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Inthe previous chapter we had a fixed uniform positive charge background
on which electrons are moving This was an unphysicalsetting because
charges are mobile and thus when the mobile chargessee a

point test charge they are attracted to repelledfrom the test
charge depending on opposite same signof the test charge Imagine
we insert or positive test charge on an election gas Becauseeletions

are mobile so they will be attracted towardsthis test charge and
create a region of large electron density near thepositivecharge

Then if we add another positive test charge at a distance the
2nd positive charge will see a much reduced effective positive
charge at the other testcharge dueto the election clould around if

This will reduce the effective Conlomb interaction substantially
Such an effect is captured by introducing the dielectric constant E
in the electricityand magnetism course This iscalled screening

Generally electrons are mobile with its velocity not beinguniform
in a lattice Electrons slow down near a nucleons ion move faster

away from it Moreover at finite temperature the electron density
fluctuates The density fluctuates analog tovibration collectively and

one obtains modes like the phononmodes for undious
vibrations fluctuations These collective denist fluctuations have
wavevectors called plasma waves and the quantized density
fluctuations are called plasmons These fluctuations also causes

screening called dynamical screening The resultingdieletric
constant depends on warerector and frequency Ca W and
one obtains frequency dependent Coulomb interaction
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These fluctuations also causes dissipation like friction
Such effects are captured by fluctuation dissipation theorem
In more modern language we learn it via simpler Linear

Response Theory called Kubo formula In Kuboformula
we obtain complex dielectric function with its real part
capturing the plasma dispersion and the imaginary part
captures dissipation Became the complex E function
is analytic both the fluctuation dissipation are related

to each other hence we recover the fluctuation Dissipation

thory



Introduction to screening Dielectric constant G Mahan

Lets assume we add anexternaltestcharge Q givenbyrometnity
Q Jd rSelf in a metal e gas A test charge can be

regarded as some local fluctuation of the uniform mean

chargedensity or impurity This test charge distribution causes
an electric field and the mobile electrons must distribute
themselves to cancelthis electric field so that the system is
stabilized The amount of electron charge to be screened

around the test charge ñ Q withsome lengthscale Its important
to note that the total charge must be cancelled not their
charge denity at each position So lets say the screened
induced electron densityis finder such that the electrostatic potential
due to the total chargedimity Stott Sext find F is

9in fair
The screened charge is not necessarily in bound state
due to the electric field from the charge they can be mobile
and find 8 in then the equilibrium or instantaneous charge

density we will consider its dynamics later in this

chapter So the mobile charge in a metal spends more
time near the test charge if its attractive than in

other places Whenthesemotions are averaged in time there

is more election dunity near a test charge anchors than

in otherplaces So the density fluctuates in both space
time



In a simplepicture one can think of it as follows
The electrostatic potential energy eger causes a spatial
variation of the chemical potential µ r and in itsresponse
the charge density inmodulated n o Their ratio is called

the compressibility ok which we are essentially
going to evaluate here

The classical picture is similar to the EM theory The
external charge is related to displacement rector 5 while the
total charge in related to the electric field É via Gauss law
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Their Fourier transformation gives
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consider the longitudinal components of E I alongthe

propagation directionof9 Then the dielectric constant in

defined by the Kernel
Sextd

ears Er 13
l longitudinal

E W is a property of the material and is governed by the
charge deneity fluctuation In a linear screeningmodel one
assumes this definition holds for non zero Sind Then using
Gauss low Ee r Te p r or Ee a iq or where q

is the electrostatic potential we obtain
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Below we perform a quick static calculation of g

in the q 0 in long wavelength density variation case

which is valid when the electrostatic potential per varies

very slowly in space This is called the Thomas Fermi
approximation Then we will formalize it better within the
Linear response theory Kubo formula for all wavelength
and frequency defendence of E ar n calculation These

density fluctuations are called plasmons

One may mistakenly think thatthe screening is only occurring
in response to an external electric field or charge density This is
not true Elections in a metal are always screened duetocharge

denity fluctuation and positive background and hence to an another

election the given election's charge density is much reduced which
effectively screened the Conlomb interaction as writtenby

Uscreened where Now 4T
So a in an internal properties of the system

The response to an external perturbation generally
electric

magnetic field inthe density current fluctuation is computed with

in the Linear Response Theory Knboformula
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The external perturbation can be timedependent such as time dependent
electric field and or it can be thought of being turned on at some
time to and the system was in its groundstate or in some thermal

equilibrium before the perturbation So we will invoke a time dependent
perturbation theory The time dependent perturbation theory uses interaction

picture for convenience

SchrodingerPicture S.P HITCH it ETH
14147 e 4h 1410

states are time dependent but operators are time independent

Heisenberg Picture H.P
it AID A AID

Alt e Httt Ago éiHᵗlt
states are time independent but operators one time dependent

The expectation values of physical operators are invariant

49k Iffy
Interaction picture I P HIE Ho V t

Any perturbation V t will be treated as interactio

although Ho also has its manybody interaction

in it
Here both stateand operatorsevolve in time butdifferently
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note thatthe time evolutionthanks.filois ie iiii i
with the non perturbed Hamiltonian Ho not the fall Hamiltonian

This gives the time evolution equation of motion of V1 It e I 5H
it I IDS VI t XI t 4

Then the solution of ear is

14,18 U t to 14H01
where theTerry timeevolution operator of the

state in the interaction picture

Ult to Tt exp II It 5

where the timeorderingoperator is introduced since VI t does not

necessarilycommute with itself at a different time

The equation 5 is exactfor any interaction term VI The

linear response theory basically stemsfrom the approximation
in V14 to by keeping only the first two terms

It to I If I 1H dt OLIVIA 6

Basically this is an acceptable solution ifthe perturbation VI is

small and or if thetime interval St it to is infinitesimally

small



4 Linear Response Theory formal definition

The theory is applicable to calculations of themodifications

of ground state properties due to infrisic fluctuations ofquantities
such as charge duvity currentdensityetc But for thecalculational
trick we first assume there is an external perturbation to
cause that fluctuation and at theend we remove thatexternal

field So we take Ho to be our many body full
Hamiltonian time independent and t in an externalperturbation

which starts at to so the full time dependent Hamiltonian in

It Ho VCE D t t where Oct to is the usual
7 step function

Letsay we know the full eigenspectrum of Ho as
HoItn En142 8

and we are interested in the timeevolution of the 14 states ofHo
at b to In the interaction picture wing eq we have

14 4 I Eft U CH 14h to 9

we are actuallynotgoing toevaluate how the statehasevolvedafter
the external perturbation in turned on That too hard and sometimes

not needed for the purpose ofmeasuring a few relevant propertieswhich

are affected by the external perturbation

Rather we will study some physical operator AID



whose expectation value is what we measure This is what
we want to evaluate in the groundstate or in the thermal

equilibrium The operator AHI can be the demity matrix of
thestate for example if we apply voltage we measure current or if
we apply gate we measure charge density or for magnetic fieldperturbato

we measure magnetization Then the lidar relation between theext
voltals and the current is the conductivity or between electrostatic

potential and charge density in the dielectric constant E or betweenmag

field and magnetization is the spin susceptibility Notice a common

feature among
these external perturbation material property and the

response function in that externalpotential in like the intensivequantity
and the material property in like e extensive quantity in the
cannonical grandcannonical ensemble theory and the responsefunction

in the compressibility susceptibility which are commonlycalled
the correlation function and are evaluated bythe 2nd derivativeof
thefree energy

Then the expectation value of some operator Alt whichmustbe

the same in any representationchosen is given by
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The first term in the expertationvalueof A with the groundstate
wave function Xn of Ao without the perturbation term Since Hoin

time independent the expectation value at insimpygovernedby the

time evolution wir to Ho
We drop any 4 or higher term since V1 is small So we only
have one correction in the 2nd term due to the perturbation

which is the expectation valueof the commutator between A.EU
but in the interaction picture

we write the final result in a concise form

LAZ14 LA AID VIAD loa

where the expectation value is calculate with the

unperturbed state 4 Ito Xn to

Fat finite temperature theabove expectation value is generated to
include the thermal ensemble Quantum Bottmann probability

g e PEN In n β RBT

thenone has LAIS Tr e β AI and so on

Our ultimate goal is to evaluate the change in due toperturbation
with respect to its groundstate expectation value mean averagevalue

in the statistical phyers which we denott as

t

S.LA 14 LA 14 LAS att AIM VIII
to
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In the last term we define a responsefunction of A dueto Vas
I Retarded

t t It t AIA VI's la

Here basically we are saying theperturbation isacted on at some

time t Lt in thepast and evaluating its response in the operator
It at a future time tst This is why the notation retarded R
stands for which says X vanishes for t2t Needless tosay there
is also an advance response function one generally define that for the

response function and the difference between the retarded and advanced

function gives the imaginarypart ofthe responsefunction in the
frequency space which is often called the spectralfunction

The common perturbation term we encounter in experiment has

often this particular form i V is split into a termcorrespondsto
experimentalprobe and a term operator of theHamiltonian Katit
couplesto w̅ it B guy

when B in time independent
operator f H in a c number

b
carrying theexplicit timedefendue

fit issomething that experimentalistscan control such as time dependent
electric field Then B is the term corresponds tothe Hamiltonian or
system that f couples to For f being the electric magnetic field
B would be the electric magnetic dipole moment of electrons and
we will have V t I E or Ñ B for being vector

potential of light Bwould be current of elections V J A
for f being electrostatic potential text t B in charge

density of electron and so on



Then substituting eq Ib in 05 and usingequal we get
t

SLA ID felt XI It t f t za
to

t t i Alt E AIA BIH 12bwhere

With a change of variable of 2 1 170 and setting BIK BICO

we can show that SLAS S 2 14 Ht 4 de

Therefore Ib t t onlydepends on the relative time interval
Wealso extend tot a t α ei system goesbacktounperturbedstate as

This is like a convolution of the response function with the external

probe function f t to the propertywe measure att Owingto the

time translational invariance of the responsefunction X t t

these process becomes at the same frequency w in the Fourierspace
S L ACW w few 131

which is like a resonance condition or like a elastic

scatteringprocess that if the system in ferturbed at a frequency
w the corresponding responce in thesystem as well as the

measured property are obtained at thesame frequency This is

dueto the time translational invariance which means the
energy remains conservedbetween the initial and final process
In otherwords there is no absorption in thisprocess This will
be contrasted with the absorption measured by theimaginary
part of but that absorption is ultimately compensated
at the thermodynamic limit
The Kuboformula egs1213 is like a generalizationof the ohm's
law to all momenta frequency So its a dissipative absorption
process but the conservation rule calledmumrule prevail in a subtleway
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Interestingly the response function is determined by the
commutator

between the operators B theprobefield and the operatorAwe
measure in the detector In mostcases A B operators are the

same operators such as dunity density current current magnetization

magnetization etc Butin the commutator they sit at differenttime

meaning the same operator evolved by theprobe field felt to
a value which does not commute with itself before theperturbatio
But theexpectation value is calculated with the unperturbedstate
This means the operator at differenttime does notcommute

This happens when there is a correlation in the theory between

states at different time card lose dueto quantum effect
in this case such that an event at a later time or different
position is affected by the state before or anotherposition

If the operators at two different times or bositions commute

then they are like completely independent phenomena Hence

it does not matter in which order one consider them This
is why the response function is sometimes called the correlation
function In classical analog this response function or the
correlation function measures the average deviation of the
measure quantity or theexpectationvalue from its mean value
due to perturbation like the standard deviation
since the non interacting Hamiltonian is the full Hamiltonian
without the external perturbation term in this description the

interaction is the perturbation so the operators AI Be in
the interaction picture are actuallysame as those of the
Heisenbergpicture AI t A Alt same for B



One interestingfact about the linear response theory knbo

formula is Ikot the response function does not depend on the

probe field fett This is true for the Ohm's law where the
conductivitydoes not depend on externalelectric field So we can
essentially set f 161 0 and then we can interpret AB as the

intrinsic correlation function between the two operators A B

It the fluctuation correlations definedin eq 2b areintrinsic whatsthe

origin of it if the system is in thegroundstate and or in thermal

equilibrium There are essentiallytwosources offluctuationshere
quantum classical Thequantum fluctuations are hidden in
the commutator definition of X Even if are the eigenstates

of Ho but Aand B don't necessarily commute with Ho and
hence Xn isnot an eigenstate of A and B So there will be
fluctuation of A around its expertation valuewhich we are capturing
here Moreover in mostcases we cannot solvefortheeigenstate of
Ho and then Mm is some a variational groundstate which is neither
an eigenstate of Ho nor of A B So all valuesfluctuate

Theclassicalfluctuation inthermal fluctuations AtT20particleshave
thermalenergy RBT to visit nearby states and thusdonotremain in
agires state Such a situation incaptured bymixedstate density
matrix and one takes thethermal average Thethermalflrituation isclassical

Finallynote that unlike in atomic physics where we have discrete

energy levels here in many body theory we have energydispersions
a continuumof excited energybuds above the Fermi sea So one

has a continuumof low energyexcitedstates which the electron can
access dueto quantum and or classical thermal fluctuations



We are now goingto evaluate AB for A BE R It the

density operators for free electron gas and for the interacting
election gas These are essentiallythe fluctuations across the Fermi
levels where an election moves across the Fermilevel due toquantum

and or thermal thitations They will have a continuum of
fluctuations atdifferent warerefors which are called particle hole
continuum They are not localized or bound state in the non interacting
limit but with Coulomb interaction they can form boundstates
which are called excitons plasmons in differentcases

Theb h spectrum the plasmondispersion also dictate if the material
canbe excited shined with light atcertainfrequencyand warrenector
momentum or not or the light can be absorbed or not or the

current can be induced by electric field or not etc In a given

ground state the correlation fluctuation can show singularity
divergence at some waverector or finite frequency signaling that
the ground state is unstable to a phase transition to a different
ground state

Remarkable thingabout manybodyfermionic system is that despite
all these low energy excitations the system remains stable That

very much dueto fermionic exclusionprinciple thattheelectrons occupy

some exclusionvolume on average
Therefore we will learn a rich information about the

dunity fluctuations instabilities screening and otherimportant

propertiesabout the material



IIB Density Density correlation Lindhard function of
free electron

gas

We will first consider a free chation gas without
interaction

Ho a GIF a XD

In this Hamiltonian the momentum density Ngo GioGro is conserved

ie H Nuo o at all k Butthe localdeneity n o Tototold ie
its Fouriermodes No a are notconserved We are interested in the

electron density fluctuation in thechargedensity fluctuation as

SCF enin and the density density correlationfunction mn

since the B operator in the electrondensityoperators it confolesto
external electrostatic potential text So f t Text x t Therefore the

perturbation that we assume to start at to 0 is

A It fair text It S E 5

IF FIFETIE to
then Sasi D fairat x c Éi5
Because the external perturbation in spatially varying so the response
function is also a convolution in space and we are capturing both

spatial and temporal fluctuation here
Became of bolt spatial and temporial translational invariance i

momentum and energy remain conserved the above expression becomes



local in the momentum frequency space

8 2 5 19 W XPcarw text asw Fa

where X in time in notice aches

or t t E OH E Secant S C ar t

Note that the 0 function only exists in time not inspaced

which is dueto causality and time ordering that is used in the
derivation Setting 1 0 the F T of in time is

Then

9Carw Idt x1 ar t e Eth s

Ad hoc convergence term
added

Theorigin of this ad hoc term which essentiallygives thedecay
term in time causing dissipation absorption that we talkedabout

earlier In aninteracting system Fort sortof decay intimebecause
the commutator H S t evaluated in the unperturbedgroundstate

decays Because elections move away from the specified groundstate 4nA
dueto interaction But for non interacting free particle system elations
are infinitely longlived on the ground state and hence the integrand
oscillates in time at frequering w and never decays So He

integral becomes infinite Therefore to conversethis integral we have
introduced an adhoc decay term e t with n 0 This essentially

shifts the pole in the complex integral from the real axis to
inside the contour and we have a conversed integral T Ñ i
like the life time of theelectron in thegroundstate which is like the
decay constant Drude introduced and isrelated to the mean free



path as I OF T OF Fermi velocity Generally this

happens in system dueto thepresence of impurity defects etc

which scatters an election to otherstates when we compute

the densityof states ofelectron for non interactingparticles one

obtains 8 function but then he is added to broaden thedensityof
states in frequencymomentum which is seen experimentally aswell

We can eventually set y o after thecalculation Do we recover
a fully energyconservedsystemfrom a dissipative absorbing
system by simply settingthe dissipation term to zero where did
the energy particle go when y was finite and how do we recover
them This is kind of very subtle For finite n the lost

energy particle moved out of the finite volume v absorbedby
theconfiningpotential atthe wall When we set n o the lost

energy particle are recored from the potential reservoiratthewall Inwhat

follows in the limit V there is no loss so theordering

of limit no 04 V T do notcommute as we will see further
later



Now we want to evaluate eqas for the density operator 5
which was written in terms of the field operator in eyes in the

momentum span as

sea a qyou credit dad

The time evoution of the creation and annihilator operators
are evaluated as

a pig one
tent at a cat é ht

1 the creation annihilatoroperators evolve in time

withonly oneunitaryoperator eiht as a statedoes butnot like other
operatoras e Hot A e Hot This is something subtle that needs tobe

derived carefully C Ct act on the Rockspace notthe Hamiltonian's

Hilbertspace and the Fockspace doesnotevolve intime Hence C Ct

evolve as state J
Then we get

5Car t I GioChen e Er hear t yay

Notice that although 5 isdefined in the interactionpicture but it
evolves as in the Heisenberg picture Wediscussed this before Thisis
due to the fact that the operators are evolvedhere with to only since
It is not an interactiontermofthe Hamiltonian buta probetermwhich

we eventually set to Zero



Then substituting eq as in eq 175 we get
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Now weneed to expand the commutatorwhich will give us
etc etc since the expectation value is evaluated in asingle

particlegroundstate so the Wick's theorem is applicable
so etc etc etc Late Using themomentum conservation

we will end up with the density term n n to survivehere

it w showthat 4 419541 s 4

11,14
5

feat
Ferme Dirac distribution function at T20
ten at Teo

Then we get

X Car t t I Eft In
flea feenew

x Een Erea etty day

So we indeedseta termwhichdoes notexplicitly
depend on t t but itsdifference t t



Finally we perform the frequencyFouriertransformation by
enbstituting eq fad in eq 8 The time integral is of this

form
I Jdt Oct e

i Ego if t

The Oct dictates the integral only survives for t o from t o to a

Without a term we can recognize the integral to be a deltafunction
258 AW En En o Clearly the imaginary in term broadensthe

f function to a Lorenzian wi th n beingthe broadening term

ofcourse a o otherwise the integrand diverges for t o then
this trivial integration gives watchin
Therefore we get the final result as

µtm a

This is the famous Lindhard responsefunction for density density
fluctuation of free fermions The expression seemssimpleto
evaluate but it encodes rich physical interpretations

Sh is the electrondispersionwith its inanerector k
W and W are the frequency and waverector momentum of the
experimental perturbation Peet w al



The denominator has poles at real frequency TW E q Ea which
is like a resonance condition or like an excitation fromthe

energy level Eu to skeg So its like an oscillator between the
two energy levels except here the levels are not discrete but
have dispersion So we will have a spectrum of excitation

depending on the incident light's frequencyand momentum
q W are also interpreted as the inverse wavelengthand frequency

of density fluctuation saying that its a collective fluctuation of
election's dentils in space andtime So the resonance function
has poles exactly at the resonance condition excepthere onehas a

infinite setof resonance frequencies corresponding todifferent
wavevectors In fact a relation of way can beobtainedwhich is
however not going to be sharp like an oscillator as many k values
satisfythesamecondition Aswewill seebelow we will get a broad
continuum for war

But not all resonance conditions aresatisfied dueto thenumerator

Thefermi_function is 0 1 if thestate is empty or filled Therefore

for a transition to occur boththe states k Ikeag cannot be

simultaneously empty or occupied In what follows thetransition

takesplace in the initialstate is filled and the finalstate is

empty In fact one does not create a single particleexcitation

here rather an electron is moved from below the fermilevel

to above it creating a particle in the empty state and

simultaneously leaving a hole in the Fermi sea This is
called the particle hole excitation Roughly speaking one
creates dipole between particlehole across the Fermisurface
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W30 as we cannot release energy by moving an election to a lower

level because all states are filled inside the Fermivolume Generally
also excitation energy is measured with respectto thegroundstateenergy
and hence always positive

The presence of y term makes complex with its imaginary
part in proportional to 2 Since 2 signifiesdissipation absorption

so its obvious that Imx gives the spectrum of the dissipation
absorption In fact thedissipation andfluctuation are related to
eachother through analyticityof X called causality This relation

called Kramer's Kronig relation KKR in similar to the fluctuation

dissipation theorem

The Imx is like a Lorentzian with h being its width
and in the limit of yto a Lorentzian becomes a f function

This indeed happens here Because is of the followingform

big setting P te 84 Pstandsfor Principal
value

But sex seems to signify infinite dissipation absorption
at x o ie w Sara er But at thesame time we havetotake

the volume v α in the warerector of 0 Then with q o

limit we get a finite result



It is indeed surprising that a system withbothspatial
and temporial translational invariance which dictates momentum

and energybeing conserved automaticallygives a dissipation

absorption form in loss of energy term This we discussed briefly

before that this dissipation arises because we are taking the long
time limit before taking or q to limit Because if we wait
long time theenergy will eventuallycomeback and there is nodissipation

So torecovertheenergy we have to firsttake g s o limit before

taking the w to limit This is like looking at theenergyinstantaneously

and ofcoursethe energymay not be consered at thatposition
state Therefor its extremely crucial to consider theordering
in taking the limits in order toobtain either a conservd

system or a dissipative system

we will now evaluate the response function analyticallywhichis

only possible in various limits of q.to Wto Wto etc Each

limit gives very interesting properties which are measurable or
reveal importand physical properties ofthe system



I limitqso.ws we apply theperturbation at some
finite frequency but at zero momentum

Since elections are occupied atdifferentmomentum stat andexcite
a particlehole one needsto move an electron from one momentum

stateto another But if the momentumtransfer q so thenno excitation

possible In otherwords there is no particleholeexcitation at gto
and w 0 as X 9 0 W 0 0

The physical interpretation ofthis limit is as follows 1 4
0

means a spatially uniform electrostatic potential textexits text f
since an electrostatic potential shift the chemical potential as
Mcr Mt GextCJ t Gunerallythis isfine as the electrons will simply
move from low M E to high Mei region but thetotal numberof
electron remains fixed But for uniform Ofext14 we are saying the

wholechemicalpotential is shifted which is tied with changing the

total numberof electrons in the system Bhteine the totalmemberof
election called globalcharge is conserved so changing theglobal
chemicalpotential without changing the global numberof election
is not allowed Therefore the responsefunction must vanish

one can explicit check it from en s that

Hex t fax ofext Xt S XH
Ofext t fax sexit text NCH

TE totalnumberofelections

which isnot time dependent as Ho 143 0 So NCH N



I Limit9 0 w ro clearly if we first
take the q o before woo

limit X is zero and the whole function vanishes duetoconservation of
charge If we reverse theorder of the two limits we set a

finite result Asdiscussedbeforeas we take W To for 910 we are

taking the long time limit so the perturbation is static in timebut

spatially modulated and varying very very slowly in time suchthat

the system has enough time toadjust its deneity

M
Ca No lesselectron

Cn indropped
Then as we take 970 limit both
the numerator and denominator goestozero So we haveto use

Hospital rule
19 0 no Effects usingTaylorexpansion

18 fit 19 fi
This staticdensityfluctuation isalsoresponsibleforThomas fermiscreening
We can now convertthe momentumsummationto energy integral
In that car for each energy grid de we need to take into

account howmanymomentum states are there ei thedensityofstates
d e f 3Jfk Sides de when Eas 9k see sn d e

A factorof 2 is implicit in the densityof statesdue tospin
Then µ

q 0 w o de de 8 off deep

as f is a stepfunctionso as 8 E M att 0

f E E 210



This result looks verymuch like in factsame the compressibility
that we learned in stat mech course _On on Dos at

5 0 forfree electiongas Thenegative sign makes sense because in

grandcannonical free energy we have Fr Mn Therefore X

at q o w o measures the stiffness or compresibility of
the Fermisurface to change theantidber of fermions per unit
change in the chemicalpotential Compressibility is same as the

densityof states for non interacting Fermi gas

It is a bit surprisingthatdespite thefact thetotalnumberof
electrons in conserved by taking the limit q o first givesvanishing
response function while taking this limit after the longtime It α

ie woo limit yields a finite compressibility This has todo with
the corresponding physical process In thefirst case we applied a

uniform potential tobegin with which only can change the total
number of electron in the system In the second case we applied
a non uniform finite wavelength potential and waited long
enough for the electrons to more from high potential tolowpotential

region and equilibrate Then we made the wavelength goes to

infinity In this process the electrons have more locally according
to the potential while the total number is still conserved what
the respone function in capturing here a spatial average over
Ona 00in not 0470207 This is finite even when
04 0407 0 This is reflected by the fact that we summed
over the k variable over theentire Brillowin zone before taking
the q o limit
So metal ie electiongas in a compressible system unlike an insulator



I Limit thrited.IE

9 w 0 fi qiftnd since the first and2nd
terms are thesameafter ain enea change of dummy k variable

for free electrons shag a
2

412 off
143

he
non 1 for Keke at F 0

so W O f 4 3 kq
factorof2ft
spin I

Sm a k dkf.am sad cost

O

8M log Kaka log k 2kg

16AM 2dg log 6 29 log k 29

Wehavedone thirintegralinchpter 3.2
for the exchange energy and we obtained the FIN

except her a 912k and this gives an additial
factor

f x FH
we will continue to

denote F'cry as fin hire re defined below



4 AM KE F a

d Ef Fca

where dCSF in the dunity of states at the Fermi level This
is obtained as a forskin

dce 8 E Sa 2 ftp.f 812 4

It 12me

dese IT 12m IE ITEE

4ft
And FA h III for a Make
which in the same integral we saw beforeexcepthere x 912kt

At a o ie q o we get f 1 and 0,0 def as obtained

in the previous cone



fan has a log singularity in its first derivative at al ie

g 2kt Invertingortantand has to do with the fermiKystatistics

Because in a fermi volume at w so ie with no energy

transfer one does not have inelastic Scattering Thenthe

only allowed scattering is among theelectrons on the
fermi surface Here two electron can exchange momentum

and the maximum momentum transferhappen between
two electrons sitting at Rf ke given a momentum
transfer q ke f ke 2k r 2k is the maximumvalueofgate
But the key point is that X does not have a discontinuity at g ake
but its firstderivative has a log divergence This has important
physical consequence that we will see later



I Limitated when the external perturbation in oscillating
toofastwith time which is tosay the

energy istoohigh w a we get

a n expand it uptoandorder
in W

0 two

duetosumoverall
filledandemptystates

for teen En Enter Ev Eq a
Trelabellingthe
2nd term here

www.EE
If iwhen n few

This expression is also truefor interacting electrons became the

externalperturbation oscillates the electron so fast thatthe election has no
time to relax So it does not reallymatter if theelectrons are interacting
or non interaction ie it does notmatterwhats theHamiltonian of the
election as e

w e
ᵗ
for w E where E is theenergyeigenvalue

of the election This is also connected to the f sum rule whichis
satisfied by all absorption at all frequencies derivedfrom the analyticity
of





emitted back reflected almost immediately Only if we
include coulomb interaction or othereffects the excited

elections and left behind hole can form a boundstate
called excitons or can move to different center of

mass positions inspace due to screening and hence creating

permanent dipole moment Such excitations are called
plasmons We will discuss these many body effects later
but returning to the metals there can be weak and
instantaneous absorption

The absorption loss of energy conservation is introduced

by the Y term in the derivation and in the limit of zoo
it leaves behind an imaginary fontof X which we
discussed earlier
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Using this formula we get
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This exactly satisfies the resonance condition for fermions in
a fermi sea that we just discussed above we will get a
continuum of absorption here called particlehole continuum but
short lived This is obtained by integrating over all
possible k fo summation gives a factor of 2 we will only
discuss T O case where feen Of su



we will use a few tricks to evaluate it quickly first thing
we notice that Im 8 or w Im Xo Car w is

odd under W ii absorption emission spectrum are exactly
identical dueto space time translational invariance
Then for WSO the f functiongives theresonance condition that
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So now since either En state or shearState has to be

filled and the otherone to be empty and now En Shear so

Ek state must be below the fermiland and Eeg µ at
7 0 Then f Er f shear 0 in our case

So we get

f

This integration canbedoneexactly and theresult in P Colemannbook

eq 8 180 page 229
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This final expression does nothelpmuch in understanding the absorption
spectrum but the plot of the function goes as
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Im X is finite when we have the resonance condition for q Iwas
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Therefore a particle hole excitation is possible at those f values for
which all thethree conditions are satisfied As we see earlier
there is a upperbound for excitation at q 2kf for woo At

finite wso infact there are bolt loweranduppercutoffmomentawhich
are the solutions for EI Veer we or 9 This can

be seen from theband structure plot as
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There are continum of particle hole excitations gens which
satisfy 9min w I 9 W I Vmax w as shown in the top figure



We can obtain the Im Carw for armin and armory lines by expanding
the expression new auto q 2hr The result in one obtain

gapless linear dispersion

Im X q W I def fee for w true
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These excitations are clearly not sharp unlike in atomic spectralline
and there is a continuum of excitations in the arbitrarily nearby
energy and momentum If we create such an excitation at some

wavendor and frequency it wont travel far ratherdissipate quickly
Theyare not boundstats unless coulomb interaction is included whichcan
confine these excitations to excitons or plasmons




