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InteractingElectonawe
will now study how the density density fluctuationspectrum

modifies dueto longrangeCoulomb interaction In fact we will discover
that the long range conlomb interaction will rather be screened into
short range interaction Another interesting property we willdiscover is
that the particlehole continummwill modifyto sharp dispersionsand
they are called plasmons This can absorb light formuch longer
period but has a dispersion called plasmon dispersion

we write the interacting Hamiltonian in the and quantized form
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where En EEE M for election gas or can begeneralizedto

lightbinding dispersion

req for long range coulomb interaction
weset e 1 forelectroncharge

We rewrite the last term in terms of the densityoperator
5 9 n q 9staug Cho we set thechangeof election e 1

Hint I tear S 9 Stay 255

The external perturbation in H fdr Qext it f F 1250

The elections charge or e is absorbed in text



Its easier to seethe effect of the externalpotential to the electrondensity

by associating an externalchange deneity Sext E t correspondingtothe
external potentialFit tried using the Poisson's equation tpext esext

ext WW Sext orw 26 a

Notethat for the intrinsic election dunity fluctuation _This externalpotential
in related to the nucleons change deneity which we approximated tobe

uniform in space time Otherwise for external gatevoltage we can also
associatesuch a change denity enextcarw atleastmathematically to

facilitate the understandingofitsimpact onthe electrondinity intheusual
electromagnetic theory language

Substituting eq24a in1252 we seethat H in like an coulombinteraction
as Hint in eq1255 butbetween external andinternalchargedemity This
gives a hint to define an effective total changedimity as follows
Now the indeedchargedivinity of electrons 848 N which in the

variation of the electron charge density withrespect toitsvaluebefore
the dext Vit was turned on ie at 7 0 According tothe Linear

response theory we discussed in eq 7a the inducedchargedensity
in proportional to the externalpotential as

19,0 term

Sind orw 848 arw carw text aw 47a

law sext crew fromear 9

Year tomake it 126b
general

Here Carw is theexact deneity density correlation ofthe ng
electron

gas Sind for text 0 as it shouldbe



Then the total charge dunity

Spot 19 w Sext Vin Sind Nw
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Éy Sext orw 260

where in the last line we used thedefinition of the
dielectric function eg 3 that the displacementvector Dearw

NW E arN and D larW i4dgSextwin E ar n

i41g stotcarw

This gives a mechanism of the dielectric response of a
material as the density deneity fluctuation duetoexternal
potential within the Kubo formula as

ftp.ng ineeasxtfw
we notice that although there are dimity fluctuation of non iterating

electron Xo due to external perturbation but it doesnot contribute

to the dielectric function of a material Its only the interaction
term that gives a dielectric response dueto density density
fluctuation Its important to emphasize that in eq 7 in

the interacting electron dunity fluctuation if we replace it with
non interaction election'sdunity fluctuation Xo that we just
calculated above will give wrong result in the sense it will be
inconsistentwith experiment This is because withoutinteractionelectrons

donot talk toeachother and hence do not screeneachother



Since in complex in general incorporating the absorption dissipation

of energy in the system the dielectric function is also complex
and its imaginarypart is completely determined by Imx
This sounds a bit odd in egated for thecharge density which is
real There one includes the real partof E Experimentally one

mealures both real and imaginary E Onecandefine a refractive

index of a material with complex E where the imaginary part
corresponds to theabsorption of the light within thematerial
Nowadays people discovered metamaterials whose refractive

index is negative suggesting E 40 This is a differentstory

Now if we think of the coulomb interaction sun totheexternalchange
due to the totalcharge of thematerial we see that the interaction
is screened as

Userw if 8

The coulomb repulsion in now reduced as E 1 and isalso frequency

dependent Its like we have applied an electrostaticpotential
at some frequency w which is analog to an externalcharge

devily wave at waverector or which in oscillating at a frequency
W This external charge attracts or repels othercharges ofthe
medium and the total chargedurity induced external oscillates

at the same waverator or and frequency The net Conlomb
interaction commingout fromthis totalchargeducity in smaller
than the one exerted by a factorof the dielectric function
Efor w



So the entire thing has tobe calculated self consistently that
the interactingelectron denity depends on the screened coulomb

interaction and screened coulomb interaction depends on

interacting electron density This is in general a much harder

problem to comfort the interacting electiondimity and a

topic of present research There are Feynman diagram
methods to writedownall ofthese in a neatway and one

defines self energy correction to the electron density based
on perturbation method self consistency is generally very
challenging

The simpler approximation one does is a time

dependent mean field time dependent Hatree

approximation which is popularly known as the
Random Phase Approximation RPA



4 i anoint
or coherent potentialApproximation time dependent
mean field theory

Recall the interacting Hamiltonian with the perturbation in the

Fourierspace
anatom it I was senseas It

wean it.at E.Etimna EE
state wavefunction in a single particle Hartree Fockstate 4ft f.lt
Then we can factorite the interaction part into product of expectation
valuesof two operators We will only keep the Hartree term as our

first approximation Because exchange term capturesquantum fluctuations

so we assume quantum fluctuations are suppressed in thedensity

density correlation function of present interest Indeed in most materials

that is the case

we will now employ the mean field theory whosebasic idea
is to rescale an operator with respect to its mean value
SCN 2 45 9 8Scar In the present case we take Sirid Vit
25 a to as the mean induceddensity whichobtains its time dependence
fromthe state Then thedeviation fluctuation of thedensity around this
mean value obtained by the operator 5 9

S or Sind r t S or 30

offrator
adf.EEgTxmepfperator



This is the keyapproximationofthetime dependent meanfield theory
Thenthe interaction term factorsontas

scarSC a SindWit scar Sindfort Scar

SindMt Sind wit Sind at S a

Sindl art Sc a to s2

Thisterm is just a numberand shifts theoverallenergy so we will
not include it explicitly

Then plugging this equation in the Hamiltonian we get
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when we started out in eq29 the electrondensity seesonlythe
external potential text butafter applying the mean fieldtheory on the
Coulomb interaction the same electron density sees a totalpotential
which differsfrom the external one by including the induced chargeof
the electron density as

tot ar t Qext ar t V 9 Sind art 320

Now the RPA Hamiltonian in eq31 is just a non interacting
election

gas under an electrostatic time dependentpotential 4107 at

This Hamiltonian is exactlysame as the non interacting theory
we have solved in the previous setion Now we employ Kubo

formula in which the induced charge density is related to



extCart through the non interacting Lindhard response function

l a.wduX.ca a

This isthe key outcome of the RPA approximation Substituting

eq 2 in eq 3 and manipulating for Sind we get

Sind orW cÉgw textland

X Rpa Corw GextCar n Gta
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so he nounrefonsetothreened potential
as free election where to the externalpotential through XRpa

susceptibility

The binomial expansionof eq443 gives

XRPAYW Xo orWÉ CecaXo qW

Xo t oxo't v2x t or wdefsimplicity

If
t fee t t e

In terms of Feynmandiagram

The above expansion reveals that themany body RPA response function is

nothing but summation over infinite numberof fluctuations of non interacting
dimity 12pA theory was not initially taken seriouslyuntill it was reproduced

by perturbation theorywing Feynman diagram RPA theory ignores
exchange term inthe mean field theoryaswellas is notself consistent Otherwise

its a prettygoodapproximation as long as the denominator is bositive



definite At 1 NCW X WW 0 one has divergenceandhence in a

good approximation if
the interaction is weak recas xÉw w

At w 0 the 1 V9 To19,0 0 is called the Stoner instabilityas

we will discuss later

Now from the definition of the dielectric constant eg 27 By
substituting RPA we get

fnii.isTI i

we see something interesting that while the interacting
susceptibility appears in the denominator in a the

non interaction one appears in thenumerator and with anegativesign
Therefore the RP A interacting response is verydifferentfromthe non

interacting one for any finite strengthof the coulombinteraction Uca



43_ Screening As we saw in eq 28 dielectricconstantscorn
appears in thedenominator of the coulombinteraction

UscanedCovin
g

8

within the RPA approximation we have Elar w 1 9 Xo ar n

stsafati.SItItg meaning woo we brought thetestcharge wayback
in time and we are askinghowdoes the electrondensity response to

that charge E or 0

Themsferniffoximation In thin can we also set go o ei
theuniform electrostatic potential We_have computedbefore

0,0 d SF where d EF is thedensity ofstates ater
Then

Erpa190 It v19 def
It 48 8 It TIE 6

TheThomas Fermi screening isactuallyderived for the long
range Conlomb repulsion vcq

40 9 The trouble with this

theory is that we set or to in the response furition but not in
the dielectric constant Therefore this is not such a good approximation

and we can do better below But the final result in incredibly

simple and occasionally work

WTF is called theT.Fwareredrfft.FI50 WTF is associated withsome lengthscale whose physical role is

interesting To figure thatout we perform an inverseFouriertransformation



g Wfor

of the screened Conlomb interaction

Uppa sb

Urpa 5s eat this integration

mustbefamiliarto
4350 all of us

to in metal
Now we see that the Conlomb interaction is exponentially decreasing

with r and h off gires the screeninglength ofthe coulombinteraction

recall a similar Yukawapotential was derived forthe nuclear
strong force Pot

very

1

Suppose we take a completely localexternal change Sexter Q 8 r

then the viduced charge dinity is

s.it s Q9
e

YI.FI iIudchasedensits



At rt o where the fest charge is inserted we see that Sird α

with opposite signof the charge This means the test charge is completely
Screened bythe election in a metal This is not surprising became
elections are free to move around in a metal free fermion So all
the negative change rush to the testcharge to counterbalancethe

test charge We can easilyverify that f Sind r d r find 9 0 9
So we have a perfectscreening withthe t F approximation

As we mentioned ThomasFermi Approximation has theinconsistencyof
setting q 0 in the bare susceptibility but not in the dielectric

constant The T F approximation is also semiclassicalapproximation

and does not consider a Fermi surface and exclusion principle

In otherwords it does not consider thequantum fluctuations

They are however important as they tendto slowatedecay ofthe
screened charge

Formetal rs 2 6 Hence 9 no 34FsA 0 45 0.94 This

is much smaller than the lattice constant 317 and also smaller
than the interdictiondistance vs ao in an electron liquid gas
On the otherhand theThomas fermi theory which is the q o

limit theory does not correctly predict the behaviorat large
distance as we will see below



Frication we now relax the or o limit andconsider
all or in the susceptibility and W for wt 0

we computed

u or 0 def F EE
where Fen h

we discussed that fin has a singularity at n 1 in q 2kf
in which its first derivative diverges logarithmically For this case

the screening of a pointchargeQ at r o ie s ext Q8300

lookslike
sinders a stiffstage

An important point to rememberthat any singularity ie pole in a

function in like a localization of thatfunction whichyields a delocalized

behavior in its Fourier space Therefore the singularity in f function in

g space gives rise to a longdistancepropertyin realspace F ar 2KF

actuallyhas a branchcut dueto its log behavior we wantto see
what does it corresponds to in the Sind r

send in a Far nicer ffffi.IEaaIj
In the can of

termite.ieiiiiiiitieitiiiii in

the exponential part eit.ir oscillates rapidly at r and inthe integration

it cancelsout But now kt singularity in F does notcancelout IF
integral we haveto look at the analytic structure of f tofigureout
its longdistance behavior So we need togo tothe complexflame To
close the contour it betterto go to _a to α Thankfully fca is an



even function and the entire integrand in alroeven ing so we

extend the integrand from α to a with a factor of 2 so

Sinan a.fm ifdarweiarffffiIz
we want to do a contour integration of the following now

I dz 2 e

EMI
e o if we close the contour on the upperhalfplane been
e
Intr 0 as r α

24 9 f 212ha 0 at 2 INTF This was thesingularity
which produces the 1 r behavior of the coulomb interaction
But now we need to worry about the branch eat at
Rez sq 12kt So we choose the following contour

Imf

kii.it

im

The pole part gives a Yr as discussed above
The new contribution is the branchcat part The integration
on the contouraround the branch cut decays along the

imaginary axis except at q 2hr This part infact
gives a strong contribution which is oscillatory e

2k



Afterperforming the integration we get

sindfr 9 fsfE.FI
This is the main result of this calculation that the induced

charge density oscillated dueto particle hole excitations exactlyat

2kt This is called the Friedal oscillation This is actually
observed easily in ScanningTunnelingMicroscopy measurement

so in fact we have the important behavior that we discovered that
at q artp the induced charge dunity extronentiallydecays atria
whereas at q IF the change density oscillates rapidly as
As we sun over all or both contributions are present

The induced charge howeverperfectlyscreens the testcharge Q as we

Sum over all or This can be seen by integrating over Sind r d's
Q

The physics of this peculiarbehavior for fermions is ofcourse their

quantum nature that as electrons try to screen the test charge
they have to follow theexclusionprinciple The electrons inside the

Fermi sea does notparticipate much in static screening Theelectrons

on the Fermi enforce only scatter with all q values affo q 2kf
All the other scattered electrons durity decaysexponentially except
at q 2kpwhich oscillates dueto the singularity in theresponse
function



It DynamicalscreeningandPlasmaosillaton

Forthe non interactingAhsaffinity Xo we observed that there are

particle hole continuum of excitation which are short lived and
not bound stake At large w a we saw a power law decay
x unaymw

Now we want to seethedynamical responseof the
RPA susceptibilityFor thedynamical respouse we will againbe lookingat
the resonance condition in the

imaginarypartof Xppot
we have

acorns Egitto es

C W andWdependence on Xo U are implicit Xo Xo Correspondto
real and imaginarypartsof Xo

First thing we notice is that Aria is directly proportional to Xo ri to
the particle hole resonance spectrum Therefore theprimary origin of
having absorption response in the interacting election system is also the

particle hole excitation

We obtain a new resonance condition in the RPA care given by
1 Uca X o carW 0

This is comftilydifferentfrom theparticle hole continuum and

called the Plasmons On fact this is a sharp resonance with
a dispersion not a continuum milt long lifetime Theresonance
occurs at large frequency w s Uf q whyabove Ufa
became otherwise X'dtermcausesdecayoftheresonance Wesubstitute



value of CarWHY 94mm in theabove equation which

gives
1 5 fT

fwpt Fplasmafrequeny.FI 191
substituting o YMW 2 III in RPA we get

rains 9EE t
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Several comments are in order

1 The plasma frequency up in complilitydispersionless i localin
real space This is dueto the cancellation of theq termin eq39 in3D

In 2D the Conlomb interaction is not lot but 1g Thisgives
a dispersive and gapless plasmamode

The prefactor not m i sometimes called the oscillatorstrengthwhichgoes
to zero quo The other term Wwp in like a simple harmonic

oscillator without any damping so its an energy conserving



oscillation Iresonce that the non interacting electron density will
experience if one shine an photon at the plasma frequency
W Wp So this is a complete absorption of photon energyat
wa wp which will result in an undamped oscillation of election

dimitywith long range Coulomb interaction Note that theelection

density oscillates at this frequency for all wavevectors since wp
doesnot depend on a only the oscillatorstrength dependson q
So wp is a fundamental frequency of anymetal depending
on the charge dimity n only

i w L wp Appa 20 which is not allowed ei the interacting
electrons in a metal does not respond to the photons at frequency
loss than it plasma frequency So the photons will bereflected

completely at w up in a metal

At Newp all photons will be absorbed by themetal causing
long lived undamped density oscillation

At w Wp There will be some absorption for W L Ufo and
at frequency W upq the density oscillations will decayinto
theparticle hole continuum Xo which gives the broadening

of the resonance in eg38

For a density n
102selectrons em wp lo see or

A w n 12 ex this n very large and most
metals an hence reflective



Wecan geta semiclassical picture off plasma resonance as follows

its the elections more on a positive background they sort of
create electric dipole moment so the

electric field of this capacitorplateof

tfcharge dimity ne n a ane n by hans IIIslaw Then the Newton's equation of
motion in m It ga ne n e e E

ten Wion so one gets harmonic osillator
motion of collective oscillation of all electrons and positive
charge centers dipoles at one natural frequency wp There
is no wave native of the election gas they all oscillates
around the positive charge centers at a coherent harmonic oscillator
motion

E So the plasmamode is the collectivemode of oscillations

of all elections at small waverector large distances dueto
coulomb interaction As we increase the wave rector in go to
short worelight fluctuation V9 AWp Of are the electrons

start to behave as non interacting electrons then one has

simple particle hole continuum and theplasma oscillations

are damped



I
continuum

These plasma like collective oscillations of electron density
is actually bosons called Plasmons this is

similar to collective oscillations of EM fields forphoton or
collective oscillations of nucleons called phonons or collective
oscillations of spins called magnons This is interesting
we started with fermionic particles and obtained a many
body groundstate fermi sea The excitations around a

Fermi sea i tingle fermions particle hole continuum

and now we found something very novel bosonic

excitations

Another interpretation of plasma in that as the photons

goes inside a metal it becomes massive and plasma
frequency is the Higgs mass of photon

WV CURT Wpr



41 spectral Representation Kramers Kronig Relation

The spectral representation is a very powerful andgeneral
technique which is applied to many other quantities propagators
such as Green's function responsefunctionetc we will learn it briefly
and apply it tothe knnoformula Thespectral representation roughly
speaking meaning representing these function in terms of thespectral
lines which are the energy eigenstateshere In many cases we

really cannot solve amanybody eigenstate and hence do not really
have a way to compute there function in spectral representation But

for mathematical derivation and interpretation a spectral representation

comes very handy Moreover in some cases theresults can be
written in terms of trace which is independentofbasischoice and
one can do the computation in anysuitable basis knowing the

energy eigenstates makes it easier to incorporate thetemperature

dependence via partition function quiteeasily

Let us now say In arethe complete energy eigenstates of theHamiltonian
It that we can compute Then In are orthonormalized as an lm fam
and present a complete Hilbertspace I 1441 11 Then the partition

n

function in Z I e BE BYE And the trace of an operator 8 is

defined as To 8 In Linton and the expectation value of



an operator at some thermal equilibrium is

a E é
t
Into in

At too only state that contribute is the ground start because all
particles must go to An groundstate and it Bottmannweight
e BE 2 71 for Eo o as p a

Let us now apply this method to the Kuboformula

Xcarw É dt e wtf 519 t 81 9,01

Recall
That

the integral goesfrom o tox since x is retarded

We evaluate theexpectation value of thecommentator by wingear
and obtain

L SA ES SI9,5J Ifn sea t stay In g é
insert In Im Lml

and use theHeisenberg representation scart e scaroff't
C D

In e
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so we get

X orW 3 Imfateintkn scaro my
e BenLei

Em I e ienED

43a
since nd m are dummy indices bothbeing summed over so

we can exchange ne m in the 2nd term then we get

t

X MW z EmGott
eintinyscaro m e Ben e BE eidnEm t

43b

These two expressions are thesame but seemto converyvery
different physical processes

143a The first term is like an energy absorption or a transitionfrom
n t m state while the 2nd term is like an energy emission from
mo n state One can also view them as time reversed terms of each
other as they do appear in some otherderivations In that way
the two terms will be regarded as retorted t 0 effect is after
the camel and advanced t Lo ethtibefore the cause and we are

subtracting them Ith response function If thetwo terms are In
same is the time reversal symmetry is present then thereis

no dissipation



13b In this equation Hr time part remains the same conveying
only one transition process while one is subtracting the

thermal occupation probability between the initial and
fintstalest
In equilibrium the quantum tunneling'Ébetan two

States is equivalent to chansintocelsation density
of those stats This is somethingt thergdc.ly
hypothesis of the quantum statistical theory

This ergodicity equilibrium condition is embeddedin
a hidden analyticity ofthe complexresponse function This
can be exposed by defining an imaginary time e for
the temperature as p s it Then we can interpret the two
terms as classicaltunnlinginimagenaryfme with one as retarded

and the otherone as advanced we can do the entire calculation

in imaginary time or imaginary frequency called the

Matsubara frequency and the final result can be obtained

in real time via analytical continuation from imaginary
frequency to real frequency in WI in I n t o n added

for convergence as before and alsoshown below This is because
in the function in analytic single valued then it does not

matterwhere the poles are as long as they lie within the
contour of integration

Such an imaginarytime formalism often done in
the Green's

function formalism On different books you will encounter either

eq43a or 43b defending on the different affrachesinvoked but
they are mathematically the same



cally

we will show the results for both ears 43 a 4435

The time integral can be done easily as

gta e
i En Em

Yt wetn min0

a decayterm is introduced for
convergence of the integral at longtime

Then we get from eggs 43 a 1433 as

Xia D T.im
Ln1s1aDImTe ftp fm n wEEDoppositesign

449

É knisaoimsie5n.it
Now we are the identity

lim
n to Fiz 8 tx it Sexy

Thisgives

EaEmknew o my
Ben eBem Iii ÉÉe
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455



on the last equation we have substituted

e BEI e BEm e Ben i e PfmEng e Benf e p

Now it is possible to write eqa in the so called spectral
Representation spectral decomposition Lehmann Representation
in terms of the spectral weight spectral function
Afaring Im XcarW as

fximmI E
Its easyto substitute eg in ear45 to obtain eq44

This equation Kaj is alsocalled the Kramer'sKronig relation
whith is tied to the aniglicity of the complexfunction and
is anotherform of the Cauchy Reimann equation See Homework

The spectral function ACar s is odd in frequency
ACar e ACaror

This oddness ofthe function is sometimes known as the

Onsager's reciprocal theorem



As to 0 and r o

FAcain or End go
where Eo in the ground state energy This is clear become

as too the particles are in the ground stat and hence the initial
state is 10

Eq ad is the same as the fermi'sGolden rule that one canderive

from it as well In QM I course we have learned toderive the

Fermi's holden rule that if we have a time dependentperturbation

scaror whats the probability ofmaking a transition from its
ground state to all possible excited state

The purpose of drivingthese spectral representation of the
response function is to easily derive some more properties of
the response function



6 Dissipation orAbsorption Impart oftheResponse function.X

we claimed manytithat ImX carn encode the energy dissipation

or absorption bythe material from the incidentpotential Here wewill

start with the fermis Golden rule to compute the change in

energy and present it in terms of Im X or w

In the presenceof an externalpotential text or w thechange in

averageenergy is n JAESCAE where SCAE is theprobability of
making a specific tradition of energy AE which we write in terms of
Hr Fermi's Gulden rate So we have

8 J of Can Kml scarol n
classicalGrabat T Tanton matrix element

iiit

T K
Theretwotermsare like the
commutator of densityoperators

J of Jana foley orw w Im X card 45

from eat's a after somemanipution



i
imaginary part of the susceptibility which is the commutator
between dimity operators at different timefond position

The fluctuation is determined bythe first partof thecommutator as

scaring fit eint LINE p duet not theaHEIKE
ScarD is oftencalled the s of q and w or thestructurefactor

Slaw is actually a measure of the scattering cross section for
external elections x rays to scatter by waverector q andEntity w
Basically we are compiling the scatteringprobability for an electron to
scatter by the external election photostat we impart on

This is differentfrom the susaftittywhich means theprobabilityof
energy absorption

Scattering cross section in computedby the Born approximation which
involves the scattering probability scatteringangle and some phase

factor Structure constantdoesnot capturethephase factor so its

like scaring I019W when o n theScattering crosssection



Now employing the spectral representation analysis as we didbefore

we obtain

starw É Im12m15car0171 e Ben Scw Ent Em

47
In anotherway of saying the energydissipationmeasures

the

residual energy loss after subtracting the probabilityofenergy
emission from the probabilityofenergy absorption Butdissipation
measures only the probability of energy emission for w o or the

absorption for who This is like as the X ray Imention in
incident on the matter its energy is lost by W o and momentum

is lost by a o compared to the rejected X ray mention Then

this energy and momentum is absorbed by theelectionwhichis
now in its excited state If the outgoing photon mention

gain energy who then this additionalenergy has come from
an election being moved from its excited stateto a lowerenergy
state

In X ray scattering Raman Scattering neutron scattering etc
me measure the structure factor scar w



8 Fluctuation Dissipation theorem ref P Colemanbook
chapter8

The fluctuation dissipation theorem we may have encountered

knowingly or unknowingly in other context such as in probability

theory andfor statisticalphysics solid state physics and so on

Dissipation is lila friction resistance diffusion and energy
absorption dissipation in theabove concept And fluctuation is like
noise the random imitation of some quantity in time How

some random variation affect theentire system in a system where

all degrees of freedom are correlated and hence lead to absorption
dissipation of energymainlybut can be general otherwise in the

system
Since we havealready computed the dissipation part inew45b

and fluctuation in eq47 now by relating them we obtain the

famous fluctuation Dissipation Thoren

i

The denominator is theBosefactor no sometimes called the detailed
balance of the Bose factor

The fluctuation dissipation theorem is a general propertyof

any Hamiltonian system in thermalequilibrium This is as

fundamental as say the continuityequation for non dissipative
system



At very small frequency w 2C kBT ie BW Cl we

Wsgp _21i 49

This is actually the classical limit as the bosefactor is

replaced by the equipartition like term here In fact in
the classical statisticaltheorem one obtains the same relation

Einstein usedsuch a relation for Brownian motion description
even though the Fluctuation Dissipation theory was not

formalized by then in relating the diffusivity fluctuation
ofmetal to its conductivity dissipation This is roughly
relating how many particles will diffuse due to random
Brownianmotion to the number of particles that will drift
to the otherside giving conductivity This is valid if the
system is in thermal equilibrium

The Johnson Nyquist noise in a wire is another exampleof
the fluctuation dissipation theorem It replaces the noise in a wire

to the resistance and temperature The noise is the measure of
fluctuation and theresistance isthe measure of dissipation



II consider a forced harmonicoscillator

MI je twin t z si fit
frictiondissipation

timedependent
re noise

Fluctuation

Use linear response theory to define the

respond function X W as Klw X W few
Then compute the fluctuation spectrum sew as

the standard deviation L Kit Rio where the

average is taken over thermal ensemble Maxwell
Boltzmann or use equipartition theorem
Then show that the fluctuation dissipation theorems
in eq 49 is maintained here which gives a
relation between the force f and the friction 2and
temperature T Lff Wo 27 2KBT n



From P Coleman's book



9 9 Thefsumrut

The f sum rule comes from the sum rule in spectral line
theorem that if thesum over all possibletransitions isfixed Its also

related to analyticity of the response function

Accordingto the f sum rule the integrated spectral weight oftheresponse
function must equate tothe memberofelections in thesystem

Mathematically the f sunn rule looks like

Sidor or Im X car up I I m kn iscaro m e BEMeBE

x f do or 8C R Entem
Lining ear4553

I InkNlscarD my CEn Em
x L BEm e Ben

Now we want to go back from the spectral representation tothe
commutator algebra To do that we have to collect the 1msam

terms and replaceitwith I

1221819JIM I EnEm En Em Ln1Scar Im LmlSe mo In
Taha as Hln Enla

2m11scaro it m Lml star o n

We do thesame for the otherteam and obtain

I Ife Bem Ln scaro A Im m se go n
e BEnLn scaro it Im Lml star ol n



Iz En e BEm In 1 scaro a s e a ol n
Ln l s far o scaro A In

L car o HJ 81 9,0 according to thedefinition

of theexpectationvalue at thermalequilibrium

got
Now we notice that for any generic Hamiltonian in which

any interaction which is governed by density such as Coulomb
interaction will not contribute here because of the commutator
So we will get a generic result that the value of this double
commutator depends on the band structureonly ie on the kinetic

energy of the Hamiltonian

Lets consider the coulomb inferation Hamiltonian
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Therefore we obtain the universal relation that

µdrrInX1aD
Rd ED

This is the famous f sum rule for the response function The key
feature of the f sum rule is that it isuniversal dependingonly on the

non interactiondispersion or the sum over the bare energydifference

at this q rake EGenter and the bare electron mall m and the

number of election in the system The relation remains universal

for any density density interaction one font

Physically what this relation implying is that as we berturbthe

dimityofthesystemwith some energy w and at some warevectoror electrons

get excited across the fermisurface and if we sum over all such

excitations it mustequals to the total numberof electrons in thesystem

something like the total numberof excitations that is possible Its

only the Fermi statistics thatmattersforthe scatteringprocess not the
Coulomb or any other interaction that commutes with theduty operator
at that g rector

The f sum rule is also a consequence of the Kramers Kronig
relation which is to dowith theanalylicity of theresponse
function From eq 499
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Now take wa a limit In to To binomialexpansion

How Imx is odd under or a or as we saw before so the first

term vanishes The 2ndform contributes as

Xcar n two Idf a Imx law

Hmdwan feet wpm wi 4ffn
This is exactly the result we obtained in the non interacting susufthity
at woo and also forthe 12Pasusceptibility for w Ufo limit
This is an exact result for a closedsystem which does not violate

causality that the total absorption in the continuum is related tothe

plasma frequency

the same sum rule is obtained for any otherresponse function
Such as mention scattering spectrum optical conductivity
Through optical conductivity which is defined by the current
current communtalator also relates tothe Plasmafrequency
through the optical f sum rule Homework


