βσck′βσ′〉 (3.4.5)

Here n = s, t for singlet and triplet pairing channels where σ′ = ∓σ, respetively. In the limit

T → Tc we have 〈c−k′βσck′βσ′〉 → λn∆β
n,k′ which makes the above equation an eigenvalue

equation

∆α
nk = −λ

∑
β,k′

Γnαβ(k− k′)∆β
n,k′ . (3.4.6)
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The eigenvalue problem is solved separately for the singlet and triplet channels. The following

equations remain the same for both these pairing channels and thus the index ’n’ is omitted

for simplicity. To obtain the pairing symmetry, I focus on the k-points only on the FS. This

is justified since at low temperature quasiparticles near the FS copntribute to the formation of

Cooper pairs. Then this is an eigenvalue equation for the k-points on the Fermi surface (∆α
kF

).

For this purpose the matrix can be constructed as

Γ(kF − k′F) =


Γ11

kFkF
′ Γ12

kFkF
′ . . .

Γ21
kFkF

′ Γ22
kFkF

′ . . .
...

... . . .

 , (3.4.7)

where 1 and 2 refer to the band and valley indices, and q = kF − k′F the Fermi surface

nesting vctor and ΓαβkFkF
′ refers to N ×N matrix if N number of points on the Fermi surface is

considered for each valley. Now if I denote ∆kF =
[
∆1

kF
∆2

kF

]T
then I can write the matrix

equation and solve for its eigenvalues and eigenvectors as

∆kF = −λ
∑
k′F

Γ(kF − k′F)∆k′F . (3.4.8)

By writing the SC gap function as ∆k = ∆0gk, where ∆0 is the gap amplitude and gk is the

gap anisotropy, momentum variation of the pairing symmetry (gk) can be obtained in the form

of Eq. (3.5.5).

3.5 Pairing symmetry calculations

Next I compute the pairing symmetry and pairing strength arising from the density-density

fluctuations. It should be noted that although the bandwidth is lower near the magic angles, the

FS becomes large at the VHS point. This enhances screening, and hence the effective Coulomb

interaction is reduced.[206] The largest insulating gap obtained near half-filling in TBG is

∼0.3 meV < bandwidth, rendering an effective weak or intermediate coupling regime for

correlation. For such a correlation strength, the many-body density-density (spin and charge)

correlation functions are computed from multiband Hubbard model. Since the doping range
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is restricted to only within individual flat bands, the corresponding intra-band Hubbard U

dominate the correlation spectrum. The multiband Hubbard interaction reads as

Hint = 1
ΩBZ

∑
αα′

Uαβ
∑

q,σσ′
nασ(q)nβσ′(−q), (3.5.1)

where nασ(q) is the density operator for the αth-band with σ =↑, ↓ spins, and Uαβ is the

Hubbard U between the two bands. Based on this Hubbard model, the pairing potential is

computed from the bubble and ladder diagrams to obtain for singlet and triplet channels as[199,

200, 201, 202]

Γ̃s(q) = 1
2Re

[
3Ũsχ̃s(q)Ũs − Ũ cχ̃c(q)Ũc + Ũs + Ũc

]
, (3.5.2)

Γ̃t(q) = −1
2Re

[
Ũsχ̃

s(q)Ũs + Ũcχ̃
c(q)Ũc − Ũs − Ũc

]
. (3.5.3)

Here I introduce ‘tilde’ to symbolize a quantity to be a matrix of dimension N × N , with N

being the total number of bands. Superscript ‘s’, and ‘c’ denote many-body spin and charge

susceptibilities χ̃s/c(q) matrix whose components are defined as

χ
s/c
αβ = χαβ(1∓ U s/c

αβ χαβ)−1. (3.5.4)

Here χαβ is the bare susceptibility defined in Eq. (3.3.1) above. The many-body susceptibilities

are obtained within the random phase approximation (RPA). Us/c are the Hubbard U matrix for

spin-flip and non spin-flip interactions, respectively (Eq. (3.5.1)). Here U s/c
αβ = U for α = β

and U s/c
αβ = V for α 6= β. The valley indices are not explicitly mentioned in Eq. (3.5.2) for

simplicity. One can construct the valley dependent Γαβ by considering valley dependent Uαβ

and U differs in different systems.* Clearly, larger U increases (decreases) spin (charge) sus-

ceptibility. Essentially in moderate coupling regime, spin-fluctuation dominates while charge

sector acts as pair-breaker for the spin-singlet pairing (Γs in Eq. (3.5.2)).

A triplet pairing channel Γt increases when the onsite interaction dominates over spin and

*The onsite Hubbard interaction becomes materials dependent due to varying screening effects, as evident in
Fig. 3.3, and also shown in Ref.[206]. We use materials dependent Hubbard U (same for all bands): U =1 eV
for SLG, 100 meV for GBN, and 3 meV for TBG. For TBG the insulating gap is ∼ 0.3meV< U . This can be
reconciled for a dispersive Hubbard band within the Mott picture or for the Slater picture where the gap is U
times order parameter.
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charge fluctuations, as in the case of GBN (see below). In both singlet and triplet cases, it

is evident that the pairing potentials have strong peaks at the momenta where the underlying

susceptibility itself obtains peaks, i.e., pairing potentials Γs/t(q) also diverge at the FS nesting

wavevectors, and hence stabilize a characteristic pairing symmetry in a given system.

Based on the above pairing potential, we solve the linearized multiband SC gap equation,

which is the pairing eigenvalue equation, as given by (see the previous section for details)

λνgν(kα) = − 1
ΩFS

∑
β,k′

β

Γναβ(kα − k′β)gν(k′β), (3.5.5)

where kα is the Fermi momentum for the αth band. The eigenvalue calculation is performed

over the entire 2D FS to estimate the dominant eigenvalue λ (which measures the SC coupling

constant), and the corresponding eigenvector gives the leading pairing symmetry g(k). The

same eigenvalue equation is solved for both singlet (ν ≡ s) and triplet (ν ≡ t) channels. Since

the pairing potentials Γs/t scale with the Hubbard U , SC coupling constant λ also increases

with increasing U . Within the first-order approximation, the pairing symmetry g(k) does not

scale with U (in the weak to moderate coupling regime). Therefore, the general conclusions

about the pairing symmetry, and the phase diagram are dictated by the nesting strength, and

remain valid for different values of U in this coupling regime.

For a repulsive interaction Γν > 0, according to Eq.(3.5.5), a positive eigenvalue λ can

commence with the corresponding eigenfunction g(k) changing sign as sgn[g(k)] = −sgn[g(k′)]

mediated by strong peak(s) in Γν at Q = k− k′ . Looking into the origin of Γν in Eqs. (3.5.2),

(3.5.3) reveals that Γν inherits strong peaks from that in χs/c.

3.6 Results

Here I discuss the results of the pairing eigenstates for three systems under considerations at

their VHS dopings. The computed results of g(k) for the largest eigenvalue of Eq. (3.5.5) are

shown in the middle panel in Fig. 3.3. The momentum space symmetry of the eigenfunction

g(k) is obtained by comparing with the orbital symmetry of the spherical harmonics. After
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Figure 3.3: (a-c) Spin susceptibility within RPA approximation for (a) SLG, (b) GBN and (c)
TBG. (d-f) Computed pairing eigenfunctions for the highest eigenvalue of Eq. (3.5.5) for (d)
SLG, (e) GBN and (f) TBG at their VHS dopings are plotted on the FS in a blue (negative) to
white (nodes) to red (positive) colormap. The pairing structure is consistent with a d+ id-wave
and p + ip-wave symmetry in SLG, and GBN, respectively. On the other hand for TBG in (f)
we find a rotationally invariant extended s-wave symmetry. (g-i) The real space picture of the
pairing for (g) SLG, (h) GBN and (i) TBG systems. gj denote the pairing strength between
nearest sites which is obtained from Fourier transformation of corresponding pairing functions
[Eq. (3.6.1)].

that I inverse Fourier transform the g(k) to the unit cell/Moire superlcell as

gj = 1
ΩBZ

∑
k
g(k)e−i(k.δj−φk), (3.6.1)

where gj gives the pairing amplitude between two Wannier sites separated by a distance δj , see

Fig. 3.3(g-i). φk = Arg[∑j e
−ik.δj ] is an additional phase factor arising in the hexagonal lattice

possessing two Wannier basis per unit cell.[207] I discuss below each system separately.
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3.6.1 SLG

For SLG, numerous calculations predicted that an exotic dx2−y2 +idxy (d+id) - wave symmetry

is the dominant pairing channel, constrained by the FS nesting at the VHS.[189] I also find here

that the two highest eigenvalues are the same with λ = 0.26 with the corresponding degenerate

eigenfunctions being

gdx2−y2 (k) = cos (ky − φk) + cos
(
ky
2 + φk

)
cos

(√
3kx
2

)
,

gdxy(k) = sin
(
ky
2 + φk

)
sin

(√
3kx
2

)
. (3.6.2)

These two eigenfunctions, respectively, represent dx2−y2 and dxy symmetries in the hexagonal

BZ. Pairing symmetry can be deduced by looking at the irreducible representations of the

symmetry group of the normal-state Hamiltonian. Here, the hexagonal group D6h can be

expanded with the E2g irreducible representation (dx2−y2 and dxy solutions). In general, any

linear combination gives a valid solution because of the degeneracy. However, the quasiparticle

energy E(k) =
√
ε(k)2 + |∆(k)|2 favours ∆(k) to have as few nodes as possible on the

normal-state Fermi surface ε(k) = 0 becuse it is energetically favoured. It can be shown that

a complex combination of the basis functions (dx2−y2 and dxy solutions) are usually favoured

as it fully gaps the quasiparticle spectrum on the Fermi surface and thus minimizes the free

energy.[207] This gives a d+ id-pairing symmetry in SLG.[208] (I repeat the calculation with

different U , the absolute value of the eigenvalue changes, but the eigenfunctions remain the

same). Fig. 3.3(d) shows the dx2−y2 eigenfunction, overlaid on the corresponding FS a color-

gradient scale. Using Eq. (3.6.1), I obtain pairing amplitude between three nearest-neighbors

to be g1,2,3 = (2,−1,−1) for dx2−y2 case, and g1,2,3 = (0, 1,−1) for the dxy pairing state

(as shown in Fig. 3.3(g)). The result establishes that the d + id-pairing state in SLG at the

VHS occurs between the NN sublattices with characteristic phases, which accommodate the

FS nesting features and corresponding sign-reversal in the gap structure.
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3.6.2 GBN

In GBN, the circular FS allows small-angle nestings, and hence triplet pairing channel gains

dominance, as in Sr2RuO4[209] and UPt3[210]. With similar argument given in the previous

section, an odd-parity p + ip wave pairing is favoured as shown in Fig. 3.3(e). The symmetry

belongs to the E1 representation with two degenerate eigenfunctions[208]:

gpx(k) = sin (ky − φk) + sin
(
ky
2 + φk

)
cos

(√
3kx
2

)
,

gpy(k) = cos
(
ky
2 + φk

)
sin

(√
3kx
2

)
. (3.6.3)

Compared to the other two compounds, a considerably lower value of λ = 0.03 is found in

GBN. This is expected since this system does not have a strong nesting at a single wavevector,

rather small-angle scattering wavevectors with lower strength. The inverse Fourier transfor-

mation of the pairing state yields g1,2,3 = (2i,−i,−i) for the py state and g1,2,3 = (0, i,−i) for

the px state for the three NN Wannier sites (as shown in Fig. 3.3(h)). Both d + id - symmetry

in SLG and p + ip - wave pairing in GBN break time-reversal symmetry, and are chiral and

nodeless in nature.

3.6.3 TBG

There have already been several proposals for unconventional pairing symmetries, and pair-

ing mechanisms in TBG, such as d + id[211, 194] as in SLG, odd-parity p + ip[212], and

others[213]. The FS topology is quite different in TBG, exhibiting a three-fold symmetry for

each valley. The three-fold symmetric FS is different from other triangular lattices with six-

fold symmetric FS.[195] This FS topological change plays an important role in governing a

distinct pairing symmetry in TBG. Here an extended s-wave pairing is obtained as shown in

Fig. 3.3(f), with its functional form given by

gext−s(k) = 2 cos (
√

3kx/2) cos (ky/2) + cos (ky). (3.6.4)

The pairing function is rotationally symmetric and changes sign between the Moiré-zone center

and corners, governing a symmetry that is consistent with the A2g-group and hence called
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extended s-wave pairing. For the large FS at the VHS doping, the tip of the FS crosses through

the nodal lines and thus gapless SC quasiparticle are obtained in this pairing state. This is

a purely real gap function. In the direct Moiré-lattice, this pairing symmetry stems from a

nearest neighbor pairing between the Wannier sites in a triangular lattice given by g1−6 = 1

for all components, see Fig. 3.3(i).

Please note that the computed pairing symmetry in TBG is different from that of the other

triangular lattices, such as NaxCoO2·yH2O (NCOHO).[195] This is because the FS of NCOHO

has the six-fold symmetry, while the FS for a given valley in TBG has three-fold symmetry.

Valley dependent pairing symmetry in TBG

I repeat the calculation for the pairing eigenvalue and eigenfunctions by including both valley

states for TBG. The FS for the two valleys are mutually rotated to each other by π. This

changes the symmetry of the TBG lattice from triangular to hexagonal, as seen from the FS in

Fig. 3.4(d-f). This opens up two competing nesting wavevectors − intra-band and inter-band

nestings − as captured in the susceptibility result, see Fig. 3.4(a-c). The details of the pairing

symmetry are analyzed in the three limiting cases of (i) intra-valley interaction U = 3.5 meV,

inter-valley V → 0, (ii) U → 0, V = 3.5 meV, and (iii) U = V = 3.5 meV. In the three cases,

extended s-, s±- and p+ ip-wave pairings are obtained, respectively. Below I discuss in details

all three pairing states.

(i) First I consider the case for only intra-valley nesting in the limit of U >> V . Here the

results are similar to the single-valley calculations discussed above. Consistently, an extended-

s wave symmetry is found for both valleys, where there is a sign reversal between center

and corner of the BZ, with a circular nodal line (Fig. 3.4(d)). Inside the circle pairing value

is positive and outside it is negative. It is called extended-s, because of the full rotational

symmetry of the pairing function over the entire BZ.

(ii) Next I consider the case for only inter-valley nesting alone in the limit of V >> U . A

completely different pairing symmetry is obtained. Here I find an onsite, s-wave pairing for

each valley state, but the sign of the pairing is completely reversed between the two valleys,

and hence called s±-pairing state. The result is shown in Fig. 3.4(e). It is evident that the

pairing symmetry does not have any k-dependence and arises solely from the onsite pairing of
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Figure 3.4: (a-c) Spin susceptibility when (a) only intra-valley interaction (U ) included with
V = 0, (b) only inter-valley interaction V is included with U = 0, and (c) both intra- and
iter-valley interactions are included with U = V . (d-i) Computed pairing eigenfunctions for
the highest eigenvalue of Eq. 4 in the main text for the corresponding cases in the upper
panel. TBG at their VHS dopings are plotted on the FS in a blue (negative) to white (nodes)
to red (positive) colormap. We separately plot the two valley result in different rows for easy
visualization. (d-f) for one valley and (g-i) for the other valley.

the Wannier orbitals, with different Wannier orbitals on the same site possess opposite phases.

This pairing state is quite interesting in that while onsite pairing is often considered in the

context of conventional, electron-phonon coupling cases, here one obtains an equivalent con-

dition with an unconventional, electron-electron interaction, mechanism. Note that although

the pairing interaction in obtained from the many-body electronic interaction, the strong onsite

Coulomb repulsion potential is also present. Therefore, the onsite repulsion overturns the this

onsite pairing strength, and such a onsite s± is disfavored.

(iii) Lastly I study the case of having both intra- and inter-valley nestings. The pairing

eigenfunction map, plotted in Fig. 3.4(f) shows an approximate p + ip-pairing in a hexagonal
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Figure 3.5: Maximum pairing eigenvalue (SC coupling constant) λ as a function of chemical
potential shift µ for TBG. Note that the peaks in pairing eigenvalues occur when a flat band
passes through the Fermi level.

lattice. The pairing symmetry can be identified by looking at the corresponding nodal lines

[see Fig. 3.4(d)] and by performing a reflection operation on any point of the FS. However,

unlike previous cases, this symmetry contains higher harmonics of the p-wave symmetries as

can be anticipated from complicated colormap of the pairing function on the FS. The pairing

eigenvalue of this state is however much lower than the extended-s wave pairing symmetry

discussed above.

Doping dependent pairing strength for TBG

Finally, I study the doping dependence of the pairing eigenvalue λ, the SC coupling constant,

in TBG, and the result is shown in Fig. 3.5. I find that λ attains maxima at the positions of the

maxima of the density of states of the flatbands (roughly at half-fillings in both electron and

hole doped sides). The present calculation does not include a correlated Mott gap. Mott gap

opposes superconductivity and this will shift the SC maximum away from the half-filling. For

future extension of this study, one may pursue to reproduce the experimental phase diagram

by including the Mott gap correctly with more sophisticated theory (non perturbative theory

like DMFT).
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3.7 Discussions and conclusions

All the complex d+ id, and p+ ip pairing symmetries do not possess SC gap nodes on the FS

and thus their detection usually requires phase sensitive measurements. The extended s-wave

one in TBG possess accidental nodes on both sides of the saddle-point near the VHS doping,

and thus the SC gap is very anisotropic. The k-space mapping of the pairing symmetry can

be measured via various modern techniques, such as angle-dependent photoemission spec-

troscopy, scanning tunneling probes via quasiparticle interference (QPI) pattern, field-angle

dependence study of thermal conductivity, and so on. The nodal SC quasiparticle also leads

to a power-law temperature dependence in many thermodynamical and transport properties

which makes it easier to distinguish from conventional pairing. The sign reversal of the pairing

symmetry leads to a magnetic spin-resonance at energy < 2∆ (∆ is SC gap amplitude),[214]

magnetic field dependence of QPI peaks,[215] impurity resonance[216] which all can be mea-

sured in future experiments for the verification of the underlying pairing symmetry.

In a typical unconventional superconductor, the Wannier states of the Fermi momenta are

localized on each lattice site, and hence the correspondence between the reciprocal and direct

lattice pairing is trivial. In the Moiré lattice, the location of the Wannier states corresponding

to the flat band in TBG depends on energy, twist angle, and inter-layer coupling. In GBN,

the Wannier states are localized on a hexagonal lattice. In TBG, they form a triangular lattice

for each valley, where the hexagonal symmetry is restored when both valleys are included.

Because of these materials specific peculiarities, the pairing symmetry of these materials turn

out to be characteristically unique. The present paper spares several open questions for future

studies. Superconductivity appears at a considerably low-carrier density (∼ 1012cm−2), which

may require adjustments in the theory. The competition between superconductivity and the

correlated insulator gap is another interesting theme of research which will be perused in the

future.
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Chapter 4

Spin topology in twisted bi-layer Moiré

pattern

4.1 Introduction

In this chapter, I address the formation of topological spin structurre in twisted bilayer hexago-

nal lattice. Motivated by recent development in 2D magnetic layer systems, I try to incorporate

a simple theoretical description for spin-spin interaction in twisted bilayers. And by perform-

ing a Monte Carlo simulation I attempt to unravel the nature of the spin structure that emerges

at different interaction parameters. Different skyrmion phases as well as some topologically

trivial but interesting phases are found in different regions of the phase diagram.

Magnetic order in one and two dimensions has revolutionized the area of 2D spintron-

ics. While Mermin-Wagner theorem prevents a long-range magnetic order in one or two di-

mensional isotropic systems at non-zero temperature, rare exceptions can happen when in-

troduction of anisotropy gaps out the low energy excitations. Layered Van der Waals (vdW)

materials, where the adjacent layers are held together via weak vdW forces, provide an ex-

cellent ground to search for such magnetic order in low dimensions. Obtaining skyrmion

solutions in low dimensional 2D systems will give new opportunities for science and ap-

plications. Recently, long-range magnetic order has been observed in 2D Van der Waals

(VdW) chalcogenides, halides, and related materials. Intrinsic antiferromagnetic order is

observed in monolayer FePS3, [217, 218], and in MPX3(M=Mn,Fe,Co,Ni; X=S,Se)[219,

91
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220]. Later on, many VdW materials such as Fe3GeTe2[221, 222], MnX2(X=S,Se)[223, 224],

VX2(X=S,Se,Te)[225, 226, 227] were found to be intrinsic ferromagnet. Another exciting

family of 2D vdW magnets is the Cr based materials CrX3 (X =I,Br,Cl)[228, 229], which are

ferromagnets in monolayer, but antiferromagnets in bilayer structure, and the two orderings are

externally tunable.[230, 231] Theoretical and experimental efforts to obtain skyrmions in 2D

systems are present. Continuum theory of magnetization field in the non-linear sigma model

and Landau-Lifshitz-Gilbert model in monolayer and bilayer Moiré systems show the exis-

tence of Neél type skyrmions.[90, 91, 232, 233, 234] Recently, a skyrmion phase is observed

in 2D Fe3GeTe2 on (Co/Pd)n superlattice[235] and Fe3GeTe2/h-BN heterostructure[236] due

to their sizable DMI strength.

Skyrmion is a particle dual to a topological configuration of the O(3) fields (read spin) in a

2+1 dimension[237, 71, 238, 239]. Such a spin configuration is an allowed classical solution of

the non-linear sigma model. A brief description for different interactions leading to a skyrmion

phase was given in chapter 1. Apart from those theoretical understanding, there have been

several materials realizations of the skyrmions, mainly in systems with DMI, such as Bloch-

type skyrmions in MnSi[240], Co0.5Fe0.5Si,[241, 242, 243] Cu2OSeO3,[244] CoZnMn,[245]

and FeGe[246], and Néel-type skyrmions in ferromagnetic heavy-metals[247], Kagome lattice

Fe3Sn2[248], magnetic films,[249], and antiskyrmions in Mn2RhSn[250, 251]. Experimen-

tal abilities to breed,[243, 252] mobilize,[253] rotate[254] skyrmions are also demonstrated

recently.[255, 249] Owing to the topological robustness, skyrmions have numerous potential

applications in quantum information,[256] racetrack memory [257, 258], which demand en-

hanced materials flexibilities and tunabilities.

To strategize a new mechanism of the skyrmion, it is worth revisiting it’s key ingredients.

Firstly, topological skyrmion configurations in 2+1 dimension generally belong to the homo-

topy group π2(S2) ∼= Z. The homotopy mapping is exact when both the coordinate space

and the target (spin) space are compact S2. The constraint that all spins S are aligned at the

infinity makes it possible to project the spin space into a Bloch sphere and thus compactifying

the spin space. When a spin configuration has a one-to-one correspondence with the spatial

dimensions, this in turn compactifies the position space R2 → S2. The resulting one-to-one

mapping guarantees the spin configuration to be topological with its skyrmion charge Q ∈ Z−
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Figure 4.1: Twisted bilayer setup and five distinct topological spin configurations in real space.
(a) Schematic diagram of twisted bilayer honeycomb (θ = twist angle) lattice with a Moiré
pattern is shown along with two lattice translation vectors R1,2. A 3D illustration is shown on
the lower right corner, in which a single spin of the upper layer (bright magenta color) interacts
with bottom-layer spins within a circular region (dark green color) of radius rcut. (b-f) Five
distinct spin textures (enumerated by Phase-I to Phase-V) obtained in the J⊥ − JD parameter
spare (see Fig. 4.3). Arrows denote the spin s vector, while red to green color-gradient denotes
sz = 1 to −1 values. Dashed thin line in each panel indicates the direction along which a
2D spin projection is shown in the corresponding inset. (b),(d),(f) We show three skyrmion
structures with distinct charge density (shown in Fig. 4.4) and integer topological charge Q.
(c) Phase-II corresponds to a novel higher-order topological phase with streamlines of down
spins, and topological dipole moments of antiskyrmions pairs (see Fig. 4.5). (e) This is a trivial
topological phase with finite noncollinear ferromagnetic moment.

an integer winding number. The above reasoning can be reversed for a bottom-up approach. If

the effective magnetic field B(r), experienced by a local spin due to the surrounding spins and

extrinsic fields, lives on a Bloch sphere S2, then within the minimal Zeeman-like coupling, the

field would lay the ground for a topological configuration for the spins. The second essential

requirement is that the local field configuration must concomitantly promote a saddle-point

energy minimum to stabilize a skyrmion structure.

Guided by these principles, and with the recent discoveries of 2D magnets, I lay a blueprint

for novel and multifaceted skyrmions (and antiskyrmions) in twisted magnetic bilayers. I con-

struct a Moiré superlattice of spins formed in twisted bilayer of VdW magnetic layers with

ferromagnetic order at the bottom and O(3) spin dynamics on the top layer. The setup is il-
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lustrated in Fig. 4.1(a). I include Heisenberg exchange terms J|| (for intra-layer) and J⊥ (for

inter-layer) interactions, and the inter-layer dipole interaction JD as shown in DFT calculations

to be dominant in such setup.[90] Monte Carlo simulation is carried out to determine the micro-

scopic ground state spin configurations at low-temperature, and the entire J⊥/J|| and JD/J||

parameter space is swept to create the phase diagram. Three distinct skyrmion phases are

identified with topological charges Q = ±1, whose topological charge distributions reveal a

previously unknown hierarchy of point-, rod-, and ring - shape in different topological phases.

A novel topological spin configuration is predicted in the vicinity of the J⊥/JD ∼ −0.4. I

find that near the Moiré lattice sites, a pair of spatially separated and oppositely charged anti-

skyrmions is formed and govern a topological (‘electric’) dipole moment. More interestingly,

such dipoles are found to align anti-ferroelectrically between the nearest-neighbor sites of the

Moiré lattice, and produce a Néel like order for the topological electric dipole moment. These

results are explained with a dual electromagnetic theory, demonstrating the ‘electric field’ lines

for all topological charge distributions. I also study the ‘x-ray diffraction’ (XRD) pattern of the

topological charges (topological charge-charge correlation function) as well as the spin-spin

correlation functions to elucidate the crystallization and phase transitions of the topological

charge centers and dipoles. These results expand the list of possible skyrmion and magnetic

phases (Néel and Bloch phase) obtained in continuum models to a hierarchy of skyrmions and

its higher order topological phase.[259, 91]

4.2 Theoretical model for twisted bi-layer spins

I consider a single layer honeycomb magnet (magenta color) placed on a single layer magnetic

substrate (green color) of the same lattice structure and lattice constant, as shown in Fig. 4.1(a).

The distance between the layers d is taken to be same as the lattice constant of the honeycomb

lattice. The spin in the substrate layer is fixed to be a collinear ferromagnetic state. This

can be achieved with a strong bulk ferromagnetic material as studied in the literature[233]. I

primarily focus on small relative twist angles θ which give the commensurate Moiré super-

lattices. The twist angle is taken as θ = 1.61o, which gives a hexagonal Moiré lattice with

a = 35.6a0, where a0 is the lattice constant of the single layer system. A critical number of
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atoms in a Moiré supercell, determined by the twist angle, is important to stabilize a skyrmion.

Above this critical value, the obtained topological phase diagram remains essentially invariant

to twist angles and number of atoms, except that the skyrmion radius grows with the Moiré

cell dimension. So, there is an upper critical value of the twist angle (∼ 20) above which the

Moiré unit cell becomes small enough and the magnetic unit cell is no longer commensurate

with the Moiré unit cell.

4.2.1 Hamiltonian formulation

The full Hamiltonian is divided into two parts: H = H1 +H2, where H1 and H2 are the intra-

layer, and inter-layer parts. The spin variables for the top and bottom (subtrate) layers are

labeled by s, and S, respectively. The intra-layer Hamiltonian consists of a nearest-neighbor

Heisenberg exchange and a spin asymmetry term, for both layers. The inter-layer term consists

of many neighbors Heisenberg exchange term and the dipole-dipole interaction term. The

bottom layer’s spins are then integrated out to obtain an effective Hamiltonian for the top layer

as Htop ∼ H1 +B · s, where B is the effective magnetic field exerted from the bottom layer on

the top layers spin s. The Moiré periodicity is imposed by expanding these terms in the plane

wave basis of the Moiré supercell. Hamiltonian for top layer Htop is solved within the Monte

Carlo simulation.

I now give the details of the model. The 2D VdW systems in single and bilayer setups

are observed to show an in-plane ferromagnetic (and out-of-plane ferro- or anti-ferromagnetic)

order with the spin quantization axis to be out-of-plane (z-direction).[87, 260] Such a magnetic

ground state is reproduced by the model:

H1(s) = −J||
∑
<ij>

si.sj −K
∑
i

(siz)2 , (4.2.1)

where i, j are lattice sites within a Moiré supercell. The first term is the nearest neighbor

Heisenberg interaction with coupling constant J|| > 0 for a ferromagnetic phase, and K gives

the z-axis asymmetry, breaking theO(3) spin degeneracy. H1(S) term gives the corresponding

Hamiltonian for the bottom layer, with J|| and K kept fixed.

The inter-layer interaction H2 is the crucial part. Depending on the twist angle, espe-
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cially at small twist angles, a spin at the top layer interacts with several neighboring bottom

layer spins, and hence the inter-layer interaction involves terms beyond the nearest-neighbor

exchange interaction. The inter-layer interaction is mainly dominated by several nearest-

neighbor exchange interactionHex and dipole-dipole interaction (HD) asH2(S, s) = Hex+HD

where

Hex = −
∑
ij

J⊥(rij)Si.sj, (4.2.2)

HD = JD
∑
ij

1
r3
ij

[Si.sj − 3(Si.r̂ij).(sj.r̂ij)] . (4.2.3)

i, j are the site indices in the bottom and top layer, respectively. rij = ri − rj with r̂ij
being the corresponding unit vector. Since both interactions are long-ranged, we need to set

a cutoff radius rcut, see Fig. 4.1(a) (inset). Due to higher power of rij in the denominator,

the result converges quickly by rcut < 20a0 which is much smaller than the Moiré latiice size

∼ 35a0. For realistic VdW materials, the dipole coupling strength is small (JD ∼ 0.1J⊥)

and the interlayer exchange is also small compared to intralayer exchange (J⊥ ∼ 0.3J||).

So intralayer dipole would be 100 orders of magnitude smaller than J||. This small magnitude

will not change the spin orientation coming from the strong intralayer ferromagnetic alignment

considered here. But, if intralayer dipole is large enough, the effect can be non-trivial and the

spins would tend to align themselves more in the planner direction. Inclusion of intralayer

dipole interaction on the top layer makes the problem harder since the spins on the top layer

changes at each Monte Carlo step. New technique needs to be implemented to find the exact

spin configuration for larger intralayer dipole-dipole interaction.

Next, the bottom layer’s spins are integrated out S, and an effective magnetic field is de-

fined at the top layer at ri as B(ri) = Bex(ri) + BD(ri), where Bex, and BD distinguish the

contributions from the exchange and dipole-dipole interaction terms as Bex(ri) = −∂Hex
∂si =

J⊥
2
∑
a e

iGa.ri , and BD(ri) = −∂HD
∂si . We set Sj = ẑ for all unit spins at the bottom layer. This

may be achieved by considering the Moiré bilayer at the interface of two bulk materials, where

the lower layer comes from a material which has very high ferromagnetic exchange. This can

force spins of one layer to align in z direction. Ga(a = 1 - 6) are the six minimal reciprocal

lattice vectors of the Moiré superlattice. The six possible smallest reciprocal lattice vectors
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are included in the Moiré lattice and the results do not change with the inclusion of negligi-

bly small contribution of higher reciprocal lattice vectors. Dipole interaction is known to be

an useful ingredient for (generally bubble-type) skyrmions and antiskyrmions,[70, 238, 251]

but are significantly weaker in strength in real materials. In twisted bilayer system, however,

the intra-layer dipole interaction is considerably enhanced, and is found here to be detrimen-

tal to the bubble or Bloch skyrmion phases (see below), while promoting novel and distinct

skyrmion phases.

In this manner, the bottom layer’s effects can be cast into a Zeeman-like term at the top

layer. The full Hamiltonian hence takes the form

H = H1 −
∑
i

B(ri) · si. (4.2.4)

In this way, the total Hamiltonian simplifies to the form used in the introduction for discussing

how the in-plane spin is enforced to lie on a topological compact space S2 by tailoring the

‘long-range’ Zeeman coupling.

4.2.2 Effective inter-layer magnetic field

The effect of Hex and HD can be described by effective magnetic field B(ri) coming from

exchange (Bex(ri)) and dipole (BD(ri)). Taking all the bottom layer’s spin S to be along the

+z-direction, The field components can be written explicitly as

Bex(ri) = J⊥
∑

a=1,2,3
cos(Ga.ri)ẑ, (4.2.5)

BD(ri) =
∑
j

JD
r3
ij

[
1− 3d2

r2
ij

]
ẑ− 3JDd

r5
ij

[(xi − xj)x̂ + (yi − yj)ŷ] . (4.2.6)

The index i denotes a top layer spin. The sum over j denotes a sum over bottom layer spins

and is restricted up to rcut = Ncuta0. Due to the higher power of rij in the denominator,

it is easy to check that the summation converges very rapidly (∼ Ncut < 20), much before

the Moire supercell lattice vector R1,2 ∼ 35a0. Ga denotes three lowest Moiré reciprocal

lattice vectors, d is the inter-layer distance, and xi, yi are x and y coordinates of ith spin. Bex

is plotted in fig. 4.2(a) and (c) for J⊥ < 0 (ferromagnetic) and J⊥ > 0 (antiferromagnetic)
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Figure 4.2: Effective magnetic fields along the z-direction in the Moiré unit cell. (a) Field due
to the inter-layer exchange interaction (Bex) for J⊥ < 0 and (c) for J⊥ > 0. (b) Field due
to the inter-layer dipole interaction (BD) for JD > 0. R1 and R2 denote the two translation
lattice vectors.

respectively. Please note that Bex changes sign in the Moiré unit cell creating a local effective

field landscape when combined with BD (shown in fig. 4.2(b)). This is responsible for various

spin pattern seen in different phases. Also note that for J⊥ < 0 and JD > 0, Bex and BD have

the same sign at the corners, and create a narrow domain wall in Phase I. But for both J⊥ > 0

and JD > 0, Bex and BD compete at the corner, and thereby create a wide domain wall, and

consequently produce a stable skyrmion in Phase V.

Here, I should distinguish the effects of the dipole-dipole interaction HD of the present

study versus the previous ones. In earlier studies,[70] such an interaction is involved for

the same intra-layer spin (between s and s variables) which tend to give magnetic bubble

phases.[238] On the other hand, here the dipole interaction is between inter-layer (s and S),

and is detrimental to the bubble or Bloch skyrmion phases, while promote the streamline flow

of the polarity density.

4.3 Monte Carlo method

In the Monte Carlo simulation, the local Hamiltonian is minimized for a single spin with

temperature annealing as well as parameter annealing, the total energy of the system is also

converged in each case. In all the calculations performed here, the minimization of the local

Hamiltonian corresponds to minimization of the total energy. Next I discuss the details of the

Monte Carlo simulation.
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As mentioned in the previous section, the Hamiltonian for the top layer can be written as

H = H1 +
∑
i

B(ri).si. (4.3.1)

Here H1 is the intra-layer Hamiltonian and B(ri) is the effective magnetic field due to inter-

layer interaction. The lattice site ri spans the Moiré unit cell. In this calculation at the com-

mensurate angle 1.610 there are 2522 basis site per unit cell. All the classical spins are set to

have unit length (Si = 1) so that all the spins can be specified with two parameters Sz and φ

where φ is the angle that the component of spin on the xy-plane (sxy) makes with the x axis.

From these two parameters, all the three components of the spins can be extracted as

sxyi =
√

1− (szi )2,

sx = sxy cos(φ),

sy = sxy sin(φ). (4.3.2)

The simulation is initialized with all spins pointing upward i.e., Szi = 1, and then the next spin

is chosen randomly from all the lattice points. The update algorithm for that spin is given by

szi = szi + γdsz,

φi = φi + γdφ. (4.3.3)

And if |szi | > 1 then

szi = 2∓ (szi + γdsz),

φi = φi + γdφ+ π. (4.3.4)

Here the ± signs are for szi > 1 and szi < −1, respectively. γ is a random number between 1

and -1, and dsz and dφ are ranges of sz and φ.
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At each Monte Carlo step the local Hamiltonian is calculated as

H(ri)loc = H1(ri)−
∑
i

B(ri).si, (4.3.5)

H1(ri) =
∑
<i,j>

J||si.sj. (4.3.6)

and each configuration is accepted with a Boltzmann probability e[H(ri)new
loc −H(ri)old

loc ]/kBT at tem-

perature T . To find the low temperature Monte Carlo ground state temperature annealing as

well as parameter annealing were performed, and convergence of the total ground state energy

was verified. At low temperature the value of dsz(= 0.1) and dφ(= 0.1π) was decreased (from

dsz = 0.4 and dφ = 0.4π) to increase the acceptance ratio in Monte Carlo steps. The system

is equilibriated with 108 steps and low energy configuration is taken after another 108 steps.

4.4 Results

4.4.1 Phase diagram

The Monte Carlo simulation yields a plethora of quantum and topological phases; five such

distinct configurations are identified in Figs. 4.1(b)-(f). The corresponding phase diagram

is presented in Fig. 4.3 for J⊥/J|| and JD/J|| with J|| > 0. In the phase diagram, the red

and blue shaded areas denote distinct skyrmion phases with topological invariant Q = ±1,

respectively. The white regions represent a higher-order dipoler antiskyrmion phase (Phase-

II), and a trivial phase (Phase-IV). From Figs. 4.1(b),(d), and (f), it is evident that the three

skyrmion phases, denoted by Phase-I, III, and V, are characteristically exclusive, which will

be distinguished below in multiple ways. Phase-II has zero net topological charge, but possess

higher-order topological dipole moment and its antiferroelectric ordering. The Phase-IV bears

no topological or exotic quantum order (except finite magnetization due to a collinear spin

ordering).

The particle dual of the skyrmion is a topological charge denoted by Q =
∫
d2rρ(r), where

ρ(r) is the topological charge density. With its corresponding current density Jx,y, the three-
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Figure 4.3: Phase diagram of five distinct topological phases. The inter-layer exchange cou-
pling J⊥ and dipole interaction JD are varied with respect to the in-plane exchange coupling
J||. JD < 0 is an unphysical value, however, mathematically it leaves the phase diagram sym-
metric when the sign of J⊥ is also reversed. Red and blue color distinguishes skyrmion charges
of Q = ±1. Phase-II, although features a net Q = 0, exhibits a novel topological dipole mo-
ment of antiskyrmions which produces an antiferroelectric order state. The horizontal dashed
line indicates the realistic parameter range as deduced in a DFT calculation.[90]

component density operators Jµ = (ρ,Jx,Jy) can concisely be defined as

Jµ(r) = εµντ
8π n · ∂νn× ∂τn, (4.4.1)

where µ, ν, τ = 0, x, y are time-space indices, and the r dependence on the unit vector field

n = s/|s| is implied. The vortex density is defined as v(r) = εντ∂νn × ∂τn. In this layered

geometry and with the z-axis asymmetry, it is natural to expect that the vorticity of the spin-

texture commences in the xy-plane, i.e, vz dominates. Then the corresponding polarity density

is simply governed by nz(r). The z-components of the polarity density nz(r), the vortex

density vz(r) and the charge density ρ(r) are investigated in Fig. 4.4 in three different rows for

the five distinct phases (different columns).

The mechanism of skyrmions and antiskyrmions is retrieved as follows. It is known

from the topological band theory[261] that the polarity field (equivalent to the Dirac mass

for fermion fields) forms a nodal (closed) contour, across which nz(r) changes sign − this is
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called the domain wall (see top row in Fig. 4.4). The vorticity field vz(r) inside the domain

wall acquires singularity − either point- or rod-, or ring- shaped singularity − and cannot be

removed with a trivial gauge transformation (see middle row in Fig. 4.4). Hence the topologi-

cal charge density ρ(r) becomes confined within the domain wall (see bottom row in Fig. 4.4).

The homotopy mapping of the n(r) field on S2 in the r-space quantizes the topological charge

Q ∈ Z, where the integration of r is performed within a single domain wall of the polarity

density [see black solid lines in Fig. 4.4(f-o)].

4.4.2 Skyrmion Hierarchy

Phase-I is a topological phase with Q = −1, and is present in most of the J⊥/J|| < 0 region.

It is destabilized at smaller values of J⊥ by stronger dipole interaction JD. The distributions

of nz, vz, and ρ for Phase-I are shown in the left-most column in Fig. 4.4. The polarity density

map nz(r) demarcates a sharp and circular domain wall boundary, which reminds of a mag-

netic bubble observed in astronomical space, as well in magnetic systems.[262] The vorticity

and charge densities of this phase, however, reveal much richer structures unknown before.

Fig. 4.4(f) shows that the nodal ring of the polarity density (black line) encloses a circular

vortex density vz(r) structure. In fact, vz(r) is positive (negative) outside (inside) the domain

wall, and share the same nodal ring as that of nz(r). In what follows, the charge density ρ(r)

also acquires a singular ring geometry, confined by the domain wall boundary, see Fig. 4.4(k).

This phase is also topologically equivalent to the Dirac nodal ring state[263] in the electronic

structure in which the topology is defined via Berry gauge connection.

As J⊥ → −J⊥, keeping all other interactions fixed, a characteristically distinct skyrmion

texture (denoted by Phase-V) is obtained with opposite charges Q = ±1. Unlike the sharp

domain wall in Phase-I, nz varies smoothly with r, and forms a (nearly) elliptical domain

wall in Phase-V. Moreover, the Phase-V has a point-like topological charge center sitting at

the Moiré supercell center. Hence as opposed to ring-singularity in Phase-I, Phase-V acquires

point (pole) singularity. The asymmetry between the Phase-I and Phase-V at ±J⊥ for fixed

JD, results from the competition between J⊥ and JD. The phase diagram is reversal between

±J⊥ for JD → −JD.

The skyrmion Phase-III occurs in the vicinity of J⊥ ∼ 0, and is mainly stabilized by the
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Figure 4.4: Local variation of polarity, vorticity, and topological charge densities in the five
different topological phases. (a-e) The z-component of the polarity density nz(r) (see main
text) is plotted in blue to red colormap, denoting down to up spin components of sz. (f-j)
We plot the vorticity density vz(r) with blue to red colormap. The black solid line marks
the nz = 0 domain wall boundary. (k-o) Corresponding topological charge density ρ(r) is
plotted here. In Phase-II, IV, although charge centers are formed but the net charge Q = 0.
In Phase-II, fractional charge centers are confined by streamline domain wall, giving a novel
topological dipole moment. There is no domain wall of nz in Phase-IV and hence its a trivial
phase. (Different color scales are for the five phases in the middle and bottom panels.)

long-range (out-of-plane) dipole-dipole interaction JD. The magnetic domains are elliptical in

shape, and concentrated at two sides of the Moiré supercell. As seen in Fig. 4.4(h) and (m),

the nz nodal contour confines a fixed-sign vorticity field (positive), and hence the topological

charge distribution (negative since nz < 0) becomes quantized. The topological charge density

is distributed inside the elliptical domain wall and gives a rod-like singularity. Such a rod-like

topological charge distribution repeats periodically [see Fig. 4.4(m)] and give a nematic or

smectic crystal.

In all three skyrmion phases, each Moiré supercell contains a single skyrmion configura-

tion. Therefore, a suitable characteristic length scale associated with different skyrmions can
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be defined by the domain wall contour rd where nz(rd) = 0. This condition is very much sat-

isfied where the effective magnetic field due to the bottom layer along the z-direction vanishes,

i.e., Bz
ex(rd) + Bz

D(rd) = 0. From the expression for Bex, and BD given in the Sec. 4.2.2, it

can be seen that rd depends on the ratio J⊥/JD, and the inter-layer distance d for a given Moiré

lattice. Depending on the ratio J⊥/JD, the condition can turn into an equation of a circle or

an ellipse, as also seen from numerical calculations. In Phase-III, the domain wall takes an

elliptic shape in Fig. 4.4(h) and the two topological charge centers found here in Fig. 4.4(m)

sits at the two focal points.

It is then easy to grasp that a skyrmion phase transition occurs when domain wall radius rd

either shrinks to zero or expands to the Moiré cell boundary R1,2. The phase transition between

Phase-I to Phase-II occurs when rd = R1 or R2. The rotational symmetry breaking renders a

small domain wall to form in Phase-III with opposite polarity at one of the Moiré supercell’s

site for small values of J⊥, as seen in Fig. 4.4(c). This small domain wall then shrinks to zero

with the sign reversal of J⊥ which disfavors the domain wall of negative polarity. Curiously,

there still exists a finite vortex structure and a finite charge density in the trivial Phase-IV.

But owing to the absence of a compact domain wall of the polarity density, the net topological

winding number vanishes. Hence, the Phase-IV corresponds to a quasi-uniform ferromagnertic

phase (or antiferromagnetic phase if J|| < 0) as seen in the untwisted CrI3 bilayer samples.[90]

Finally, large J⊥ creates another compact domain wall at the center of the Moiré supercell in

which the topological charge is Q = −1.

4.4.3 Topological antiferroelectric phase

Phase-II is very intriguing and novel, and requires separate discussions. The naive spin-texture

of this phase (Fig. 4.1(c)) is reminiscence of a spin spiral phase. However, unlike in the other

trivial spiral phases, here several new type of topological charge centers are formed as shown

in Fig. 4.4(l) and 4.5(a). Firstly, the polarity density has a streamline flow diagram with 1D

domain wall, see Fig. 4.4(b). But it fails to commence a compact geometry to produce full

skyrmion charge centers. However, there exists five sharp charge centers (three inside the

nz = −1 (blue) region and two outside). This structure periodically repeats in a smectic

pattern. These charge centers have different origin from the previous three skyrmion phases
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Figure 4.5: Antiferroelectric Phase-II. (a-b) Zoomed-in view of the topological charge density
in blue to red color map is plotted in the background, with arrows denoting spins s in (a), and
emergent electric field E vector in (b). The spin texture clarifies the formation of topological
charge at the Moiré lattice side, and a pair of antiskyrmions with opposite charge centers near
the Moiré lattice corners. The electric field lines in (b) confirm the formation of topological
dipole moment (long arrows) between the antiskymion pairs. (c-d) Real space view of the
topological charges in many Moiré unit cells for Phase-II and Phase-III, respectively. (c) We
clearly observe the Néel analog of the ordering of the topological dipole moments, giving an
antiferroelectric phase. (d) As we move from Phase-II to Phase-III, the antiskyrmion pairs
are annihilated and integer topological charges become confined by a compact domain wall
on different lattice sides. Inset: The structure factor of the corresponding topological charge
density, showing no charge ordering in Phase-II, as opposed to Bragg peaks in Phase-III.

with compact polarity density, and result from splitting of the vorticity by streamline flow of

polarity density.

A zoomed-in view of the spin texture on top of the topological charge density, as shown in

Fig. 4.5(a), unravels the mechanism of these charge centers. The charge center at the middle

(blue-colored charge density) is a ‘meron’-like structure, but with a fractional charge of Q ∼

2/9 ± 0.025. The other four charge centers form in pairs with opposite sign of charges at the

Moiré zone corners. The corresponding spin textures reveal that they are antiskyrmions,[251,

250] with fractional charges Q ∼ ±2/9± 0.025. We note that although there are five distinct

meron like charge centers with ±2/9, they are shared between neighboring Moiré supercells.
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Apart from these concentrated point charges, another +2/9 (red) is spread over the Moiré cell

which is not clearly visible in the colormap of Fig. 4.5(a),(b). Hence, the total charge (point-

charge and background-charge) within a given Moire supercell vanishes.

Each pair of oppositely charged antiskyrmions acts as a topological electric dipole, sit-

ting at each lattice site of the Moiré lattice. The dipole moment is estimated to be (0.05 ±

0.005)a, where a is the Moiré lattice constant. More interestingly, the dipoles are aligned

anti-ferroelectrically between the nearest neighbors. This gives a Néel-like ordering of the

topological dipole moments, in close analogy to the Néel order of magnetic moments in a

honeycomb lattice.

Comparisons of the spin-textures between Phase-II (anti-ferroelectric) and Phase-III (skyrmions)

throw light on the phase transition between them. The phase transition occurs when the anti-

skyrmion pairs coalesce. This also results in the closing of the streamline flow of the polarity

density to form a compact domain wall (see Fig. 4.4(c)). Hence a topological winding number

description becomes appropriate in Phase-III.

4.4.4 Conditions for phase transition

Clearly, a compact domain wall forms at the nodal contour of sz(r) where the total magnetic

field roughly vanishes, i.e., Bz(rd) = 0. (This approximation works better where the in-

plane spin exchange J|| << |B|, so that the second term in Eq. (4.2.4) dominates). Then the

condition simplifies to
J⊥
JD
βex(rd) + βD(rd) = 0. (4.4.2)

where rd is the locii of the domain wall boundary and βex and βD are given by

βex(rd) =
∑
a

cos(Ga.rd) (4.4.3)

βD(rd) =
∑
j

1
|rd − rj|3

[
1− 3d2

|rd − rj|2

]
. (4.4.4)

It is not easy to find an analytical expression for this nodal contour from Eqs. (4.2.5), and

(4.2.6). But it’s clear that the value of rd depends on the J⊥/JD ratio and the bilayer thickness

d for a given Moiré lattice denoted by G. The equation of the nodal line can be a circle or
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an ellipse depending on these parameters. As seen form the numerical simulation, the domain

wall is circular for large values of J⊥, while it takes an elliptical form in Phase-III for small

values of J⊥.

Again in the limit of J|| << |B|, a phase transition is defined at J⊥/JD = −βD(rd)/βex(rd)

(from Eq. (4.4.2)) for different values of rd. In phase I, the radius of circular patch increases

as J⊥ → 0, and at the transition point to phase II two circular regions merge together at

rd = R1/2. On the other hand, rd decreases in phase V as J⊥ → 0, which implies rd = 0 at

the transition from the phase V to phase IV. Similarly transitions from phase II to III and III to

IV are given by rd = R2/2 and rd = (R1 + R2)/2 respectively. By numerically evaluating

βex and βD at various rd, the approximate critical values of the ratio J⊥/JD for different tran-

sitions are extracted which are listed in the table 4.1 A direct comparison of transition from

Table 4.1: Critical values of rd and J⊥/JD at different phase transition points.

Transitions rd J⊥/JD

Phase I to phase II R1/2 -0.57
Phase II to phase III R2/2 -0.4
Phase III to phase IV (R1 + R2)/2 0.3
Phase IV to phase V 0 1.6

phase ‘I to II’ and phase ‘IV to V’ reveals that |J⊥/JD| is larger on the positive side (1.6 on

positive side and −0.57 on negative side). This can be understood from Fig. 4.2. At the corner

of the Moiré supercell Bex and BD have the same sign in the J⊥ < 0 region. So their effects

add up. This is also responsible for a thin domain wall of magnetic bubbles in phase I. In the

positive J⊥ region, however, Bex and BD have opposite sign. So a larger value of J⊥ is needed

to overcome the effect JD in positive side. This leads to a wider domain wall in phase V.

4.4.5 Electromagnetic duality

To visualize the formation of the dipole moment in Phase-II, I write down a gauge-dual the-

ory, and calculate the topological electric field lines. In an electronic quantum Hall analog, a

physical charge is attached to a magnetic flux via the Chern-Simons coupling − also known

as the Stréda formula.[264] Using this analogy, I affix an emergent gauge field aµ = (φ, a)
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Figure 4.6: (a-e) The emergent topological electric field lines on top of the topological charge
density in the vicinity of the charge centers (see Fig. B.2 for larger view) in all five phases. In
(f) the schematic distribution of point charges for Pase II is shown with origin of the coordi-
nates at the cahrge q3.

with the topological charge density ρ as Jµ = εµντFντ . Here Fντ = ∂νaτ is the corresponding

curvature field tensor (an emergent electro-magnetic field, but not the same B field seen by

local spins). The emergent ‘electric field’ is read as E = −∇φ − ∂ta. This ‘electric field’

follows the Gauss’ law, and acquires distinct spatial dependence according to the topological

charge distributions. Using the Gauss law, the electric field lines can be found numerically

from
∫

E.dS = ρ. The electric field lines shown by black arrows in Fig. 4.5(b) confirm the ex-

istence of the dipole moment and their antiferroelectric ordering. The calculations of electric

field lines are extended to all the other phases, and it is found that the field line configura-

tions are consistent with the ring-, rod-, and point-like charge centers as obtained in Phase-I,

Phase-II, and Phase-V, respectively (see Fig. 4.6).
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Figure 4.7: Structure factors. (Left) Left row gives the structure factor of the topological
charge density (Fourier transformation of the charge-charge correlation function). (Middle)
Transverse spin-spin correlation functions. (Right) Longitudinal correlation function in the
momentum space. In all three cases, we give various quadrants of the Brillouin zone with
dashed lines.

4.4.6 Topological correlation functions and structure factors

From Fig. 4.4, it is evident that there are finite topological charge distributions even in the

trivial topological phases where the polarity density nz fails to create domain walls. Therefore,

to obtain a microscopic nature of how the interplay of dipole and exchange interaction makes

it possible to form a topological configurations in Phase-I, III and V, the following correlation

functions are investigated: Topological charge susceptibility

χc(r) =
∫
d2r′ρ(r′)ρ(r + r′). (4.4.5)

The spin-non-flip (or skyrmion polarity) and spin-flip correlation functions

χzzs (r) =
∫
d2r′nz(r′)nz(r + r′),

χ±s (r) =
∫
d2r′n+(r′)n−(r + r′), (4.4.6)
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where n± = nx±iny. The Fourier transformation of the correlation function gives the structure

factor Sc/s(q). For the topological charge density, the topological structure factor mimics the

XRD or TEM maps, except that this is not directly measurable and indirectly it can be mapped

by Lorentz TEM.[242] The two spin structure factors are however measurable via small-angle

neutron scattering (SANS) experiments.

First it is observed that in the non-trivial phases, the topological structure factor shows

distinct Bragg peaks at q → 0, signifying the transnational symmetry breaking and formation

of skyrmion lattice. (When the dynamics is added, this peak will disperse away from q = 0

point as a typical acoustic Goldstone mode). In the trivial phase (Phase-II and Phase-IV),

there is no Bragg peaks, but some weak intensity at higher Brillouin zone of the original Moiré

supercell) which are often observed in dilute gas or liquid phases.

The spin-non-flip and spin slip components of the spin-structure factors have the usual

behavior in a skryrmions structure, while the stark difference between the Phase-I and Phase-

IV for the χzzs should be noted. In the case of a ring charge (Phase-I) there is no q → 0

mode for the polarity density since here there is a sharp domain wall boundary between the

up and down spin states. For all other cases, the q → 0 mode exists, suggesting a finite

value of the magnetic moment in these cases on the top layer. On the other, in Phase-II, the

total magnetization vanishes in a Moiré unit cell, however, if one defines Néel magnetization

between the up spin domain and down-spin domain, there is an antiferromagnetic like domain

wall ordering. In all cases, the spin-flip structure factor is similar, while an additional spatial

rotational symmetry breaking is observed in Phases II and III as expected. It is found that

that all the peaks are present in the second Brillouin zone which is due to the fact that the

Moire cell here forms an honeycomb lattice which has two sublattices. The structure factors

for topological charge are plotted in the Figs. 4.7(b) and 4.7(c). As expected, Bragg-like

peaks are observed in Phase-III as the topological charges form a triangular lattice. The lattice

also features a broken spatial rotation symmetry, and gives a smectic-like skyrmion lattice.

In phase-II the charge centers do not exhibit any Bragg-like peak up to third Brillouin zone.

As the appearance of the new Bragg-like peaks at the antiferromagnetic wavevector in the

spin-spin correlation function indicate antiferromagnetic order, similar Bragg-like peaks in

the dipole-dipole correlation function indicate an antiferroelectric ordering of the topological
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Figure 4.8: plot of (a) Average χc and (b) average magnetization (mz) and derivative of mz as
a function of interlayer exchange (J⊥/J||) at a fixed JD = 0.3J||. Discontinuity in mz at the
phase transition can be seen from the jumps in derivative of mz (blue curve in (b))

dipole moment.

To further elucidate the phase transition, I analyze the topological correlation function at a

fixed distance (ri − rj=constant):

χc = 1
N

∑
<i,j>

ρ(ri)ρ(rj). (4.4.7)

The result is plotted as a function of inter-layer exchange (J⊥) in Fig. 4.8(a). This gives the

short-range correlation of the topological charge density.

As shown in Fig. 4.8(a), the correlation has peaks at the phase transition points. This result

is consistent with jumps in the effective magnetic field Mz = 〈(1/N)∑i S
z
i 〉 along J⊥, as

shown in Fig. 4.8(b). Near the phase transition points, the landscape of effective magnetic

field changes over the Moiré unit cell. As a result near the domain wall in each phase (except

Phase IV where there is no domain wall) B field becomes small over a large area. Therefore,

the Hamiltonian is mostly dominated by strong in-plane ferromagnetic exchange (J||), and

produces a strong nearest neighbour correlation.

I further calculate scalar chirality (not shown)χsc = 1
N

〈∑
<i,j,k> Si. (Sj × Sk)

〉
, where

〈i, j, k〉 denotes three spins forming the smallest triangle in the honeycomb lattice. I find that

the scalar chirality vanishes in Phase II and Phase IV, where the magnetization has a sharp

jump at their phase boundary (Fig. 4.8(b)).
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4.5 Discussions and Conclusions

So far, my discussions were primarily devoted to delineate the mechanism of skyrmion charges

and antiskyrmion dipoles. Although not my primary focus here, it is worthwhile to outline few

possible mechanism to destroy topological configurations, and the corresponding phase transi-

tions. I discussed that the size of the compact domain wall (rd) as it reduces to zero or expands

all the way to the Moiré lattice vector as a function of J⊥/JD and the bilayer thickness d, it

destroys the skyrmion configuration. Moreover, energetic makes another dominant factor to

destabilizing the saddle-point minima of skyrmions. Once fluctuations are included, the topo-

logical charge centers oscillate, creating ‘phonon’ like excitations, which melt the skyrmion

crystals.[265] I have studied the short range (nearest-neighbor) topological charge correlation

function, and find that it exhibits a similar divergence behavior at all phase transition points

(see Sec. 4.4.6). In addition, it is observed that the phase transition from Phase-II to Phase-III

occurs via the coalescence of the antiskyrmion pairs and vanishing dipole moment. This is

reminiscence of the Kosterlitz-Thouless (KT) like transition, but generalized to the O(3) field.

Can one probe the topological electric field, dipole moment and the KT transition of the

topological charge of the skyrmions? The electric field is the mediator of the force between

two charge particles. Since a skyrmion charge is a topological charge, it cannot be destroyed

without deforming all the spins in a skyrmion. This prohibits two skyrmions of the same

charge to come close to each other − as if they experience a Coulomb repulsion between

them. This phenomenon can be associated with an electric field. Much like how an electric

field is measured by adding a test charge, here one can think of adding a test skyrmion in a

skyrmion background, and study its dynamics. It will be found that the test skyrmion of same

(opposite) charge will be repelled (attracted) from the skyrmion background. Similarly, when

two skyrmions/antiskyrmions of opposite charges are spatially separated as in Phase-II, one

can associate a dipole moment in the usual way. With tuning, the two opposite charges can

either annihilate each other or the two charges can become unbound from each other. The

second phenomena is analogous to the KT transition as seen in the vortex case. In the case of

the KT transition in vortices, pairs of vortices of opposite charges are energetically favorable

at low-temperature, which forms dipole moment and the material behaves as a dielectric. With

increasing temperature, the vortex pairs split and the vortex charges become unbound, giving
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a plasma like phase. The phase transition between them is denoted by the KT transition. In

the present case, it can be speculated that a similar splitting of the dipole may occur with

increasing temperature in Phase-II, giving us a unique opportunity to explore a possible KT

transition of skyrmions.

Finally, the spin-spin correlation also plays an important role. I have calculated the trans-

verse and longitudinal spin-spin correlation functions in the static limit. The transverse compo-

nent does not have any q ∼ 0 mode, and remains nearly unchanged across all the phases. The

longitudinal susceptibility shows Bragg-like peaks in four phases, but not in Phase-I. Because,

Phase-I is non magnetic.

One may wonder how sensitive is the the phase diagram to DMI and SOC terms. I have

checked that DMI brings in very little change to the spin configurations, and their topologi-

cal properties are robust as long as the DMI strength is considerably weaker than J⊥ (DMI

coupling JDMI ∼ 0.1JD). However, larger DMI interaction may have non-trivial effect since

DMI can be highly non-perturbative. This can be taken as a new project for future studies.

With an eye to synthesize twisted bilayers of VdW magnets,[87, 260] is it known that the spins

are local in nature, and the materials are charge insulators. Thus the SOC does not play an

important role to the skyrmion configurations.
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Chapter 5

Conclusions and outlook

In this concluding chapter of the thesis, I briefly summerise the findings of my various studies,

and their impact on the ongoing research in these fields. I also describe some extension and

follow-up researches, which would be interesting topics for future studies.

One of my main projects was the study of coexistence of Fermi liquid (FL) and non-Fermi

liquid (NFL) behaviour in hole-doped cuprates. My objective was to show that NFL state can

emerge from spin fluctuation and thus, NFL and FL behavior can be described in a single

self-consistent theoretical framework. By using a single-band tight-binding model with Hub-

bard interaction on a 2D square lattice, with parameters relevant for cuprates band structure,

I calculated self-energy in a self-consistent manner by using a momentum-dependent density-

fluctuation (MRDF) method. The computed self-energy exhibits a marginal-FL (MFL)-like

frequency dependence only in the antinodal region, and FL-like behavior elsewhere at all

dopings. I also calculated the DC conductivity by including the full momentum dependent

self-energy which gives the resistivity-temperature exponent n = 1 near the optimal dop-

ing, indicating a NFL state. In the extreme NFL state (near the optimal doping in cuprates),

MFL-like self-energy occupies the largest volume in momentum space but the nodal region

still contains FL-like self-energies. Similarly, in the FL state (in overdoped region), not all

quasiparticles are necessarily long-lived and the antinodal region remains NFL-like. These

results highlight the non-local correlation physics in cuprates and in other similar intermedi-

ately correlated materials, where a direct link between the microscopic single-particle spectral

properties and the macroscopic transport behavior cannot be well established. Thus, our study

115
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shows that microscopic spectral landscaape gives more complete picture of the underlying FL

or NFL behavior which cannot be seen from the bulk macroscopic property like resistivity.

The present study, while predicts correct behavior in over-doped cuprates, does not include

the effect of pseudogap in the under-doped region. Including the effect of pseudogap and study

how the momentum anisotropy effects that region can be an interesting topic. Apart from

cuprates, this study can be extended to other anisotropic material like transition metal oxides.

That demands the present method to be extended to multiband models. Studying anisotropic

correlations and its effect on the physical phenomena like topological order, entanglement

entropy and related topics can be future prospects of the present study.

In the next part of the thesis, I studied various aspects like superconductivity, topology in

twisted bilayer systems. We started with the unconventional superconductivity arising from

spin fluctuation mechanism in twisted bilayer graphene (TBG) and compare the results with

single layer graphene (SLG) and graphene on hexagonal boron nitride (GBN). Unlike SLG,

TBG and GBN have formation of Moiré pattern. For these two systems I use the wave func-

tions of the low energy bands, which leads to the Wannier functions localised in the Moiré unit

cell. I propose the Wannier pairings in TBG and GBN and study the paring symmetry and find

d-wave paring for SLG, p-wave paring for GBN and extended s-wave pairing for TBG as the

dominant pairing symmetry. This study also showed the emergence of superconductivity in

TBG at the magic angle. A number of recent studies have shown similarities between super-

conducting phase diagrams of cuprates and TBG. So, the NFL behavior studied earlier in the

context of cuprates can be extended for TBG. One can explore the role of twisted geometry

and non-trivial interlayer coupling to give a NFL state.

In this thesis, I maily focused on the superconductivity from electron-electron repulsive

interactions. There are superconductors in which superconducting critical temperature Tc is

dramatically enhanced when the material is rest on the SrTiO3 substrate. In another example,

there are experimental results of a thermal Hall effect in the correlated insulating phase in sev-

eral materials. These results seem to hint towards a strong interplay between electron-electron

as well as electron-phonon couplings in many correlated materials. One can extend the present

spin fluctuation method to incorporate the electron-electron interaction and electron-phonon

coupling to study those materials. The method will then be able to explain many recent experi-
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mental puzzles as mentioned above. The method can further be extended to superconductivity

due to plasmon and polaron, etc as well.

Apart from superconductivity, I studied spin textures in twisted bilayer geometry of 2D

VdW magnets with Monte Carlo simulation. By including long ranged exchange and dipole-

dipole interactions for interlayer coupling, I found a number of distinct skyrmion phases with

point-, rod-, and ring-like topological charge distributions. A novel topological antiferroelec-

tric phase is also found, where oppositely charged antiskyrmion pairs are formed, and the cor-

responding topological charge distribution shows a dipole formation in the Moire supercell.

The dipoles become ordered in a Néel-like state. This work can be extended to explore various

spin structure and spin topology in twisted bilayers of different lattice like hexagonal, trian-

gular, square, Kagome etc. One can also think of two such bilayers with different skyrmionic

stucture and by bringing them together and study the interactions between skyrmions.

Topological aspects in electronic structure can also be explored in twisted bilayer hexago-

nal lattice. With an effective low-energy model to describe the electronic structure of twisted

bi-layers of hexagonal and square lattice, one can look for topological electronic structure

properties. One can also study the effect of intrinsic spin orbit coupling (SOC) and Rasbha

SOC in twisted bilayers. Such systems may give rise to time reversal invariant Z2 topologi-

cal insulators. The recently developed Green’s function method described in chapter 1 can be

useful in finding topological invariant in such systems due to the large system size.
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(2016).

[77] T. Okubo, S. Chung and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012).

[78] A. O. Leonov, and M. Mostovoy, Nat. Commun. 6, 8275 (2015).

[79] C. D. Batista, S. Z. Lin, S. Hayami, and Y. Kamiya, Rep. Prog. Phys. 79, 084504 (2016).

[80] T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012); A. Leonov,

and M. and Mostovoy, Nat. Commun. 6, 8275 (2015); S. Hayami, S. -Z. Lin, and Cristian

D. Batista Phys. Rev. B 93, 184413 (2016); C. D. Batista, S. -Z. Lin, S. Hayami, and K.

Yoshitomo, Reports on Progress in Physics, 79, 084504 (2016).

[81] S. Banerjee, O. Erten, and M. randeria, Nature Physics 9, 626-630 (2013).

[82] R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017).



124 REFERENCES

[83] I. Gross, W. Akhtar, A. Hrabec, J. Sampaio, L. J. Martinez, S. Chouaieb, B. J. Shields, P.

Maletinsky, A. Thiaville, S. Rohart, and V. Jacques, Phys. Rev. Mater. 2, 024406 (2017).

[84] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B 47, 16419

(1993).

[85] L. S. Leslie, A. Hansen, K. C. Wright, B. M. Deutsch, and N. P. Bigelow, Phys. Rev. Lett.

103, 250401 (2009).

[86] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod.

Phys. 81, 109 (2009).

[87] M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem. Mater. 27, 612–620

(2015); B. Huang, G. Clark, E. N. -Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D.

Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. J. -Herrero,

and X. Xu, Nature 546, 270–273 (2017).

[88] P. Moon and M. Koshino, Phys. Rev. B 90, 155406 (2014).

[89] R. Bistritzer, A.H. MacDonald, Proc. Nat. Acad. Sci. (USA) 108, 12233 (2011).

[90] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, D. Xiao, Nano Lett. 18, 7658-7664 (2018).

[91] K. Hejazi, Z. -X. Luo, and L. Balents, PNAS 117, 10721-10726 (2020).

[92] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero,

Nature 556, 43-50 (2018).

[93] E. Y. Andrei, and A. H. MacDonald, Nature Materials 19, 1265–1275 (2020).

[94] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett. 121, 257001 (2018).

[95] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald, Phys. Rev. Lett. 122, 086402

(2019).

[96] T. Senthil, S. Sachdev and M. Vojta , Phys. Rev. Lett. 90, 216403 (2003); T. Senthil,

M. Vojta and S. Sachdev, Phys. Rev. B 69, 035111 (2004); Kai-Yu Yang, T. M. Rice and



REFERENCES 125

Fu-Chun Zhang, Phys. Rev. B 73, 174501 (2006); Y. Qi and S. Sachdev, Phys. Rev. B 81,

115129 (2010).

[97] A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).

[98] S. Lederer, Y. Schattner, E. Berg, S. A. Kivelson, Proc. Nat. Acad. Sci. 114, 4905 (2017).

[99] R. Nandkishore, Max A. Metlitski, T. Senthil, Phys. Rev. B 86, 045128 (2012); Max A.

Metlitski, David F. Mross, Subir Sachdev, and T. Senthil, ibid. 91, 115111 (2015); David

F. Mross and T. Senthil, ibid. 84, 165126 (2011).

[100] S. -S. Lee, arXiv:1703.08172.

[101] T. Das and C. Panagopoulos, New J. Phys. 18, 103033 (2016).

[102] H. Kontani, Rep. Prog. Phys. 71, 026501 (2008).

[103] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).

[104] S. Sachdev, Quantum Phase Transition (Cambridge Univ. Press, Cambridge, 1999).

[105] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).
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165114 (2014); P. Säterskog, B. Meszena, and K. Schalm, arXiv:1612.05326.



128 REFERENCES

[140] D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010).

[141] S. Chakravarty, R. E. Norton, and O. F. Syljuasen, Phys. Rev. Lett. 74, 1423 (1995); I.

Mandal, and Sung-Sik Lee, Phys. Rev. B 92, 035141 (2015).

[142] A. Abanov, and A. V. Chubukov, Phys. Rev. Lett. 84, 5608 (2000); R. Haslinger, A. V.

Chubukov, and A. Abanov, Phys. Rev. B, 63, 020503 (2001); A. Abanov, A. V. Chubukov,

and J. Schmalian, Adv. Phy. 52, 119-218 (2003).

[143] S. Nakatsuji, D. Pines, and Z. Fisk, ibid. 92, 016401 (2004); Yi-feng Yang and D. Pines,

Phys. Rev. Lett. 100, 096404 (2008).

[144] N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450 (1990); P. A. Lee and N. Nagaosa,

Phys. Rev. B 46, 5621 (1992).

[145] H. -C. Jiang, M. S. Block, R. V. Mishmash, J. R. Garrison, D. N. Sheng, O. I. Motrunich,

M. P. A. Fisher, Nature 493, 39-44 (2013).

[146] W. Xu, K. Haule and G. Kotliar, Phys. Rev. Lett. 111, 036401 (2013); X. Deng, J.

Mravlje, R. Zitko, M. Ferrero, G. Kotliar and A. Georges, Phys. Rev. Lett. 110, 086401

(2013); X. Deng, A. Sternbach, K. Haule, D.N. Basov and G. Kotliar, Phys. Rev. Lett. 113,

246404 (2014).

[147] W. Xu, G. Kotliar and A.M. Tsvelik, Phys. Rev. B 95, 121113 (2017).

[148] D. Bergeron, D. Chowdhury, M. Punk, S. Sachdev and A.-M.S. Tremblay, Phys. Rev. B

86, 155123 (2012)

[149] R. A. Davison, K. Schalm and J. Zaanen, Phys. Rev. B 89, 245116 (2014); J. Zaa-

nen, Y.-W. Sun, Y. Liu, K. Schalm, Holographic Dualtity for Condensed Matter Physics

(Cambridge Univ. Press, 2015); Sung-Sik Lee, Phys Rev D 79, 086006 (2009); Thomas

Faulkner, Nabil Iqbal, Hong Liu, John McGreevy, David Vegh, arXiv:1003.1728; Raghu

Mahajan, Maissam Barkeshli, and Sean A. Hartnoll, Phys. Rev. B 88, 125107 (2013).

[150] S.-S. Lee, Phys. Rev. B 80, 165102 (2009); D. Dalidovich and S.-S. Lee, Phys. Rev. B

88, 245106 (2013); I. Mandal and S.-S. Lee, Phys. Rev. B 92, 035141 (2015).



REFERENCES 129

[151] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein,

Phys. Rev. Lett. 64, 497 (1990); C. M. Varma, Phys. Rev. B 55, 14554 (1997).

[152] N. S. Vidhyadhiraja, A. Macridin, C. Sen, M. Jarrell and M. Ma, Phys. Rev. Lett. 102,

206407 (2009).
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Appendix A

A.1 Extraction of the exponents

(a) (b) (d)

pk=1.7 pk=1.43 pk=0.7pk=1.03

(c)

Figure A.1: Here I illustrate the curve fitting procedure. In (a-d) I plot Σ′′(k, ω) (solid line)
and fitted curve (dashed line) at different points of BZ as given in Fig. 2.5. Same color scheme
has been used as indicated in the inset of (a). The black dashed line is the fitted curve with a
k-dependent exponent pk upto a frequency limit ωu.

As mentioned in chapter 2, the exponent pk is also frequency dependent, but usually the

frequency dependence is so small at low frequencies that one can approximate it as constant

in this frequency range. This behavior is also observed in experiments where exponent is

extracted using an upper limit (ωu) in frequency, and ωu is found to vary over the BZ.[119] In

my calculations, I use a fixed ωu (0.1 eV) since finding ωu for every points of the BZ can be

ambiguous. I then take the average of exponent in that frequency window. The procedure is

illustrated by plotting the calculated and the fitted curves in Fig. A.1.
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140 A. Appendix for chapter 2

A.2 Details of the MRDF calculations

A.2.1 Self-energy dressed susceptibilities:

I start with the standard definition of spin/charge susceptibility [167, 266] which is given by

χij(q, τ) = 1
N
〈TτΠi(q, τ)Πj(−q, 0)〉, (A.2.1)

where Πi(q, τ) denotes the spin/charge density where indices i, j denote different components

(for example x, y, z components) in case of spin susceptibility. Charge and spin densities

(Πi(q, τ)) are given in the second quantized notation as

ρq(τ) =
∑
k,σ

c†k+q,σ(τ)ck,σ(τ), (A.2.2)

Siq(τ) =
∑

k,α,β
c†k+q,α(τ)σiαβck,β(τ), (A.2.3)

where σis are the Pauli spin matrices in 2D. c†k,σ(τ) is the dressed quasi-particle creation oper-

ator (sometimes called Dyson orbital) at the Bloch momentum k and spin σ. Since the ground

state is spinless, both transverse and longitudinal spin-densities, as well as the charge density

term yield the same bare susceptibility. In general, Eq. (A.2.1) can be written as

χ(q, τ) = 1
N

∑
k,k′,σ,σ′,σ′′,σ′′′

〈TτS(∞)c†k+q,σ(τ)ck,σ′(τ)c†k′−q,σ′′(0)ck′,σ′′′(0)〉,

(A.2.4)

where the momentum conservation law is imposed. S(∞) is the usual S-matrix which arises

in the interaction picture.[267, 268] The four-field terms can be decomposed into bi-linear

terms within the Wick’s theorem, and the spin-conservation condition can be allowed for the

ground state. I restrict to the bubble diagrams for the density-density correlations and the

density vertex correction contains the ladder diagrams. Furthermore, I include only the RPA

terms, with all the bubbles containing the same density vertex term. I am not including the

higher order ladder diagrams here, which was derived by MT,[160] and AL.[161] These two

terms are discussed in chapter 2 for the current-current correlation functions (Sec. 2.8.6), and
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one would obtain similar terms for the density-density correlation term. I have showed that

these terms give negligible contributions in the intermediate coupling range, and is discussed

in Sec. 2.8.6. Since the ground state has both spin-rotational and gauge symmetry, the bare

spin and change susceptibilities are the same without the vertex term. They become decoupled

in the RPA label, and give different self-energies for the spin and charge channels. In this

MRDF self-consistent approximation, the vertex correction depends on the self-energy, and

thus it has different contributions from the spin and charge sectors. Therefore, it makes more

sense to decouple the bare spin (ν = 1) and charge (ν = 2) susceptibilities at this bare level,

and I obtain

χν(q, τ)

= 1
N

∑
k,k′,σ,σ′,σ′′,σ′′′

〈Tτck,σ′(τ)c†k′−q,σ′′(0)δσ′σ′′〉〈Tτck′,σ′′′(0)c†k+q,σ(τ)δσσ′′′

×Γν(k,k + q, τ),

= 1
N

∑
k,σσ′

Gσ′(k, τ)Gσ(k + q,−τ)Γν(k,k + q, τ),

(A.2.5)

where the terms in the brackets can be identified as self-energy dressed Green’s functions.

Using the Fourier transformation, I get

χν (q, iεm)

= 1
Nβ2

∑
k,n,n′

β∫
0

dτe(−iωn+iωn′+iεm)τΓν(k,k + q, iωn, iεm)G(k, iωn)G(k + q, iωn′),

= 1
Nβ

∑
k,iωn

Γ(k, k + q)G(k)G(k + q)). (A.2.6)

Here I use compact, four-vector, notation k = (k, iωn), and k+ q = (k + q, iωn− iεm), where

iωn and iεm are the fermionic and bosonic Matsubara frequencies, respectively. From here

onwards I drop the index σ and assume an implied sum over σ index. It is not easy to perform

the Matsubara frequency summation using self-energy dressed Green’s function. So I use its
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spectral representation as

G(k, iωn) =
∞∫
−∞

dω′

2π
A(k, ω′)
iωn − ω′

, (A.2.7)

where the corresponding spectral weight defined asA(k, ω) = −ImG(k, ω)/π, whereG(k, ω)

is obtained by taking the analytical continuation to the real frequency iωn = ω + iδ, with δ

being infinitesimal broadening. So the susceptibility expression becomes

χν(q) = 1
N

∑
k

∞∫
−∞

∞∫
−∞

dω1

2π
dω2

2π Γν(k, k + q)A(k, ω1)A(k + q, ω2)

×
(

1
β

∑
n

1
iωn − ω1

1
iωn − iεm − ω2

)
. (A.2.8)

Consistently, I define q = (q, iεm). The term in the bracket can be evaluate by the Matsubara

summation technique [167] and I arrive at the expression

χν(q) = 1
N

∑
k

∞∫
−∞

∞∫
−∞

dω1

2π
dω2

2π A(k, ω1)A(k + q, ω2)Γ(k, k + q)f(ω1)− f(ω2)
iεm − ω2 + ω1

,

(A.2.9)

where f(ω) denotes the Fermi distribution function. The computation of the susceptibility is

done using analytical continuation to the real frequency as discussed before. The susceptibility

in the RPA becomes

χRPA
ν (q) = χν(q)

1± Uχν(q)
, (A.2.10)

for charge and spin, respectively.

A.2.2 Self-energy

Next I calculate the self energy using the Hedin’s approach,[162] which is given by

Σν(k) = − 1
Nβ

∑
q,m

G(k + q)Wν(q)Γ(k, k + q). (A.2.11)
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W is the fluctuation-exchange potential which can be obtained within the RPA as

Wν(q) = ην
2 U

2χRPA
ν (q), (A.2.12)

where η = 3 and 1 for spin (ν = 1) and charge (ν = 2) density fluctuations. Again, to aid the

Matsubara frequency summation, I use the spectral representation of W as

Wν(q, iεm) =
∞∫
−∞

dε′

2π
Im [Wν(q, ε′)]
iεm − ε′

. (A.2.13)

I denote the fluctuation-exchange potential as Vν(q, ε) = Im [Wν(q, ε)]. Therefore, using

Eqs. (A.2.11) and (A.2.13), I get

Σν(k)

= − 1
N

∑
q

∞∫
−∞

dε

2π

∞∫
−∞

dω′

2π A(k− q, ω′)Vν(q, ε)Γ(k, k + q)

×
(

1
β

∑
εm

1
iωn − iεm − ω′

1
iεm − ε

)

= 1
N

∑
q

∞∫
−∞

dε

2π

∞∫
−∞

dω′

2π A(k− q, ω′)Vν(q, ε)Γ(k, k + q)f(−ω′) + n(ε)
iωn − ω′ − ε

, (A.2.14)

= 1
N

∑
q

∞∫
0

dε

2π

∞∫
−∞

dω′

2π A(k− q, ω′)Vν(q, ε)Γ(k, k + q)

×
[

1− f(ω′) + n(ε)
iωn − ω′ − ε

+ f(ω′) + n(ε)
iωn − ω′ + ε

]
. (A.2.15)

All other symbols are defined in chapter 2.

The MRDF method is very similar to the Hedin’s equations of self-energy calculation us-

ing density-density fluctuations[162]. Different approximations are usually distinguished by

different models, such as FLEX[134] or GW methods[164, 269]. In the FLEX approach[134],

one calculates the single-particle green’s function self-consistently, but not the two-particle

one. The extension of the FLEX method where both the single-, and two-particle terms

include self-energy correction in a self-consistent way is called the mode-mode coupling

theory.[175, 138] While in the GW-approach, one often neglects the vertex correction or use

a quasiparticle−GW approximation etc[269]. In this MRDF approach, the single-particle
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Green’s function, the density-density correlation function, and the vertex correction are cal-

culated by including the self-energy correction.



Appendix B

B.1 Ground state spin configurations

I II III

IV V

(a) (b) (c)

(d) (e) 1

-1

0

Sz

Figure B.1: Ground state spin configurations from Monte Carlo simulation for different phases.
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B.2 Dipole and quadrupole moments in Phase II

The field lines in phase II shown in Fig. 4.6(c) indicate that the charge distribution can be ap-

proximated with point charges (qi, i = 1, 2, 3, 4, 5) as shown in Fig. 4.6(f). As the total charge

of this configuration is zero the higher moments (dipole and quadrupole) of this charge distri-

bution are investigated. Dipole moment is calculated for charge pair (q1, q2) and (q4, q5) and

taking the origin of the co-ordinate at one of the charge center (see Fig. 4.6(f)) the quadrupole

moments are calculated, which are given by

Q =

 Qxx Qxy

Qyx Qyy

 =

 ∑i ρixixi
∑
i ρixiyi∑

i ρiyixi
∑
i ρiyiyi

 (B.2.1)

Values of the dipole and quadrupole moments for Phase II are given in table B.1.

Table B.1: Values of charge, dipole moments, quadrupole moments in phase II for two dif-
ferent dipole coupling strengths (JD). (x,y) are given in unit of Moiré lattice constant 35.6a0.
caution: the estimate of the fractional charge is subjected to the integration contour around
each charge centers, since there is no compact domain wall boundary here.

quantities JD = 0.53 JD = 1.0
q1 -0.23 -0.23
q2 0.22 0.22
q3 -0.25 -0.24
q4 0.22 0.24
q5 -0.20 -0.22
(x1, y1) (0.20 , 0.07) (0.20 , 0.07)
(x2,−y2) (0.35 , -0.09) (0.35 , -0.09)
p1 0.033x̂ + 0.035ŷ 0.033x̂ + 0.035ŷ
p2 -0.033x̂ - 0.035ŷ -0.034x̂ - 0.037ŷ
Qxx -0.035 -0.037
Qyy -0.001 -0.001
Qxy 0.021 0.020
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Phase I 

Phase III 
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Phase I 
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(e) 
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Figure B.2: Plots of topological charge density in many Moir’e unit cells.
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