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Phonons the quantized particles of vibrations here latticevibrations
is known even before the formulation of the quantum Theory The
earliest topic of phonon that we still study is called the
Einstein phonon that Einstein considered as collectivevibrations

of atoms in 1906 that fine it was not called phonon butonly
wave to explain the increaseofspecificheat with increasing
temperature Looking backfrom today the Einstein phonon is
analogous to the plasmas that we studies for electron gas but
here for ion gas which i caused by the collective excitation
oscillation of ion dently at some characteristic frequency which
is determined by coulomb interaction between ions and its lenity
On 3D this is a finite frequency oscillation and does not
have any dispersion But a material has continuous valuesof
specific heat as a function of temperature and hence the question

of how does an insulator er no contribution from electronshere

storepetrify at any energy if there is only one oscillatormode
in a material

In 1912 the Debye model was developed which accurately
explained the Cx n t behavior at low temperature is an

insulator Deyeassumed the ionic gas as collection of limple
harmonic oscillators but they are confined in a boxsuch that
it has a highest frequency called the Debye frequency

According to the Debye model the ions vibrations produce
collective wave with frequencies wea Us 9 where Us is the

sound velocity This is like a black body radiation except
here the frequency is eatoff below a characteristicfrequencyWe
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called the Debyefrequency which is related tothe highest
wavelength possible in a box of length L ii Wp Us 3
Above this temperature the solid cannot store any further thermal

energy and hence specific heat becomes constant in temperature

following Dulong Petit empirical law For such a dispersion
we can simply use equipartition low to compute the internal
energy as E Ei mi where Ni of oscillatormodes

excited at a temperature T in the degrees of freedom whichis
3 in 7D So we home Ni n Kat Eachmode carryenergy
Knt Hence E n ta and a Of lot n TJ

On addition to spefic heat behavior duetophononmodes

specifically in an insulator phonons also takepart in energy
transport called thermal conductivity They are especially important
in systems such as in computers to allow heat transport wrkont

any electrical current Electrons
carry both

electric and
thermal conductivity whilephonons only carry heatbat no
charge Generally election's fermi velocity ve Us cube Us isthe

sound velocity of phonons in a metal Hence electrons

dominate the thermal conductivity in a metal The
Wiedemann Franz law is o LT where k o are

thermal and electric conductivity and I Lorentznumber

f Kale is a universal constant so in metals where
phonons are not important the Wiedemann Arant law is

obeyed



There is another important materialsproperties of present interest
called the thermo electric effect in in general a

conversion between the electrical current and temperature

gradient This includes three main effects Seebeck effectwhich
creates a electrical voltage difference from temperature gradient
Peltier effect which drives thermal currentdue to an electric
current and Thomson effect which produces reversible healing cooling
within a conductormetal when both electric current and temperature

gradient are applied To quantifythe thermoelectricproperties of a
material a figure of merit is defined as f called Zet T

It ZT
0 1

where o th are electrical and thermal conductivity s 5the

Seebeck coefficient T temperature

Thermal conductivity has two contributionsfrom electrons andphons
also magnons in magneticground stats while electricconductivity

only comes from electrons electronphonon scatteringplay an
indirect role of reducing electric conductivity Formany purposes
we want to enhance It is we want to enhance electrical
conductivity dueto thermal gradient but at the same time reduce
thermal conductivity Forthis purpose we need a metal with

phonon degrees of freedom being frozen like a glass



It the phonon's oscillation amplitude becomes larger them some
critical value compared to the lattice constant thecrystal solid
can melts This is called the Lindemann criterion formelting
On the other hand the anharmonic effect ofphonons can expand

the lattice called the thermal expansion

Finally An electron phonon coupling gives a lot of

interesting properties of materials Electrons can scatterfromone

k state to another by transferring momentum and or energy to

phonons Such process canine renormalization to election'svelocity
and effective mass hence the electron's have finite lifetime
and resistivity As an election scatters via phonon it reduces

the localchargedensity to an effective positive charge cloud which

further attracts another election This gives an effective attractive
electron electron interaction which gives rise to thesuperconductivity

Finally Shing election phonon couplingproduces a

board state of electronand phonon called the polaron
furthermore election phonon interaction also changes the

phonon dispersion As we integrate the election's states we

encounter the same fl Make function that we saw in
the election liquid chaffer The singularity of this function
at FED causes a singularity in the phonondispersionwhich
can distort the lattice This effect is called the Kohn

Anomaly



71 EinsteinPhononiDensilyosallation

Let us now go back to chapter1 where we decouped the

nucleons ofcharge Ze or the ion nucleus and core electrons

ofcharge to part from the electron's Hamiltonian oning
He Born Oppenheimer approximation as

EnETE III ÉÉI YCRI A E YCRIRD
e

If we proceed with a Hartree Fock like stale forthe ions and
assume plane wave solution'Ithettocomfort the RDA based

density density response function we will get a plasmonoscillator

defined similarly as

we f a

where we have replaced electron'scharge e with nucleuschange

Ze and electron's mass m wilt nucleus mass M and h isthe

mdious dimity
H N of nucleons per unit cell

Theexact result Einstein obtained assumed in 1906 for
his model of solid which is sometimescalledthe Einstein
solid but without actually assuming a periodic array ofatom
rather that a liquid of atom Einstein assumed thatatoms

are independentiterate oscillate with the same frequency we and

the energies are quantized in unit of this frequency
En I 42 kWe Einstein infact generalized his idea of
quantized energy for electrons to explain the photoelectric effect



to explain the specific heat data in a solid This was Einstein
another contribution to quantum mechanics o He eventuallydid not

like the modern quantum mechanics or the wave function based

quantum mechanics but he founded two important quantization

formula for energy in atoms and solids

The computation of the ex in thismodel is standard The thermal

average energy i the internal energy is

LE ÉEnNy Er whereno Bosefactor
g y

I coth Bada ya
t D fat

Thisgivesthe specificheat
Cx Off age notary e

Bwe

This results gives the exponential rise of
Éiex with temperature as seen experimentally

at intermediate temparative and the Dulong

Petit values at high t but completely
Iexcited 2excited

missis the algebraic T dependence rt

at low T region

So what went right in Einstein'smodel despite
now we know that its a very poor model of solid

The reason Einstein's model of Wendt oscillators
at a singlefrequency worked in the same reason that there

is a Plasmafrequency forelectron's liquid which arises from
the mean field theory within the RPA method Within the



y
mean field theory the Coulomb interaction decouplesinto an
independent electron model seeing the otherelectronsproviding
a mean potential energy to it In one of the homeworkswe
also learned that weltin the mean field approximation i

s o 467 the coulomb interaction extorted on the independent

electron appears togive a constant restoring force and hence the all
elections despite being independentto eachother collectively oscillates

with the same plasma frequency In what follows if the

Einstein model has to be right at high energy the
coulomb interactionpart in eyes should also provide a restoring
force to the nucleons Indeed this turns out to bethe case as

we will show below

Then whatwent wrong in Einstein model that it failed
to reproduce low T behavior of Cx

Because the Einstein phonon energy is quitehigh it takeslarge
temperature tooccupythis state But cent3suggesttheremustbe more states

belowwe The continuous translational invariance ofthe solid
as assumed by Einstein that atoms in a solid are randomly
placed without any periodic boundary condition was the

problem in the Einstein model In 1912 Debye generalized

Einstein's model to a periodic lattice and obtain a

linear dispersion W N I V59 as in photons but with
sound velocity vs Kc These are called the acoustic
phonons At high energy and small q values ie large
distances the periodic lattice constant is negligible and there
one also obtain Einstein phonon like mode which is
called the optical mode



FI Debzemadil

Debye model is similar to the blackbody radiation case of
photon but her for sound waves or phonons As the alums are

in a box of fixed light t so the vibrational waves have to
have nodes at the boundary This makes the wavelength
to be quantized as Xn 22 N N E From IA deBroglie

relation we have tone h an torn where gn are thequantited

wave number Assuming relativistic relation for massless phonons
we get Ent Paus vs a soundvelocity

t usan

hit n
Fw n 141

This alsogives quantized energy in units of a fixed frequency
w Tosk much like what Einstein assumed Buthere
the frequency w Le we so these phononmodes can be excited at a

much lower energy than the Einsteinmodus Moreover there is a

minimum wavelength possible in this box which i Amin 221N

where N is the number of unit cell atoms in the box Thisgives
the maximum number of phononmodes that can be excited in
a solid of N atom in N f in 30 it will generalizeto Nx Mn Nz
or BUT for N atoms This upper cut off onthe frequency
forphonon in a solid is called the Debyefrequency Wp and
the corresponding temperature in the Debyetempaten TD which

represents a characteristic temperature by which all possible
phonon modes are excited in this system These two factors

make the difference in the Debye model and we have an



algebraic relation of Cy n Td de dimensions in a solid
Proceeding similarly we hare

LE É En NBCEn

Now sincethe summation truncates at finite N we cannotdothis

sum Onthe otherhand since n i very small comparedto N we can

convert this sum into integration I Sid LasIdsa where
the maximum value of q is calledthe Debye wavenumber chfined
as a p

4 t then we have

E effy radar aries gig
ga us Tau S de

Define a pus9
no PUsNp

Tektitegrad Dad
Because x is dimensionless parameter
this integral limplygives a number

we define the Debye temperature as

To AWD Kp n Famille

Then we have
LE an Rpt It STIFF du

STPT

3T Dz TAIT ED
And aN tDt Dictolt Eijidy

fb



Therefore Debye model correctly predicts the t dependence of
the specific heat upto TD and above it it smoothly becomes

exponential to the Einstein result before it saturates to the

Dulong Petit value
To capture the entire phonon spectrum and thespecific

heat result we need a better model which captures the
acoustic phonons as obtained by Debye and the optical
phonon as assumed by Einstein what is missing is a

periodic boundary condition on the atoms vibration Then

to compute the sound velocity us we wehave to go back to
Ear and obtain the restoring force accurately



71 Chain of atoms with periodic boundary condition

We improve on the Debye model by putting the atoms in a

periodic lattice and allow them to oscillate Its defined as

follows

of X Imam mn

The equilibrium positions of atoms are in a periodic latticeof
unit cell length a si Then the atoms oscillates around it which
is governed by the Coulomb internition between them Now we will just
model this as the oscillators are connected to each otherbyspringsof
spring constant K Therefore He Hamitonian is

it fifit I k Mi nie k ni ni p to

where Mi are the displacements from the equilibriumposition
in Ni Rit Mi so bi i fi
In thiscase the atoms are not independently vibrating rather collectively

vibrating The frequencies a energy in quantum theory are thecollective

normal modes of Hamiltonian that we also obtained in classical
mechanics by solving the equation ofmotionofthe corresponding
equation of motion

One ofthe frequency we obtained in classical mechanic was w o

Therefore there exist an infinite periodoscillation which is like a

permanent translation of the lattice This is expected to survivehere
became a permanent translation of all thealums by a constant

value hit Mi ta does not change the Hamiltonian In otherwords



the Hamiltonian is translationally invariant and it does notcost

any energy tosimply move the entire lattice by a constant value

This is the logest wavelength or the shortest waveractor allective oscillation

so we do expect a w so or Eso phonon mode at q o

There there will be other shorterwavelengthsand layer
wavevectors and corresponing frequencies and hence we obtain a

dispersion relation way Unlike in the Debyemodel wherethe

dispersion relation in sharply cutoff at the Debye frequency we
in a periodic boundary condition we should have a dispersion

A periodic function which should reproduce a linear dispersion

such a dispersion by Fouriertransforming the positionand
momentum variables to the momentum space

Pj te Jeath e
B

Wj I faze
to Ri

ta

pg fi JI ki é
ia Ri

g req t É us e iori es

T This Fouriertransformation may sound strange as we often
take a function in position space and Fouriertransformto its

conjugal momentum space On the otherhand here we seem tobe

Fourier transforming position momentum in realspace to

position and momentum in the momentumspace In fact Mi p
are considered to be independent fields defined in thepositionspace
denotedby s and formertransformingthem to the momentumspace
denoted byK In fact Mi Pj are not completely independent



fields they are related toeachother by the canonical commutation

relation Mi t I it Sii Hq log it 8g gl J

In the Fourier transformations in eqs7 b we note an import
and factor Pj us are Hermitial real fields but onthe

R A's in eq a we have the complex functions e 9 Ri Therefore

to ensure hermitcity we impose the constraint PatPta and
Uk 4th sometimes one write pi ft Ee Pge N't kgéio
which is to say include the hermitian conjugal field also
Then substituting eq in ear we diagonalize the Hamiltonian

A Eg Itai't tmw'q1ua s

Tatya harbor

where wa TE 2 sin off

we can define the usual creation and annihilation operators

toophonon in the momentum space as

a q fog U qt if Pa where la oscillatorlent

For
af fear nor fi ta ga

or uq Ig alatau Pg Ee Cata ad 195



This diagonalize the Hamiltonian as

A twalafaq t's fear at Sad

This is similar to what we said at the introduction of second

quantization that we introduce an oscillator for each stale lay

we recover the Debye result in the longwavelength q o

limit which gives Wor I Kus 191 when Os 54in

Warn 191

117kg man

on a lattice the phonon has a welldefined bandwidth of
Wgeo to Wa 2 TIM This contains N number of phonon
modes as possible in a lattice of length L N la As
the temperature RB T n wet n reached there is no other

phonon mode to excite and hence the specific heat becomes

constant In Debye theory the Debye frequency is defined
when the linear dispersion accommodate N modes clearly
Wp Wet in a solid



Acontcandyticalthary

If we have two different atoms A B in an unit cell then
there is expected to be two phonon bands with one of them

remaing
as gafless acconsfic mode and the other one a

gaffed mode called theoptical mode the origin of the

optical mode is similar to what we saw in classical mechanics

that there is one in phase vibration acoustic and another
ont ofphase vibration

o oo
NA MB

ten Fermat
iii iiiiiii

i always one acoustic mode guaranteed due to the
translational invariance I is if we move all atoms by a

constantvalue the system remains invariant The remains
G 1 are optical phonons

The optical phonons are named so because they can beexited

optically
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Higherdomeng

As we go to higher dimensions there a a displacementfield
u for eachdim pre 2 dim and ateachlattice position i c 2 ix

and a corresponding conjugal momentum field P More

generally Ux displacement field along x many not a functionof
se only but no etc especially in the case of lattices whose
primitive directions one not 900 toeach other In that case

the spring constant kin will also be a tensor and we have

to diagonalize it This gives us eisenmodel called the

polarization mode as in the electromagnetic field Then

one has longitudinal and transverse modes for vibration

along and perpendicular to the direction of prolongation so
there is one longitudinal mode and d l transverse modes in ddim

All of them are gutless acoustic modes andthey are denoted by
LA and TA for longitudinaland transverse acoustic model

If we have n distinct atoms per unit all in a
d dimensional lattice there will be a total of nd phonon
bands Among which d acoustic phonons 1 LA f d l transverse

and n d d optical modes opticalmodes are alsodistinguish
as 10 to for longitudinal and transverse optical phonons



71 RealisticMochlofPhonons

we can now derive the lattice springconstantfromthenucleus
nucleus coulomb repulsionfrom ear is We denote the lattice
equilibrium position as Ri and thedisplacement from it is his ie

EI 4 RICO RICO This is conceptually similar tothe mean field theory
Now doing a Taylor expansion of the ion ion Coulomb interaction we get

µ
Ein at us onVCR RjD VCRY RICO I

RiRj o Goa
where we have set the firstderivative term to Zen became

the potential energy has a minimum at theequilibrium position

by definition of the equilibrium position From now E simplydenotes attoo
The spring constant in a tensor and denoted by DpwRIKI

Din ri RI Jifu p to cost

The Fourier componentof this springconstant is called the Dynamical
matrix

Ruvo E.g
DmvCREED

e III ca

awe to lattice translational symmetry Dan does not depend
on the absolute positions Ri I but their difference R Ri Ri
So its Fourier componentonly has one waverector 8

Pinot a symmetric tensor Dmv Dupe and in even functionof
tri Fil



Eq Cia is like a fightbinding model in the sense that Dmv
is like the tunneling between the sites at Rikki we have

to sum over all equivalentnearest neighbors which depends on the

specific symmetry of the lattice Finally we haveto subtractoff
the contributions from the same site CREED This gives

Dmv N I E Bo R e idk e it R a

Ty Bauer costar y
2 Ip Dmv R sin É Il b

y
so we get a linear in a term from the tin function
To see this more clearly one should go to back to the Hamitonian

and drive equation of motion

17 E É t E V CRI E I RI RIMadreUVCRD
Then define the Heisenberg eq of motion

it Mpe RI UNRI A 27 In PJ UNRID Pj
it PJ M

it Pj Pj A EDMCRI RD Pj Mn REDMOND

i k I Dmv CRI Rt Mo CRI

o vim Re h Duo Re Rs Uo Cri fly

I DmvCRI Ur Roti t UuCR 1

If we fourier transform on bothsides
2 UN RT

we set end b I



Dmv in a tensor and ups are components of thedisplacementrector

Therefore the equation of motion is an eigenvalue equationamong
the three directions of vibrations Generally the eisen directions

of vibrations may not be aligned along the cartesian coordinates

of the reference of frame or even the bond directions There are
also pointgroup symmetry rotation reflection symmetry which
the eisen directions have to respect considerations of such

pointgroup symmetry dictates the irreducible representations
of the eigendirections and one has Aig Arg Big Bas ele
modes which are used in the Ramanscattering data I

There eisen directions are called Polarization directions as

in the electromagnetic fields and we denote them as Esco
where S 1,213 are three eigendirections written as a

linear combinations of Mpca Since DanCat or a

real symmetric tensor we can diagonalize it by an

orthogonal matrix say O and the eigenvectors Us are obtained

wring O
o f ca OT key 129

UH Osm Us a 12b
MT
Eachcolumn Is corresponds tothe polarization

Kea is a diagonalmatrix whose components ks giftstutors

spring constants for the vibrations alongthe polarization direction

and obey
a us a Ks a us a 124

Es are orthonormalized as Is Ca Is a 8s s s s 1,213

Im and É'scar Esea



on this eisendirections notation one would have a longitudinal

acoustic IA mode and two transverse acoustic TA modes

The frequency of Phonons are fularization defendant

Wsca Fife I sin1971 c

I t Us 9 for qa 24

where us are the sound velocity for each eisendirection

Its value depends on the orthogonal matrix 0 and hence
the details of the crystal symmetry

As we have 2 or more distinct atoms per unit cell the

dynamical matrix becomes Dian Ri Fi where him stands

for atoms and M V for spatial dimensions One can then

define a Nx d dimensional vector space for uYu where N
stands for total number of chisfief atoms and d dimension
This gives Nd XNd dimensionaldynamicalmatrix which
can can be decomposed according to the corresponding Point

group and space group symmetry of the lattice we will

eventually have d acoustic branch of polarization and
a d transverse branch Those who work on Raman and
mentionScattering experiments need to know all thesemodes

and symmetry in details We will not go into details of
such multi atomic phonon case Now density functional theory

CDFT codes can compute these phonon dispersions quiteaccurately



The after Fourier transforming the mchons Hamiltonian

to the momentum space we have

A I III Iq gv a Malan c o
or or

Is Viva ri r
ka

and acting the orthogonal rotation 8 in the entire Hamilton
we obtain

As I PsCofEs ttzEsMwstatuscasusc.a
constant

443

where the polarirization rectors are the displacement field
and Ps are the corresponding canonical momentum

By defining phonon creation and annihilation operators for
these directions as

its Ca É ascastasted Es lskfÉwaj

I.gr

scaJ Caste a ascale
115we obtain a diagonal Hamiltonian

H It Wisla antsAos 1 46
Tisa number operator

Es a are called the normal modes they are the extendended

or collective vibrations of all atoms in a solid

The Eo IghtWs 9 is calledthe zero point quantum enemy
ofthe lattice while I Vioneri ki gives the classical energy



Thecalculation of thermodynamic quantities specificheat
follows the same as in the Debyemuch except hire the

momentum integration is done for a periodic functionofWsca
for ore FBA rather than a linear function Wgnuserand

fitting an artificial cutoff Debye frequency temperature



71 Election Phonon Confting

Next we consider one of the most important interaction ie the
election phonon coupling of a lattice he election phonon coupling
causes many properties of a material such as band renormalization

of elections transportphenomena charge dimly wave and
superconductivity
The electron and nachous interact with each other via attractive

coulomb interaction which we generically writeas

Vee E KI CI RI

Now again expand RI It RICO II t
in a mean field

like theory and keeponly the first term in the Taylorexpansion

Vee I Ve ICri FI lo I T Ved É CRI t O u

Tae ha
The first term gives the static coulomb repulsion between election

with the nucleons and is already modelled as a background

uniform potential in the Jellium model or as a periodicpotential
in the band structure I fight binding model The second term

corresponds to the electron phonon confling of our present interest
We only focus on the electronphononpart at ri c we drop the

index i and pretend its a continuous value and put it back when
its not obvious



Vep 5 E E CRI F Ve E R 17b

The Fourier fromeformation of VeeCr is

Vee E E Vee a e it t Isa

me totalnumberof
Them TVee Ig Vee a e it T Gsb ar values

Now we see that q is not restricted to the Brillouin zone because

Vee i is not a periodic function of the lattice Therefore we have

to split Itn q summation to a periodic one we first Btand

buses
Eq feat E

Then plugging er 184 in eq 173 we get

Nepal I
acre ate eilat EEEx Vee Eta

e ÉE

I I eitrth Iota I Teed e i a E

Ing
ed

I E e data T Tica Eth else
x Ver Tata



Next we express upelt in terms of its engendirections usfog and the
frolarization unit rector EsteCal and express us in terms ofthe
creation annihilation operators eyes as

Menlo Is EmsUsCar

Is et Ilya ca taste d Csa

and substitute in eq sc to get

rep o I I
ei titifescg.cata lascarstasteas else
TreeCarta

Then the election phononcoupling Hamiltonian is obtained as

Hep I rep ri

I I I earth rest oftheterms

Sorta electionsduty
Actually we have alreadyused theplane wave basis inthe above
Fourier transformation and now retrievingtheelectron densityfromhere

Recall the election dimity S r I 8 Cr Ji to that

s ca E e Nt then expressingthe dimity in terms of the field
operator 8 r Yter ter and doing a Fourier transformation of
the field operatorto themomentum spare we get Yer s f e k rdron
This wary we write forth Erguttata o Cher includingspin att



Then we get

Hep I I 4 fettered era Ecat equalscattasted

fayTat
g scuta Ehetion phonon Matrixelement or Electionphonon

coupling constant Rememberthat the E P couplingconstant

depends on the phononfrequency via lsCarl Finglas
9scar remains Hermitian since w s o Ws ta and ls a lsGad

Ve I Ca VeeC a and É Ca Es ta H W

IsCa WsCa lscat as a are all definedwithinthe first BZ
while 95859 9,193 because Vee W Vee Wta So all Bts
contribute tothe e p coupling Typicallyone has a long range
interaction VeeCa

4 7 2 or take a screenedCoulomb interaction

Yukawa potential Vee a É Éq Then the e pcouplingis

gas i.INT FiZEIaIVETEg iEEEwT

The scattering to 9th er outsidethe firstBZ iscalled the Umklapp

Scattering They are generally Small and one often neglects Often we

simplyset 9 0

Anotherimportant thing to noticein the e p coupling is the term
EsCE vectorgivesthedirection ofpropagation ofChi phononwhile

I s gives itspolarization So duetoAn dot product only longitudinal
component contributes or dominate in the election phonon coupling



Therefore neglecting the Sum over h and S we simplywrite Hep as

Helo I II I 9 Carta Sqn as a atty

IA.pe EgealatqkolaqtataleI
renren.to

eingaIEscactered.c

annihitataonet
initial stat IN and goes to anotherstate Ikea via

interacting with a phonon and ItrScatteringamplitude a gear
The phonon part is not written as a phonondensity ateaw as
we saw in the election election interaction fact rather its
at ta which in the displacement rector of the lattice The
elections momentum is absorbed gained by displacing themelons
and rice verse In this scattering process the electron number

remains unchanged but fhonon number changes This is
all right as phonons are bosons and hence its number is

not conserved In the electronscatteringprocess it can create or

destroy a phonon of opposite momentum so it a coherent

superposition of the two cases
with Feynman diagram we often define is scattering

process as follows

gas 77ha raffia
Phonon Absorption Phonon emission

Its obvious that theaboveprocess is possible if k state lies
below the fermibird and Ikeat state above it



tightbinding
The full aHamiltonian for elections and thoron in a lattice is

A E ECK GotGo I v19 Gta Gigo Gio GoRio neo or rye
I tweg at a q E g a agoGrolaq t Eat EViner

where a Summation over the phonon polarizations are kept
implicit
The Hint in the electron election coulomb interaction which
we often approximate by the Hubbard model Hubbardmodel
with electron phonon coupling team together is often called the

Hubbard Holstein model In this chapter we will mainly
ignore the electron electron interaction term



stiffen me set out to

syzygminderottachattrisEck GotGo I twea at a gHE Tao
Tao

E gca Aq Gro aq af 622

if
The first two terms are individual non interactingterms while the

last term corresponds to the electron phonon couplingwhichmakesthe

problem not exactly solvable we will try to solve it in the
usual methods we have learned so far er mean field theory and

perturbation theory we obtain a gamut of interesting phases and

properties that we will discuss now

Wealthy There are two mean field average we candefine
here for electrons we define mean fieldof

bi near operators etc became in the ground state the numberof
electron remains conserved as electrons can not be created destroyed

in vacuum So the mean field average of electron density
operator hatewar Cho gives a number which does not
affect the electronic spectrum It only changes the phonon spectrum
as

wears at aq gear a aq total
a pet Y

Now recall that the first term comes from p't stand and termfrom

N Hence this mean field theory only shifts the eequilibrium



positions of ion At gao this is just a constant shift which
does not change the system due to translational invariance Forauto
one would get position dependent shift of atoms of course
they are higher energy status as a periodic lattice always
has lower energy at hast at low temperature

Another interesting mean field theory for phonon that
we have not talked about in this course Because phonons are

bosons and boson number is not conserved in any state so

one can have mean field values of

Laa Ng eider

L at ing e ioa

where ng number of bosons in theground state and

Dq is the phase coherence As we know that the number of
particles probability duty and the phase are cannonally
conjugate variables and have an uncertainty relation
An AD I th So if we have a state with number of particles
completely arbitrary its phase is completely Kroon This is

what happens in the Bose Einstein condensate state
and also in superconductivity Sometimes Bose Einstein

condensate state is alsocalled the superfluid state where
the name came from the liquid He context which goes to
a superfluid state at zero temperature instead of a

solid



Coming back tothe phonon condensate case the
condensation happens at the lowest possible state which
is q o for the acoustic phonon for optical phonon
the lower energy stats happens at finite or and something
interesting can happen so the phonon part becomes
Zero as war to The electron phononpart cheonflis as

Hep I 9 To 2 us to CatoCho
k o

Therefore this simply gets absorbed into the chemicalpotential
of the elections

Therefore nothing interesting happens in the mean field
theory to the electron phonon coupling case We have to

go to the perturbation theory



Perturbationtheory it lot of interesting physics happens
in the and order perturbation term

that we now embark to study As usual for a perturbation

theory we need a small parameter

For gear CL Kal and
Wgalgilitiginemaackhitenation phonon coupling term
treated as perturbation Here the first order perturbation
term may vanish as well be discussed below But in the

2nd order perturbation theory we will obtain corrections

to the electronic spectrum en St Eales and also toAn

phonon spectrum wear t wear Egrets which includes shift
in energies due to read partsof the self energy as well

as life time brodening of status due to scattering Such

life time is used in the calculation of the conductivity
in the Derude Boltzmann transport calculation in Annext
chapter

More interestingly we will see that the 2nd order

perturbation theory generals terms which can be singular

canninginstabilities such as deformation Peierls

distortion Jahn Teller Distortion Ultrasoundattention Kohn

anomaly CDW superconductivity and many more



I n

phononcoflngi1gcoD1771ECkJlandlor1gcas1yytwCasl.S
uch a strong electron phonon coupling limit is rarely

happens especially having a coupling layer them electronic

bandwidth is very rare But mathematically we can solve

this problem ferturbatirly by treating the electronicand thoron
parts are perturbation One of the interesting phenomena that
happens in a bound state of electronand phonon which
is called the Polaron



71 Weakconflingtheory

In the case of weak electron phonon coupling we have the

non interacting Hamiltonian 17 He t Hp In which the electron

and hole parts decoupled so the total wavefunction is a

product state of the electron's part which is a Fermi sea
and the phononpart Mi Na

14 7 1 9 17 Mattos s

caTate rodastateHartrafockstateffervnised

for fermions for bosons

E IT Ik nay
no Raffia

Firstorderferm The first order correction to this ground
stat vanishes Became Hep term

destroys an electron in the fermi sea and put it outsidethe
Fermi sea by either absorbing or emitting a phonon

Therefore it gives an particle hole excited state and
the inner product of the excited stale milk the groundstate
a Zero

E LYep Hep 41 7 0

They excitedstat
This process in diagramically represented as

YEE



Secondordistermst Forsimplicity we denote the election

phonon product state as I k not as
follows I k na atcattalo Anelection for in theFermi sea

ks ke and nq thonon in it 19
state

Ikea To Arta at to An electron is excitedfrom

Keke to above the fermi level to KID ke by creating
destroying a phonon for ha natl or no 1 in the la state

we ignore the electronspin o and the phonon polarization s

for simplicity and we can insert them back in equation when

required by demandingspin conservation in a scattering process
we will ignore the Umklaff process and onlyconsider we Bt waw

Then the 2nd order perturbation term becomes

iiRLke NEBt Rea

where ng n I 1

Now with the modified perturbation theory we learned
we can even obtain off diagonal term as

Hey I Lk notHep ka na kid nil Hep 1k nay
k k

kin's ke Coinciding

É.in

IIj

643



Awar
i 1

forsingle phonon absorption the
t

i i

the phonon frequencywar where or

Here we create a particle hole

excitation by absorbing emiting a phonon

There are two processes here phonon absorption destruction causing
momentum gain tokeas and phonon emission creation causing
momentum loss to Ik a we have to sum over bolt such process

This gives an energy correction to the electronic band structure

at the same momentum In analogy with the fermi liquid
theory we will denote this and order energy correction as

self energy correction In End Therefor after the
scattering with phonon the electronic band structure is
henormalized as

en En EM In
E g when I It Egl

t

4 dueto
electron phonon

kink in
1 slope atw



The phonon renormalized electrons are called polarons

Polaron energies are renormalized from the bare electrons

with its fermi velocity ve Evil and effective mass
ma me MI E The electron phonon coupling is

active for the electrons near the Fermi level with energy
1k Galt twp Hence at ka sp n two on both sides of
the fermi level the electronic dispersion chases abruptly
from the polaron dispersion tothe bare election and hence

shows a kink or break in slope in the dispersion This

fink n directly observed in angle dependent photoemission
spectroscopy CARPED and also in the density of states
measured in Scanning Tunneling Microscopy Sta experiment

So folaron in a type ofquasiparticle except here it is accompanied

by a cloud of positive ions around it
As an electron moves the nearby
positive ions are attracted towards and Éo É
the entire charge could moves to

t t t

together Because this charge cloned

results in an instantaneous polarization of
the lattice locally this quasiparticle is called Polaron This is a

fermion
The wavefunction of a polaron can be obtained as thefirstorder
correction to the Blockstale as

in in Ethingifftingthennis



The Feynman diagram for this and order term is

we can now calculate this self energy term bysumming over
both the phonon emission and absorption terms as

I m

since Ep is a correction to su the Lkl x 1127expectation tobe omitted
5

As we did for the response function in the lineare reffiinse theory

for the integral wq to converge we add a complexdecayterm in
This makes the self energy complex with its imaginary part
corresponding to the inverse of the life timeof the electron in its
state Ik Using the formula

30 in
p i a sexy

we obtain the lifetime of the quasiparticle as

I Im In I KkangelHep kina 8 EuEna Kwa

Cart a 96
The same expression can also be obtained from the fermi
Golden rule



The numerator in the self energy

I Lk a natl Hep k na 19g f cen l fCeu a natural

implying that the initial state Ihs mustbe filled and the

final state 1h 9 must be above the Fermi led The

scattering starget is proportional to Igor as also obtained

from the Fermi Golden rule
Then plugging this in egos we obtain terms like

fan C feed Ns Wa En En a thud Crt 9 This is

expected became particle hole continuum is the extitation spectrum

of a non interacting electron gas

The denominator can be expanded in the small q region as

Ea q Ent YpfIf I ku or

Then the resonance condition yields

En En q two 2 A Q Us 9

Therefore in metals where the fermi velocity UF 77 Us the

renormalization dueto electron thoroncoupling is strongly
suppressed



On the low temperature region T heTD the lifetime ofelectrons

due to electron phonon coupling scales as 12 T which

essentially depends on the number of phononmodes excited
at a given temperature This temperature dependence is slower
them the electron electron scattering one Ye n t which
eventually dominate at low temperature

At T TD when all phonon mods are excited we get
Ye T There results one reflected in the resistivity vs

temperature behavior as we will see in nextchapter



KohnAnomaly.Peierlsinstalitith
eq 249 we computed the correction to electron's energy by

Summing over all the intermediate states producedby the phonon
momentum Now we want to compute an energy correction to

the phonon dispersion by integrating over the electron's stats i
integrating out all the intermediate 1k States Exporting eq240
we get

h Wat Ethanol

it.is i tE.iRIKE
KIWIKE

a mixers
as

where Xcarwar isthe hindhared susceptibility we definedbefore

This gives a complex phonon selfenergy to the phonondispersion

Awp twp gq X orway 293

we see that a phonon spectrum Feynman Diagram is
creates and destroys particle hole a

Éiexcitation in the electronic spectrum

Ep Gathcarway



The life time of phonons is obtained by the imaginarypart
of the self

p D zig again caring Cd
which is directly obtained by the particle hole continuum Therefor

a phonon state can decay into creating a particle holecontinuum

and vice versa The decay of the phonon is called the
Ultrasound attenuation

Generally the phonon frequency two C2 tutor 91 In the

low phonon frequency limit the hindhard susceptibility become

X car war o did F Mare

where the f function was introduced earlier

FCK I FE h if for a 9 2ke

This function has a figularity at 9 2he Thissingularly
tranitalis into a singularity in the thoron dispersionwhich is called

the Kohn Anomaly war

I
Iif i

i

I



This anomaly is very strong in ID due to log divergence in Fand
causes a destruction or melting of the lattice In fact when
2Ke 9 2 ri the Kohn anomaly occurs exactly at half ofthe
reciprocal lattice vector or any integer division of the reciprocal
latticevector per se the original peridic lattice becomes
doubled in real space er become halved in the momentum

space The new doubled unit cell now contain two atomic
sites One has a charge Density wave CDW

In the reduced Brillouin Zone we can fold the phonon

dispersion which now split into two component in D

and open a gap at the zone boundary 18am do

j Take doi

The new gaffed mode in the phonon spectrum is the optical
mode which is expected as now we have two sublattices in a

unit cell
A similar bandgukalsoopens in the electronicstructure at the

reduced BZ boundarydueto the formation of the cow
state

In polyacetelene which is a CD chain of C atoms has
such a cow instability givingtwo tublattices in a unit cell with

slightly different bond length This lattice gives the famous



Su Schrieffer Haser SSH model

The corresponding cow instability is called the Peierls instability
To see that we go back to en 9

Awar hwi gear doo Fla and
Now we see that the kits vanishes at a criticalcondition

hwall p g pded Alalakh 30
above which thephonon frequency becomes negative Negative
phonon frequency suggests that theexcited status lattice

displacementhere have a lower energy than the original lattice

This means the lattice structure is unstable to a different
lattice where phonon mods will be positive This is the
Peierls instability of a con state this instability looks

very similar to the S Dw instability for antiferromagnet
obtained for the Hubbard model

we can infact obtain a critical temperature for the
Peierls instability from a God in ID On CD the f function

has a logarithmic instability obtained tobe

f e log 2 28Tfw Te Fermi
temp

Substituting this in eqGodgives

ftp 2.28 pe
hwkw94Ht0 32



B Effectiveehetionelectroninteractionfmittoniness
Now we consider the effective Hamiltonian in eq 4b as

k k i
fatten cnet.tw aIwan

This term is contrasted from the diagonal form leg 249 as

if

manana

i

In the first process we have

Lk Nal Hep Ikea not I glad aknot attaGlaar tEat
RT I k ta na

on the first case we have to natl ar 9 k k a

giving us a term Lk I Atar alk a after taking the expectation

value of the phonon part In the secondterm we get h q nor 1

q a k k ta giving us a term Lkl at Gta Ikea Bolt

terms are related to each other by a o o and since

gc a g a they both correspond to the same term



The and process works similarly To have thephonon momentum
to be conserved if the first process corresponds to phonon emission i

ki k or the and process should be phonon absorption and hence

the final state should be k tar
Theproduct of the two termsgives thematrix element as

I gig gear Lkl cuta or I k a k at catwalk's the
9 changeofdummyvariablekl qt k

In gear gear Lk
k l at a a 9 ait lEigg ya

This is actually a two body interaction term
Now we insertthe spin index as ks k o k's h o and do

thenormal order to obtain

Eq 1,8191 L ko ko
GtoGto Gitano Gr oro I k or k'tardy

The electionphonon propagator is Daftwar

a uia



Combining them together we write obtain a two body interacting
Hamiltonian I without the matrix element

Hegg I 181931211,9 Got Gio G'teal G a 63

II W Thay interaction strength

In Eu Cto Go t Phononpartwhich is now decoupled

This is a generic two electron interaction mediated by the electronphonon
coupling There is a special case of k's k which is of our

interest for angerconductivity Since En E K we get

ftp.g 180
y q IwgI

she important property of this intention i
term is that for the electrons

near the Fermi level and for
Cy smew E two the above

potential becomes Attractive This
attractive potential between electrons fondues a two elections bound

state which gives superconductivity



EW I Derive the two body interaction term by the unitarymatrix

procedure we described in the previous chapter Here

assume the S operator to be

s I gearGtaCu Aka Aq Bhagat
kg

I Delirmine Ah q Bpw by requiring that ifs Ho V20

whine to He tap and re Hep

Gi For the election phonon problem there exista unitary
transformation which makes Hest Iet Hpt constant
where IIe is the non interacting election Hamitonian bit

for renormalized elections called Polaroid

I A W search for s such that S Hep constant

ii Derive the same eq 33 for the optical phonon similar

for the Einstein phonon


