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Hamiltonian for the electron electron interaction and phonon but we will
use a simpler notations to express the Hamiltonians The second
quantization method doesnot introduce any approximation or method
to the many body condensed matterproblem we studyhere It
is infact more general and used in other theories It simply
changes the language and perspective of theproblem and in most
cases make it easier to study and understand the quantum
theory

Our ultimategoal is to solve formany body states In the
absenceofanyexact

solution we often resort to the variational or
mean field theory In bothcases we essentiallysolve for
an effective single particle wavefunction moving under the
mean values of potential provided by all otherparticles Then
we constructa many body wavefunction as a product state of these

single quasiparticles We however have to incorporate thequantum

symmetry called thepermutation symmetry of particles in thisstate
simply speaking the wavefunction hastobe symmetric anti symmetric

for bosons fermions
We will first review the first quantizationprocedure inwhich

we consider earth particle and solve for theireigenstate In the
second quantizationprocedure we change our perspective we solve

for states and then ask how many particles occupythatstate
For the caseof identicalfarlich the andproceduresimplify theproblem



this
second quantization procedure let us first

review what in the first quantization This is something are studied in
quantum mechanics course where we have a Hamiltonian written
in terms of the coordinates of the particles Then we quantizethe

theory by solving the Schrodingerequation with boundarycondition
orthonormalization condition This gives as the quantumnumbers
and energyeigenstates of the Hamiltonian at hand so we have

a Hilbertspace of the energyeigenstates which defends on the

Hamiltonian
In ist quantization we have fixed memberofparticle say N

we look into eachparticle's coordinates Fi and momentumpi and
write a wavefunction in each article'sposition or momentum space

To be general we will index the bacis states by a which can be
energy basis In momentum E 12 angular itum E e and or
sublatticespin etc Let Ma ri 2 ri k are inch stateforthe ik
particle Wa tri can be the eigenstate of thesingleparticle
Hamiltonian h Iri h Cri Ua ri ex Mari or momentum

eigenstate Pi repCrit t k hp ri and so on Maevil are
orthonormalized

fabri uteri up tri 84
The form a complete set 12541 I I Jari Tilden
YIS dri Matti naevi

Therefore the general solution forthe singleparticlestart at ti is
U vi t I Galt Ma ri where

a att e g lol e i eatth if has ri are the eigenstates of h Iri



Many body state form particles
Assuming an independent non interacting particlespicture

the fall Hamiltonian canbe splitinto a Direct sum of single
particle one

H M pm hiri hiri a

where heri Emt kelvi
The volition of this Hamiltonian is a simpleproductstate

In TN Ua Iri ha 182 mantra 2

Since Uαi ri are orthonormal complete basis states not i also
orthonormal and form a Hilbertspace

Idinticalparticlesandstalish.IS
a quantum many body stat eg is notenough as itdoes

not satisfy an importantexchangesymmetry of quantum
identical particles Because ofthe exchange symmetry any
two particles are indistinguishable or identical Inotherwords
identical particles result from the exchange symmetry which

says the system in invariant under the exchangeof twoparticles
For a system of many particles an operator that exchanges two

particles swapping theirposition state haves At phyersinvariant
This symmetry is represented by a unitary transformation
acting on the many body wavefunction we denote it sy

P 411,2 e't 412 1 3

when we have added a phase for future use



It turns out that the exthang between two identical particles in
same as wraping one particle by it and the translate it

i
A rotation translation

OI both particles lie on the same n yplane So rotation of
particle 2 wilt refrectto 1 makes it not a simply connectedpath
Because as we rotate 2 around this path cannot be contracted to
vanish to a point Because Inporticle is always there inside
the contour Therefore an exchange in 20 makes the complex wave

function a multivalued function living on a multiple Reimann
sheet and has branch cut Therefore the wave function can differby
a phase e upon an rotation and one needs to rotate it n timers

such that 225 or exchange it 2n times to have thewavefunction

return to itself Here the exchange of the particlesfollow a

permutation group This is called Abelian commuting anyons

If the wave function has N fold disineracy and or a N component

spinor the exchange can rotate the wavefunction in themanifold
as Ya 8 as 4s Then if 8 matrices do not commit Huathe
correspondingparticles are called non Abelian anyons They
follow Braid group

BI In 3D the exchange also follow the permutationgroup buthas
twoelements Because the rotationalpath of 2 around I can be
moved out of Its 2D plane on which particles 42 reside Then



we can adiabatically contract Hrpath to vanish Therefore 3D

a simply connected space So the wavefunctionmust cometo

itself after 25 rotation single valued wavefunction In other

words P should give the same wave function ie its an n

eigenstateof P with eigenvalue 1
P N 1,2 411,2

n e I 0 0 bosons

or A fermions

Therefore in 3D and higher dimensions only boson andfermion
particles are possibles where as in 2D one can have more

exotic particles called anyons

ID ID in tricky Here the exchange between twoparticles

require the two particles to sit on top of each other vi they
occupy the same state in the intermediate step Here this becomes

impossible to distinguish between a statistical exchange and
interaction If the wavefunction changes sign when twoparticles
swap theirpositions one can say eitherthey are fermions or

interesting bosons which allowed twoparticles to passthrough

each other and the inferation generated a Aphone This conceptis

in the roof of the Bosonization techniquefordescribinginteracting
fermions in ID in terms of bosons or vice versa



i iBosons

Fermions 15 vi vn a ñ w̅
I P X 1 YN

where p is the numberof exchanges or permutations require
to bring the wavefunction in the same ordering as on thelefthandside

Anyons 2D x ri ri in
P
Fp fi ri

If we have a N site lattice and at each site we have a single
electronic state jan 2 states per site Then the totalnumber ofstates
is 2N e This is an exponentially large number of statesand
it becomes impossible to solve theproblem analytically or numerically

The first setof approximation is to take a product state of single

particle
states Uri vary them in the variation approach This bringsdown

the Hilbert space dimension to N But the particles are identical so

we have many permutations of states and particles that are possible
Although such permuted states are linearly independent to eachother
theyform a vector space and we have toconsider their linear combinations

Then we havetobecarefulabout how each permutation is relatedtoeachother
as there in sign change for eachmutual exchange Therefore we

can express the product state in eq more appropriatelyfor identical

particles as follows



for fermions

rn DP P Ua Crp Ua Vpa

Uan TPM
this is just a Slaterdeterminant sa

for bosons

p un P Ua P 42210ps wantrpm
b

where P standsfor permutation Vp is the particle in the pA
permutation

The normalizationfactorfor fermions in µ This is easyto fix
Because here we have it ways tochoose a given permutation

Then in the innerproduct Ya WI n for a given
permutation on the bet start there isonly one permutation on the

bra state that contributes Cause eachpermutation is linearly independent
since we have N permutation so LXIX N and the P Sam runs over

N values

The normalization for boson is tricky since one canhavemultiple
particles on the same state ha we still have N waytochose a given
configuration with one particleper site The second configuration in
one state has twoparticles and others have one particle and onestate

has no particle Such a configuration also have N permutations

This way we obtain Nt N no where nai N



Therefore fermionic state can alternativelybewritten as Slater
determinant state The bosonic state is called the permanent
state The renormalization factors help reduce tht number of
basis states from 2 states dueto permutation symmetry

Productstates have no correlation between each particles
But the above quantum states which are the linear

superposition of many possible productstates has
in built correlation between the particles This plays
important roles in the quantum phase transitions

Then ingstanquantization

There are a coupleof shortcomings ofthe 1stquantization method
Because here the number of particles are fixed to this theory
cannot describe thesystem whereparticles are created or annihilated

in systems where particle number is not conserved Again inmany
body variational approach we first obtain thegroundstateand
then a few excited state In such apprach first quantization will
be very difficult since here one solves forthe full Hilbertspace
Each time we change N we have a new Hilbertspace in a new system
Since particles are identical its toomuch redundant to

study eachparticles and find out in which state it goes to



Sequantization

The second quantization uses operatortodefine states and the

exchange symmetry is converted into commutation relation between

theaters Here we change theperspetiontlooking at
the coordinates of all particles for ra we now consider astali

of occupation na na Mn and ask whetherthestate is empty or occupied
we don't care about whichparticle occupies thestate because theyare
all identical So todefine a state we just need to give theoccupation
numbers in all the states

The state is fixed taken as the Hilbertspace of a fixedoperatorwhich

has nothing todo with the Hamiltonian Themost common operator
in the numberoperator as we have learned in the Harmonic
oscillator case we then have to express the Hamiltonian inthisHilbert

space
This procedure makes our life much easier enice now we

do not have to worry about whichparticle we are inserting Because

they are all identical The symmetryand antisymmetry properties
of the wavefunction in the first quantization case which was
associated with identicalparticles get convertedto howmany
particles a state can occupy and the commutation anticommutation

relation of the particle creation annihilation operators For



bosons we have infinite occupancy in a stat Hence its an

infinite dimensional Hilbert space and the numberofparticles is not
conserved For fermions its singleparticle perstate and one has a
two dimensional Hilbertspace at each site empty or singlyoccupied
What we have done mathematically in that we have inserted a

Harmonic oscillator foreach state for bosons we will firstfocuson
bosons and for fermions its actually a two dimensionalharmonic
oscillator somethingthatin abstract orformal Note that we have
inserted an H 0 for each basis state 4k n not foreacheigenvalue
Enlk because one can have degeneracy for a eigenvalue So we
have to insert an 17.0 for each basis statt This approach is

applicable even when thenumberoperator it does commutewith the

Hamiltonian

This can also beperceived as filling eachbasis state one
by one But since at eachstate we have an infinite dimensional
Hilbertspace ie one can fill each state by infinite number of
particles so the 2nd quantized Hilbertspace doesnot conserve
particle numberN Foranyvaluesof A we have the same Hilbert

space A given value of N corresponds to a particular 1stquantized

system which is a subsystem of the infinite dimensional Hilbert

space This is sometimes called the fock space Anothersystemwith
a differentnumberof particle in another subsystem of thesameFockspace
Eachparticle carry a quanta of energy ex is the basis state Hi α
in the eigenstate of h Ii This is same as a H O with frequency

Wa α t is added to the system which increases the energy of the
system by two ex



The Fock space or the many bodystate in 2nd quantization

is denoted by a state vector

Ma Naz 9 1ha that d

where α 92 refer to the basis state and nai are their

occupation numbers

Forsystems offixed numberof particle one has the constraint
nai N

For bosons Na 0 1,2

Forfermions Na 0 1

Next we introduce some abstract formal aviation and annihilation

operators of particles in the state 19 as at ax respectively

These are like the ladder operators we encountered in the case of
H O which takes us from one state to anotherwith different
particle numbers In the case of 17 0 these operators are

constructedfrom the position momentum operators F ix ̅
However in the 2nd quantization one should not think of them
to necessarily arise from such physicaloperators even for
the bosonic case We should just treat them as abstract

operators

Next we introduce the concept of a vacuum state 10
with no particle which is destroyed by an

9 107 0 a



Then a singleparticle state is 113 at 10 we did not

insert the index α in the stats for simplicity in notation

The nai particle state at the α site
Mail ai 10 2b

Thisway we define the N particle many bodystate as

Ina na ftp fi cai.tn let
Walt oftensimplydenotedby10

with the constraint Na N 2C

Firstrantization Sduantition

F na na

1T Cat 107

Theclaim is that the 1st quantized state whichin symmetrized anti
symmetrized for bosons fermions corresponds to a rockstalt in the2nd
quantization which is

property.gg
nd includingnormalization The

ordering of the operators takes care ofthe symmetry anti

symmetryproperty Thismeans if we exchange at at aliak
nothing happens if they are bosons or obtain an negative sign if they
are fermions This means at commute or anticommutt for bosons
or fermions For bosons

ax apt Sap ax ap o at apt 0

This commitation relations are crucial to thestatistics oftheparticle
and must remain invariant under a unitarytransformation The

unitary transformation that preserves the commutationrelationof
particles is called the cannonical transformation Fourier transformation



Wfor refer

in a canonical transformation and hence commutation relationshold
both for the real space site indices as well as in the momentum

space

The ladder operation is similar to the 17 0 case

atin Ftl Intis and a In Tn In 14 α

TAthoughteilldiscussthporator
formulation in the second

quantization its watt looking at the Hamiltonian andnumberoperator
here

The Hamiltonian in first and and quantitation's are notthe
same but the mapping between them are exact

first quantization Second Quantization

H I _kind Him no 7
twailatax 1

where ha talval extatra Ina no

for singleparticles Zeropoint constant
vacum energy 3

These two Hamiltonians are exactmaffing to each otherwhen
ex Kna So each eigenstate in an oscillator like photon flonon

The information about the numberofparticle is embedded in the
eigenvalue of the number operator Ñ at ax



I Ining Ñ a a 14 no 7
N Ina naz

4

eigenvalue ofM

ggy egg yyqgggyggggggggmm.am
Ñ I 0 which is not necessailytheiasealways.ee

Fermions Here we really don'thave a physical harmonic oscillatorat
each basis state We haveto introduce the fermion creation operator

Ctby hand in analogywiththe bosonic oscillatorcase We denote a c forfermioncase

as oftendone in theliterature We introduce an 2D Hilbertspace at each basisstate

ie at each site in an abstract formal way onwhich a set of creation

annihilation operators are defined as CI α which satisfy

Ca Cp cat Cpt o sa

Ca Cpt Sap 53

where standsfor anticommutation relation

There are two important properties thatbecome obviousfrom thisanti commutator

algebra
i CtaCT CIC's which means as we exchange two fermions

we in a sign This isconsistent with

symmetric statisticsof fermions
Cate catch 0 for p Thismeans at a givenstali

twoor more fermions cannot

occupy Pauli ExclusionPrinciple



At a given basis eigenstate we have two fermionic Foda states 10 II ei

we insert a 2D Fockspacefor fermions 10 in the vacuum statedefined

similarly by a state that is annihilated by as C 10 0

Then 11 Ct10 C 1 10 tic 0 6

and C 10 0 as ct2 0 due to its anticommutationproperty

Wewill introducea 2nd quantized Hamiltonian which has a one to one

mapping to the original non interacting Hamiltonian as

each __

We can alsoshowthat each many body state inthe 2nd quantizationcorresponds

uniquelytothat in the 1stquantization withthesameenergy ie

No an r rn catcat C 107

upto some normalization
Herehowever wehavetobecarefulforfermionsabout theorderingoftheoperators

cat cat This was not a problemforbosonsnicetheycommutt Butforfermions
itmatterssincetheyanticommile whichcorrespondstotheantisymmetric wave
function in 1st quantization We usuallychoosesome convention leadingto
normal ordering forexample we orderthem in increasing in energy
eigenvalues or momentum or from latticesites startingfrom the lefthand
side etc Once we choose a convention we then stick to it

Lets
say we startwith a

convention as Ininz na 7 where

no 0 1 Thenwe apply an annihilationoperator todestroya articleonthe
A state



Ca n nz na factcat cat lo sa

Cy In n n n t sb

It na 0 in if no stats in empty then RAS is zero as expectedfromeq5

The phase factor C1 É is importantforfermions Because we haveto

skip α 1 previous states before reaching the α state Thisphasefactor is

called the fermion parity its all the statesandtheircorrespondingoperators

are ordered in increasingnumber byconvention to bringtheCa operator

to the α position ithasto anticommute with all theprevious at operators

upto a 1 Then each anticommutation yields a I phase and thetotal

phase in Éini

similarly cat In no Fna In natl
9

Anyone we can generalize these notations to anyons which

get a statisticalphaseof 0 x ̅ eachtime too anyons are

exchanged 0 0 a for bosons fermions respectively

Graded commutation relations

anap e't apan 0

at apt e apt at 0 10

as apt e aptas Sap

a in na
it Gala no y

ast In in e't retain natl 7
There are clearly some inconsistency foranyons suggestingthattheFockspace
formalism doesnot quite work for anyons other than 0 0 1



Operators insegordanization

Sofar we have talked about statevectors in twodifferentquantization

languages What are the good allowed operators Ans Thosewhich are

Hermitian and symmetric underparticle exchange permulation are allowed

operators e g Ñi Fi for a single particles in manybodysystems are
not good operators since for identiialparticles it doesnotmakesenseto
consider a singleparticleoperator

A good operator in thatdoes not distinguish betweendifferent
particles in the operator must commutt with thepermutation operator
P A good operator in then Éiri or bi it total position total
momentum of the system as these operators are symmetric underthe

exchange ofparticles

Let us first review theoperatorformalism in first quantization case

O Bodyoperator

The single particle operator in themany body setting is
generally defined be

Geri

Examples of single particleoperators are O ri ni pi ripi
Ti Ti and so on



Then we want to compute the matrix element of this operator with

respect to the wavefunction ii eq a or 9 as

24 V14 fan d.vn tir a Einen in ra

There are toomany terms N dueto fermentation in thewavefunction
as well as N terms in 11 But since singleparticle states

are orthogonal toeach other then inonly one term that will contribute

for the operator at recri and that in U2 Ivi Uncri while
notIn hairs terms for it are all normalized to 1 For

bosons there is however an additional criterion that a given state
can be occupied bymultipleparticles which is denotedby the
occupation number ni of this state So we get

LY V14 ha Waa who Ya d retir Ver 4am
Ln na VI n na 3

This is generally lengthy to derive and one can try it for 2 or
3 particles The no term arises for boson can be shownto arise
from the fact that a given state can be filled by N numberof
particles
In the above case we have assumed thatULF commutes with
her so thatMalti are theeigenstates of recri as well In general this

is not necessarilytrue Then U Vi will bea matrix in the ha ri

basis and the diagonal terms are given by ear 3 and the

off diagonal terms Vap are expressed as

Lh Matt np l I n na up



TEMP Up Up fair 4 10 V104pm aa

for bosons
C 1 SHIP Nap for fermions 43

The origin of the pre factor FnFITp in 1st quantization

in rooted in the normalization factor of YUNTIN which
makes the numerator Trip for np occupied betstate
This is like the operator takes a particle from β stateand insertit
in the α stat Clearly up for thistititing to take place for
fermions Ma also has to be empty forthis case For fermions the
additial phase forefor comes due to antisymmetrization of the
singleparticle states in going from α to β states

Ibodyoperator W E W ri ri

Thefactor of is to avoid double counting This is a symmetric

operator if W Crier W ri ri and more often w Vi tibia
function of the relative distance
The marix elements of W are non zero when twoparticles

change stats it this potential can more twoparticles out oftwostates
or same state if bosons Lets

say w potential moves twoparticlesfrom
state 8,8 to α β So it decreases no to no 1 ng ns 1 and
intreases no to natl Mpto opt So we get

Matt nptl ng t ng t W Na Mp no ng

DMptTng Phase factor for fermions



where Wap g Lap w 88 d d r UldUjer Wer r up longer

Wapg Lap W 88 fdr d ai Iv Up r w go ng r 4 r

which corresford to thetwofossibilies of 8 α 8 p S α ftp

As A 8

These two terms are related to each other by a fermionphasefactor
of 2 1 Theordering ofthestates is importantfor fermions becauseof
the fermionparity

HI Work out the phase factor in eq 45

immune
formula where no ata'α

Proof I É X Ñ Upatap b

4Pa

where Up Jd 42m an updo

In the firstquantization the one body operatorgives a transition

from state β to α In the and quantization this is equivalentto

destroying a particle in the β state andcreating aparticle at
the α state Nap is the energy costfor this transition scattering



Here we have to prove that

LV 401 am an ang and aid I atn ate a
p
a

I

Similarly the twobody operator is written as

w̅ I Wapes astatp agar 17
β88 1

where Wapos is same as before

It is customary to write all the creation operators on the leftand
annihilation operators on the right The orderingamong thecreation

operator in up tothe convention one chases

Notice that the ordering among xp88 in w and those in at a
are different This comesfrom the ordering of the derivation

on the 1st quantization we had a summation over N dim
Hilbertspace But in and quantization the summation is
extended to infinity The no value for statesabove
N dim Hilbert

space takes care of it
so in the 2nd quantization there is no explicit

N dependence Its analogous to the cannonical and grand
cannonical ensemble cases for 1st and 2nd quantization cases

All operators defined in 1stquantization is also defined



in the 2nd quantization But in secondquantization we
can define more operators that do not conserve particle
number such as atat aa etc which are
non Hermitian

Hamiltonian

1st Quantization 2nd Quantization

H I hi I No I Expcate pso
is it XP cat age

α β 8 I can be site indices
in the real space Hamiltonian
or canbe in the momentum

space 8

here Exp 4 Te Vet P which

isthe non interacting Hamiltonian

Vapse 441,4 118 187

11W Do a Fourier transformation of the creationand annihilation
operators to express the many body electron Hamiltonian in the
momentum

space In the momentum space the first term
should be diagonal



BasisTransformation Fourier transformation
o

An important feature to remember for the creation
destruction operators in that despite we call them operators

they transform like a state under any unitary
transformation This is also obvious because they
actually representstates ie they act on some vacuum

state and give a new state we can see that as

follows Lets say 12 E H in some state in the Hilbert

space It and we transform it to M which are related
to 12 states by some unitary transformation U as

In Ʃ Una 10 I 417 147

Now lets define ant at being the creation operators
in the In k states as n athlo a at 10
The vacuum o remains unchanged in both space Then

we obtain
ant I Una at

The unitary transformation in a cannonical transformation
under which the commutation relation among ant at
remain same to the commutation relation between act af



Fourier transformation is a special type of cannonical
transformation from real space α i to momentum space
n k where the basis functions are hilk e ki

Then we write the ladder operators in the Fourier
space as

apt I e Fiat

and at I
e
E
ant



Field operators Creation annihilation operators in position space

We introduce the creation and destruction operators in some

single particle state α as ax at Now we want to obtain
such creation annihilation operator in some other state Onewould
then simply do a basistransformation in the usualway makingsure
the commutation anticommutation relation among the

creation

annihilation operators remain the same because otherwise the

fermionic bosonic properties of theparticle will change whichis not
allowed The basistransformation that follows thisproperty is calledthe
cannonical transformation

A particular type of such transformation in which one
defines creation and annihilation operators in the continuousposition

fromthecollectionofstates α gives us Field operators

x ̅ Ii L cas
opetitor fperator

where f are the complexwavefunction ofthestate in the

position space we introduce another quantum number or in the

position space which is like spin orbital to
The inverse transformation is

9 Jd II Goa
This is actually a transformation from α states to the positionstate The

transformationispossible if F are orthonormalized which is

provided



Example Assume α momentumstates Theneg 9 is like a

fourier transformation from the momentum state to the position
states and the wavefunctions D e Therefore

we rewrite eq a 120 as

F i a e Eko lab

sometimes thifield operators are denoted by the
same variable Incr or an r for simplicity

And Gpo d r e age Rob

Hw show that 9015 a x ̅ 8 F F So o
Gold ageing 915 a is o

provided Gpo also follow the same anticommationoilskin

and similar for bosons with commitation relation

The number density operator is

Nfr 8 F Ti o where Jio is thepositionof
the i particleof o

sfiniaistquantizahoisir.rsEE Eff1is cart
eik.li E

ay ftp.ffftfffff



Show that thedensityoperator in themomentumspace is ñn e it Fir
in the 1st quantized notation Ñk 0 9 9 ko in andquantization

Total numberof particles Ñ Jd r NICE XI
In airfare

These density operators are extremelyuseful operators in condensed
matter One can further changeawatyfslug theproblem
from single particle states coordinates Fi to generalposition
space Instead of looking at each particles coordinates ri we

now sit at a position x ̅ and ask howmanyparticles arepresent

at that position at a time ii the density This is analogous to
the ensemble theory in goingfrom microscopic Newtonian mechanics

to statistical physics This field operator definition is at theheart

of the Quantum field theory as well as the Density functional

Theory

We write the operators in terms of densityoperators as

follows

V Ʃ 0 Fi

18 v ES E Fi in 1st quantization

ME E
from ear

If we in field operator

form
1239



Now we can write it in any basis α B or k basis as follows
in and quantizationE.pk f Ist nvaupm

Ʃ Up k afar in momentumspacek
23b where itsdiagonal dueto

translational invariance

Similarly the two body operator in

W wCri 5

Wei hi
we remove the it

condition thensubtract

thediagonal term
Now we can write it interms of thedensity operator ñ E as

fd d WCT n F air d r war ncr

I Jdf do we w̅ ftp x r they r

Sir v1 Yter XLV CTIfd r WIFE to418
Now we normal order the field operators for theconvention

1938 d 8 we F Vte te X E i

The anti commutation of fieldoperatorscancelsthe 4

self interactiontermhere this isexpected became two fermions cannotftp.afnt.ttsame
H W show theabove term where we have used ordered

the operatorstwice so that I sign for fermions alsodropsout



Then we write eq 29 in any basis we want as before

show Ep hap w 887 atapt as as

where Kp w 88 fd r do m in UpÑ west Uplonger

This is the main ordering reordering in the operators which

differslightly in the matrix element form that we have to keep
in mind Here in the two body scattering interaction case the

particle in S state goes top particle in 8 state goes to α

This is represented bythe Feynman diagram as

want
to

This is how we write it However when we evaluate it for
any physical processfor calculation such as for the electron electron

interaction we haveto considerbothpossibilities that 8 goesto
α or β 8 goes to α stats at the same position so this isthe

direct term or 8 goes to β state exchangingposition this

notedthe exchange term But both these terms are

included in theTrumbawritten in terms of operators because



the commutation anticommutation between the field
operator will take of it



Density operators8

Apart from the one and two body operators we will

often be using various typesof density operators in this
course especially in the momentum space We have
introduced the local density of particles above in terms
of the field offrators for some spin o and say orbital
2 as

ñα I 8 5,90 Ñ Far 45
Let us Fourier transform this denity operator to the
momentum space as

ng 9 Jdr e it.tn ci

fair I D Told

for e fÉÉÉ
e Fancy

Ʃ fire a c any
4 TEE

In a Chia 9 15 126

here we have redefined some dummy indices

This is the denitrify whose Fourier

components in the momentum space gives density waves naiad



Notice that the nias itself arises from an summation over

all k states We can define a

ldnrityinmomenkmsp.aecalled the momentum density as

Mark a C agree QD
I Notice that we have used the same symbol n car
N E to denote the Fourier component of local in x ̅

density and the momentum density respectively
Unfortunately this is what is done in the literature
as well and from the context its meaning can bededuced
In this course we will try to me to the Fourier

transformation of the density and as wave rector of
electrons

The momentum density signifies the occupation
density for the Block states and it takes the valueof
for fermions

n k fck O for RT ke
for k kF at 5 0

ie its the fermi Dirac distribution function
at finite temperature

n 9 0 N k N total numberof
electrons in the system 90

128



In first quantization the local density in

Mark I 818 Fi.no

I e 9 f Figo

E e I e
Jigar

e no from eq26

Therefore Nga w̅ e 9 Tino 290

This is the Fourier components of the density operator in
first quantization which basically to sum over all plane
wave states corresponding to all sites i



HI Write the one bodyand two bodyoperators in termsof
momentum space creation annihilation operators

Express the electronic Hamiltonian in the 2nd quantized

form in terms of field operators as well as in terms

of momentum space creation annihilation operators

Repeat for the nuclei Hamiltonian

Write the non interacting wave function in
momentum space for a single band electronic
structure with two spins.at zero temperature

Write the wave functionfor a non interactingbosonic
system at zero temperature


