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In quantum mecham is I we studied the quantum theoryof A atom
basically the quantum theory of a single electron in a nucleus This
was one of those rare problems which we could solve exactly
and we found that the wave function ofthe electron has well define

orbital symmetries which was the result of the sphericalsymmetry

of the problem The symmetry was that two ofThe angular
variables O and 0 are periodic in the wavefunitionmustcome
back to itself as 04 Ott and oft 9 25 But wavefunction being
complex valued itsamplitude and phase bolt mustreturn to itself
The periodicity ofof variable yields a ware function in whichofgoes
into thephasefactonly as e im where m is quantized duetothe

periodic boundary condition on of we know all abortthis
wavefunction and the quantized angular momentum Mt forthis
periodic wavefunction

Next in quantum mechanics I we studied Heatom problem which
has two electrons in the atom This introduces an additional
term in the Hamiltonian which is the electron electron interactions

Due to this term the standardseparation ofvariable methodforthetotal
wavefunction Y Fi HIT tire where Meritarethe indivialelectron's wavefunction
does notexactlywork Rather one takessuch a wavefunction as a trial wavefunction

and solvefor it using the variational approximation in which the indivial
election's wave function are varied from its form in a single electron Hydrogen
atom wavefurition This was the Hartree approximation This turned out tobe

not such agood trial wavefunctionfor tworeasons thisparticularform ofthe

wavefunction does not allow the single election wavefunctions to overlapand



Secondly the fermion's exchange statistics Pauli's exclusion principle i not

included in this wavefunction Fock improved the trialwavefunctionby considering
the staterdeterminant wavefunction which allowed the indivial wavefunction to

overlap I rock f exchange term and also the wave function in antisymmetricunder
the exchangeof identicalelectrons betweenthe two wavefunctions For the Heatomthis
wavefunction looks like MCF E I 411 Macri MF'stacos Although

the result was stillnot accurate but it gave a much better agreement tothe
groundstate energy



In condensedmatterphysics we dealwith 1023atoms witheachatomhaving
7 numberof electrons Generally speaking Suchalarge number of atoms givethree
states ofmatter namely the gas liquid and solid We will not be discussing
a gas or liquid phase here although the name condensedmathsphysics was

distinguished from the solid statephysics subject to include the liquid
phase At the end we mightbe discussing a bitabout the liquid mainly
the quantum liquid or superfluid phase butprimarily we will focuson the

solid statephysics here In the solid phase the atoms are periodically
arranged in all d dimension d 1,213are our primaryfocushere In

such a case we can write the full microscopic Hamiltonian as
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Here RI are the positions of the Itt nucleons and Fi are the same forthe ith
election and we assumed N atoms inthis solid with theatomicnumber Z

This is actually the complete Hamiltonian of a condensedmatterproblem

fie we donot care aboutwhat inside anucleons We ignorespinof theelection

here and also coupling to external electric magnetic fields are notconsidered

This Hamiltoniancannot be solved exactly den to the presence of each of
the potential energyterms TheSlaterdeterminantand separationofvariables

ansatz also fail miserably In this course we will learn a few new
methods to either approximate the wave function and or the Hamiltonian

itself



Before we plunge into differentmethods tosolveegg
there is one important symmetry of the problem that
we need to considerhere This is the discrete lattice
translational symmetry and the discrete rotationalsymmetry

These are the two important symmetries that a manybody systemhasbroken

in the formation ofthe crysal ofHr system

Dictum As the atoms form a crystal thesystem
breaks thecontinuous translationalsymmetry

to a set of discrete translational symmetrywhichdepends on one of the

14 Bravais lattice t basis that the systemassumes Here the momentum a no

longer conserved but it is conserved modulo the reciprocal latticerector

Therefore instead of a simple plane wave basis which one choses forsystem
with continuous translational symmetry Bloch 1923 proposed a modified

basis called the Bloch wavefunction we will review it inthenextchapter

Discretiatu mety Similarly in a solid the continuousrotational

symmetry that a single atom or gasliquid enjoy a broken to discrete rotational

symmetry For example in a cubic lattice the system comes back to itself
by a 254 rotation miltrespect to all three axes therefore the angular
momentum is not a conserved quantity and therefore the sphericalHarmon

basis will no longer work here

Pointhronfsymmetries In fact in addition to thediscreterotational

symmetries there are also other discrete spatial symmetries that a lattice

enjoys e.g inversion mirror reflection symmetries Thesesymmetries are

sometimes called improper rotations asthey require the changes in the



handedness of thereferenceframe But the diesels rotations are proper

rotation Interestingly the discrete rotation and reflection symmetries

together form a closed group in a given lattice called thepointgroup
All the pointgroups ofthe Brarais lattes are classified and thereexist 32

crystalgrafts pointgroup innature
Toexpand it further one combines the pointgroup with thedissett

translational and othersymmetries to define somethingcalled thespacegroup
symmetries Then are a totalof 230uniquespace groups thatdefine all
crystals in three dimensions

The wavefunction ofthemany body Hamiltonian I equ mustrespect all these

symmetries Such wave functionswhich respect all the symmetry operations of
a group are called irreducible representation of groups In otherwords the
knowledge of the space group of a lattice gives key information to the

wavefunction ansatt of the lattice Hamiltonian we wentto solve Thisis
however a very daunting task and cannot be covered in the course
Such irreducible representation of An wavefunction are considered in
the numerical methods such as densify functional theory DFT and
also in low energy theories such as fightbindingmodels Onthis course
we will only take into account the discrete translational symmetries



AdablicAppoximtion Before we employthe symmetryproperties

of the lattice we need to make a few
other practical approximations to egg A keyset of aftroximatins
is to ignore the kinetic energy of the immobile particles

Thenedrow aremuch more heavy compared toelectrons andhence
its velocity should be very slow So we can ignore the
kinetic energyofnachous But we also know that nuchous are
vibrating around its equilibrium position So what we are
essentially going to do is to ignore the time dependence of
the equilibrium positionof the mchons We will solve the

remaing Hamiltonian and then treat the vibration of the
muchow as perturbation This melted works as longas

the there is no herd crossings duetothe perturbation ie

as long as the adiabatic theorem holds This is known as

the Born Oppenheimer approximation
Be When do we call call an approximation adiabatic 2

do not change except shift in energy values but no
level crossings then the approximation is called adiabatic
Therefore the Born oppenheimer approximation may break

my
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down if electron phonon confling a very strong

bound on its amplitude being of the orderofthe
lattice constant find the ratio between the fermi
velocity of electrons and that of ions



Gi We also assume that not all elections's wave function
overlap with those from the nearest atoms but only the
outermost orbitals do These outmost orbitals makeup
the valence and conduction bands er their eigenenergies
lie near the fermi level Mostof the physical properties
of a material are governed by these condonation and
valence electrons the other electrons near thenucleons
are tightly bound to the nachous they are called the

core electrons

Howmany core
elections one has is an atom in a

lattice This entirely depends on the characteristic ofthe
lattice its structure and lattice constant and one needs
to find it out via trials

go the idea is that nucleons and core electrons
move together So we consider them as a single i on
with effective positive change of Z Zo where Ze
is the number of core electrons The mass of the ion

in taken to be same as the mass of the nacho us o the

outermost valence and conduction electrons him experience

an effective coulomb interaction due to a Ze positive
charge



B oppenhmrladaba.fiaApproximation

Ref A Szabo N O Ostlund Modern Quantum Chemistry

P Phillips Advanced Solid State Physics

The Born Oppenheimer Bo approximation is that we

neglect the k E of nucleons in the 2nd term in age
and also assume that the repulsion between nuclei can be
treated as a uniform background energy to the electron's
perspective ie the expectation value of the third term of egg
is independent of the electron's coordinate Fi
This is very much to say that the total wave function E
of the Hamiltonian H in ages can be separated into
nucleons wavefunction of and electron's wave function X

I F R In E Yn FR 2

Here R E RI and F E Ti and n i the
combined energy level index combining all orbitalsspin
sublattice basis etc as appropriate in a given system

The election's wavefunction T depends on bott F as well
as on R due to the fourth term This means the election's

wavefunction will be sensitive to the arrangements of nucleons
via the fourth term as it should be



In are individually orthonormalized and form
disjoint Hilbert spaces Therefore I 15 E in thisform in eq
in a socalled productstate or unentangled state in the
since that electrons and nucleons are differententities Their
orthonormalizations are expressed as

S CR Im E d E 8mn a
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This is to say the election's wavefunction explicitly
depend on its coordinates x ̅ but parametrically depend
on R

Next we substitute eq 2 in eq and employ ears a

b to obtain separate eigenvalue equations for the
nuclei part and the electrons fact
The eigenvalue equation we want to solve in
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We first separate the electronic fact into an eigenvalue

equation at every valneoffat
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Then we are left with the merchars part as

In TI R VII CR T Ee nCR E INCE Y CET 0
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This equation does not involve An electronic coordinates therefore
we can get rid of the Mnski'spact by using itsorthonormalizationcondition eyes as

1st term I fTm BF att F ER TnCED de

Usually the electrons are itinerant delocalized and its
long wavelength stater lie in the low energy spectrum of our
interest Madani donot move much to for small changeof R
chchonic wave functions do notchangemuch so we set VIX o

Then I operator only actson In fact we set
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2nd term I f4 RINYm R8 di VII IR III VIII IIIn
Jun

3rd term Em 1B Im II
4th term E m IR

collecting them together we get an eigenvalue equation for the
was

E ÑEm m
b

where E Em the total Hamilton
which turns to the eigenvalue of nucleonspart
also This is the BO approximation
In this e w tre em II as the

effective to the mn ons due to the electronic
degrees of free

I We will solve eg 56 separately to obtain the lattice
vibrational ii phonon dispersion

I we will solve rg wrably.by fixing the nerdeons
at its equilibrium positions To such that Vee F F
VI e Ro F becomes an effective periodic potential to

the elections Then solutions of q 50 gives us the

detective or the so called baseline of the
lattice

II Finally we study election phonon confling by allowingthe
lattice vibration and ating the VI e CE F term



HEW 1 Obtain spin orbit coupling term by deriving an

electric field from the Vee potential and the

magnetic field in the electronic reference of frame



Reviewoflectonic we we have studied the case

indetails in CMP I course

we rewrite eq 5a explicitly as

EE t Z T.FR EEIIIInCHYnC5E
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Multiply with InCR d R from the left First and third term
on L A S and the RHS do not have operatordepending on R
and hence I easilydrops out due toorthogonality For the
second term we define a electron ion interaction potential as

VI Fi
2e d R I 95 n

This election ion interaction potential in local is onlydepends on
the election's own coordinate and do not cause two different
electrons to interact unless we make the nucleons move which
gives election phononcoupling and attractive electron electron

interaction that we will study in chapter 7 But themost
important part of this potential i that its not invariant

but invariant
symmetry which we will



With this the electronic eigenvalue equation for each n state

becomes

h
m Use Ti If 4nFE EenYnVR
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Potentialenergy V18
non interacting electronic Hamiltonian

where he in a part of the Hamiltonian which is
completely independent electron Hamiltonian and the 2ndpart
of the Hamiltonian in the electron electron interaction This
electron electron interaction part makes the problem unsolvable
exactly but gives all sorts of interesting low energy low

temperature physics that we will study in this course we will

learn various approximations to solve it



Diserttantatialsymmetrythattice

A translational symmetry means if we translate all the
coordinates by a constant value w Fi x ̅ 8 thesystem

remains invariant Does that hold here in eq 6a for any
value of 8 The answer is NO

The kinetic energy in theform of is always translationally
invariant as it commutes with the momentum operators bi
The electron electron interaction part 1 is also

translationally invariant as the shift x ̅ dropsout from
the subtraction This is to say the

electron electron interaction

depends on the relative position between them not theabsolute
position or not onthe center of mass coordinate This also
implies that the momentum remains conserved in theelectron electron

interaction ie the total momentum of incidentelections and find
electrons after the interaction are the same

But the election nuclei interaction is not invariant
to the translation of the election's coordinate while the
muchus remains fixed at Ei

On the other hand the Hamiltonian in invariant under
the disirett translationby a fixed value of R which
are thendrons positions or the primitive lattice
vectors Therefore the system has discrete translational

symmetry if the nuclei are fixed at the latticesites



F tron Gas mudd.IS the name Gas suggests

inthis offroximation there is no

lattice is there are continuous translational and rotational

symmetries in He ie in ri This is roughly true for long
wave length electrons whose wave vectors k are very small or the

wave length X I 77 a where a is the lattice constant
In this case Yes F in roughly a constant F independent

potential which can be subtracted off from the Hamiltonian
Then the Hamiltonian only has the kinetic energy part
and this can be solved by a simple forries transformation

8 f fak ten E eik Aa

where the waverector k ranges from to a is one does

not have a Brillowin zone here The energy eosinvalus
are

En a If constant Sa

This energy in unboarded above and requires cut off
in some of the integration not to be discussed here



Wtddficark The next simplest
model is to invoke the

discrete transactional symmetry of the lattice owing to
periodic arrangements of the nuclei at R fixed
This makes the effective potential and theHamiltonian tobe

periodic as

4 IT RE 15 9

An important comment is in order Because we say
incant particle is the Hamiltonian in a direct sum of
hamiltonian of individual particles HE helii so one

can say the total wavefunction should now be the direct
product state of each particle's wavefunction
x r ire ri V18 41N But theabove periodic
boundary condition in eq 9 makes a difference We will
rather find that the momentum space state E be theeigenstate

of the Hamiltonian dich ti a limare superposition ofthe
atomic states at Fi TCI with equal amplitudes but they
can differ by aphase This is the so called Block state in
a lattice in the non interacting or weakly interacting
limit quasiparticle in the Fermi liquid theorem



In a lattice we should not now call Fi as theposition of ith
atom rather the position of the i unit cell In a unit cell
one can have more than one atoms called basis in general

and each atom has different orbitals and spin All these
basis orbital and spin indices are combined in a single
index in which we now change to α and reserve the

index in for the band energy eigenvalue So our single
particle state in now denoted by ri tix where

i stands for unit cell indexwith α elections in a unitcell
We will then do a Block wore expansion forthe index
for each α and obtain a local Block Hamiltonianwhich
is a xxx matrix at each k Diagonalization of this α

Hamiltonian gives α bands ofeach k
Now we have a timeli dimensional Hilbert spaceof
dimension α XN where N number of lattice sites

We will be able to make remarkable progress in termsof
electronic structurecalculation and many experimentalproperties
by including this simple but important symmetry consideration

of egg Forexample recall that in Drude's classicalmodel
it was scattering from the periodic potential thatproduced a

very short mean freepath a and hence was responsible

for the finite electrical resistance we will now elevatethis
problem to quantum mechanics and through the Block theorem
that cancoherence makes Hr mean freepath infinite
Hence the electric resistance is antually zero inthis model

for a metal with periodically ordered lattice symmetry



chem Unlike in the freeelectron gas model where
the momenta Gk is conserved dueto continuous

translational symmetry in a lattice with discrete translational

symmetry the momentum is now conserved modulo the reciprocal
lattice weeks 5 Mathematically we write it as

AR 5

In the continuous symmetry case the translation operator TF which
translates the system by x ̅ where x ̅ is a continuous length is to e

For the discrete case only discrettoperator TE commutes

with the Hamiltonian why e
B

whereRFI is the
primitive lattice vector there are three such lattice vectors

ai ai as in a 3D lattice and correspondingly thru
transactional operators and we denotta as a general case

Under this translation the wave function transform as

Ta Fi 8 8 99
Fit a

Applying Tai Nnumber of times where N is the total
number of unit call ie I Not length ofthe system we obtain

Tna to F 4 I I 4 Ei
where we impose a periodic boundary condition that the
wave function comes to itself on bothsides of the lattice Hence
it is easy to see that the translation onlyadds a phase to the
wavefunction such that the total phase for that translation is 25



This can be explicitly proved by going to the eigenstates of
H Because H To so both operatorshave the same eigenstates

we assume 4 E are the eigenstates of and that of Tai

Now since Tai is a unitary operator its eigenstate is a pure
phase we assume Ta IE e R E Then

The IE e Or α Na E e Ok talk

421k dueto periodic boundarycondition

Therefore N p
a 25

or a If If a To α

when k.in now the minimum wave number possible and
all the wave numbers are now infesermultiple of

2

R 2
V V f E going from 2 to

In otherwords the wavelength waverator in a discrete
lattice takes discrete value If k 2 EE N 10

and hence for practical purposes k acts as continuous
variable Generalizing this to 3D we get I

Therefore we have To E e F 421
where we have added a sign in the phase to be consistent

with the literature without loosing generality
Because I is a good quantum member and in non discrete

so we now have a finite dimensional Hilbertspace with
dimension Nx where N of latticesites unit cells
and α of states per unit cell ie Z Z orbitals we consider



Because k and α sectors of the Hilbertspace are completelydifferent
and that one cannot convert a linear momentum to orbital spinetc

therefore these two sectors do not mix Hence we have a Hilbert

space which can be decomposed as

1k a 1k K

dithN himα
In the Hamiltonian operator also these two sectors decouple

and one has a xxx matrix form of the Hamiltonian at
each k ei its block diagonal in the f dimension which
happens due to the discrete translational symmetry This α

Hamiltonian H k is called the Block Hamiltonian as derived
below

hÉÉ
position a momentum space are non discrete we

do a discrete Fourier transformation

1k a e Fi tri a Co2

Here Fi is the position of a state in the i unitcell This
coordinate we decompose as I 8 Fi where x ̅ in the

position of α orbitalwithinthe i unitcell which is positioned
at Ei ia with respect to the chosen origin In thisway
is restricted to be o E or in otherwords it

where n is called equivalence relation



Then we getfrom eq 10

1k a E e
I

e Fri a

Now projecting the abstract states in theposition space I on

both sides we ant

arian ei I e

Iffy
F orbital

called Bloch states
with this definition we get the Block wave function as

TÉD e Y 10

where Uk F are periodic as UR α Fta Up 18
The wannier orbitals are the discrett fourier transformationof
the Block states up α 18

Wi 7 e Uk α ra

e
4,18 2b

kW show that despite Un i are orthogonal states

Wi α i are not alwaysorthogonal Under what
condition Wi α v7 become orthogonal states





Wannier orbitals

above the wannier orbitals as the discrete Fourier
transformation of the Bloch stabs in ears iz

Wi t If I e ik i
rep 2 Ba

In I e it htt ya 157 135

I sometimes the wannier orbitals are defined as Wa F Ri one

also defines the wannier orbitals for each bands win 8 which

is often useful to derive an effective low energymodel with few
relevantbands near the fermi level

The Bloch states are orthogonal as

g
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Although it all looked consistent and that wannier states
are orthogonal given that Bloch states are orthogonal but
do wannier states form a complete basis ie a Hilbertspace
The answer lies in its definition wi a 15 2515,4
The tri D states are discreet and orthogonalized appropriately
But 157 state is continuous and is infinite dimensional
The completeness of F States is defined for F a fora

as

far 17727 1
a

But here I is restricted within a unit cell from o tod

Therefore strictlyspeaking the wannier states may not
be complete unless wi a 15 state decaysufficiently
fast within a unit cell that its valve outside the unit
cell in negligibly small In numerical computations
th wannier orbitals are constructed such that they are

confined within a unitcell and such sta are ralled

Maximally localized wannies orbitals

HI wannier states are clearly not the eigenstates of the
position operator I The uncertainly in
position in a wannier stat A 12 260.4Mor
0,4810142 where 10 a 1Fi 0 a The idea is

to minimize A F La

Show that the wannier state are the eigenstate of this

position operator I E e iko Ri fi a Li al where
ko I É Find the corresponding eigenvalues



Tightbindingmod

We can express the electronic Hamiltonian in thematrixform
in the wannier basis this iscalled the tightbinding mochl we
assume themaximally localized wannier statussuch that theyform
a complete basis and we have E 11,422,41 Then

we obtain

He ja
I i a i at Hel's B 25 P where He doesnot

include e e interaction

Iap AI I i a 25pl where At ListHeli B
5

In the approximation we often restrict ourselves to nearest
neighbor CNN next nearest neighbor Nnn and so on
terms and use these matrix elements as parameters called
the tight binding parameters to fit the band structure to
experiment and or to the one obtained in more sophisticated

numerical methodsuch as the density functional theory DFT

Traditionally there parameters are denoted as

tap Li al Hel its p

tap hi al Hel its p and so on

and the onsite term as

E p Li at Holi p

Here 8,8 run over thenumberof NN NNN atoms



Then the Hamiltonian reads as

He I E p 1
i a Ci pl Eyaptap Ii

a Li p

I tap li a 23 pl t
issap Y

where Lii symbol is traditionally wand to denote that j
n restricted to the nearest neighbors of i Similarlyfor sis

Then we use the Fourier transformation in equal

lip tr E e
it ki pp

and substitute in eq is to obtain

He Ip hap
k ki LR.pl 473

which is diagonal in the momentum space with the matrix
element obtained as

hap k E
p tf e

itis t z e
its

as

Finally we diagonalize hap k at each k to obtain the
band dispersion
Slater Kosterevaluated these terms for differentorbital
symmetries 14 and in different lattices They are called
Slater Koster tightbindingparameters


