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Generally every thermodynamically extensive quantity or orderfaramelis
that we study such as number density charge density magnetization

energydenity heatdimity entropy clunity etc has an associated

current density which is defined by the deneity times velocity
of course some of the demities are related toeachother suchas charge

densityand currentdemily are related to each other by chargeé and entropy

dimity is related to heat density by theproportionality constant T etc

Generally what does that mean is that time derivative of the
density of the quantity in hand is definedby the spatial gradient
of the corresponsidingcurrent density in the continuityequation

The continuity equation is a manifestation of the conservation

of energy and momentum But as the electron undergoes

scattering with external perturbation such as impurity phonon

they loose gain momentum and or energy and hence the continuity

equation is modified to the Boltzmann equation that we wantto
drive here

In condensed matter we measure current dimity and the

corresponding response functions such as electrical conductivity

thermal conductivity to the corresponding external perturbations

in a linear response theory The conductivityof present interest is
related to the current current retarded commentator which
we have computed already in a fermionic system and arise

from the energy absorption duetoparticle hole continuum

But this calculation does not include the impurity scattering
and electronphonon scattering which does not conserve the

energy and momentum of electrons



A full quantum mechanical formulation of transport in
which we comfort the evolution of an electronic state with
a Hamiltonian that incorporates energy momentum non

conservation is difficult and requires non Hermitian Hamiltonian

formalism The Drude model is a fully classical one
in which one studies the evolution of the electron's coordinates
E under a dissipative force which models scattering to

impurity nucleus etc A dissipative force by definition
is proportional to the velocity of theelection as defined by
F X T 20 where r is like thefriction arisingdue
to collision of electrons with impurity nucleus etc Here it is

customary to express n in terms of relaxationtime t Cor mean

free path l v2 between the two collisions on average This can
be defined wring dimensional analysis since forcee mi to be

2 MI e where m is the electron's mass For an appliedelectric

field the electric force F o e E equates to the dissipative force in a

steady state which gives

e É ME I n't I I net

Then wring
Coulomb's law I o É we get

o nEme I

Z or mean free path is the only parameter in this theory In the

Fermi liquid theory and in the electron phonon coupling chapter
we argued that if the relaxation time is governed by the
election's life time in a momentum Bloch state This is captured



by the imaginarypart oftheself energy Alternatively I can be

calculated byusing the Fermi Golden rule evaluating the

matrix element of scattering of a state to another stateunder
a given potential At finite temperature the thermal energy

Kat also contribute tothe relaxation time as 2 ACKist

The Prude model despite being a fully classical model
is quite successful in the case where the mean free Galt 1 72
is much larger than their de Broglie wavelengths such that

quantum effect is negligible To improve the Drachmodel
we have to develop a quantum theory of the evolution of the
wavefunction 417 under a dissipative force this is very
hard and is under active current research Here we will

consider an intermediate route the semiclassical route in
with me will study the evolution of the occupation density
n E of elections under a dissipativeforce Occupation density

itself is a quantum operator and can be written in terms of the

field operator MCD as NID 4 6 Hers we are however

going to study its evolution as a classical probability for

occupying a singleparticle stat but we will enforce the
quantum statistics by restricting to single occupancyfor electrons
Hence its a semi classicaltreatment

If we are in some single particle eisenstadt and that
the system is in some thermal equilibrium then the occupatio

density is simply the Fermi Dirac distribution function
n fck exp Er M Kat 15 But as we apply an electrostatic



potential differencena Es Iq it gives a spatial variation of
the chemicalpotential Mers or as a temperature gradient is

applied we have T Cr To the first approximation we incorporate

the r deference in me T in the same occupation clumsily

as

her y a f rsk ext E this kata 1 la

This is actually a crude approximation in which we
assume the energy eigenvalue En remains the Same We

will see below that this approximation is valid for slow variation

of a 4T in space In fact the occupation dimity can also
be time dependent in general for non equilibrium care Then

such a distribution function flak t is called the non equilibrium

distribution function It looks strange to define thedistribution
function to be a function of both position and momentum Because

in cordmatter are often define thestatus in the momentumpace
only by the usageof Block States This definition is justified
when we use a ware packet form ofthe wavefunction notjust
the Block state

Therefore fer K D is like a probability distribution

defined in the Phase space rik The time evolution of a

number demily in the phase space was derived by Boltzmann
in 1873 or so when the quantum mechamis was not

formulated This is generally called the Boltzmann

transport equation we are going drive this Boltzmann

transport equation for the fermion distributionfunction here
in the phase space for electrostatic potential as well as with



a temperature gradient and thereby comforts electrical and

thermal conductivity due to some Scattering mechanism which
causes dissipation



Itzman TranportEqualion

In the phase space f 5kt is like the ensemble density
defining the number of electrons present at time t in a phone

space volume element d's d k around a point G K
on the Boltzmann transport formalism thetotal k a
member ofparticle N isconserved which
siren's FtÉÉ

n n
my ygpgggyygygyg.gg

Lefty
momentum space volume The factor 2 is introduced for spin
We assume that the measure of the integral d's d k remain

in variant in time This is the Liouville theorems r Liouville's
theorem is generally applicable in flat phone space and ionly
violated if the phone spaceis curved which happens if we

apply a magnetic field or if the phase spaceis topologically
non trivial or in general theory of relativity where the measure
is defined neith a space time defendant metric There the meanie

also evolves in time Here we will assume flat phonespace
Then instead of studying how the particles's coordinates G k

evolves in time we can simply focus locally at k b and

ask how the dentils fer kit evolves in time The total

time derivative of f in then obtained to be

of of 5 It k ftp Dissipation a
Diffusionterm

This is the Boltzmann equation



In equilibrium there is no net loss of occupation density and hence
the Dissipation Diffusion like term on the R its a zero Thisgives
the continuity equation But whencollisions are included the
occupation demerits changes within the volume element and the change

in the occupation deneity is denoted by 8 collision cleanly

lo results from the net inwardflow from the outwardflow
of electrons in the volume element in the time internaldt

Returning back to eq I and I
are obtained from the Hamiltonian equation

of motion É Hop and I OH of a D
And substituting them we have

of 8 8 87 flan
If Hit It on

EY.infouEgf IwEnteration term that relaxesthesystem
This time evolution of a function iimitariumsface fer kits governed
by the Poisson bracket in classical mechanics is replaced with

the commutator for operator in quantum mechanics In quantum

mechanics we workwith deneity matrix 5 147241 instead

of the occupation dimity J
There is a longer derivation of the É and I term which
can be found in the book of Girvin and Yang we only use

the semi classical result given by
I on I doth Group velocity of

day a warepacket



and tf Lorentz fore f e E Et ftp.XBcv

Gb
we are actually not goingtowork with magnetic field term

which gives stall effect However we will include it for the time

being

I

si i
Density variation

in real space in momentumspace

This is the semi classical Boltzmann transport formulaforelections
in a metal

To for only electrical conductivityColthe duty in uniform in real

space anthenfo There is also no explicit time

dependence in fard hence offo t 20 So we are leftwith
F Fat A Yaleoil

For thermal conductivity k s f has a spatial variation
due to spatial variation of temperature TCD and we have

If Of Ft
Then we have

in.tt lool I



Theh arizedBoltzmannEquation

In the next step we assume that on average fer K t is
a slowly varying function in the phase space Before the external

potential is applied the system is in thermal equilibrium
as f r k E fck fermi Dirac distribution function
the thermal equilibrium is achieved via including all the

collision fscattering process present in the system With the

external potential electrostatic potential and or temperature

gradient the occupation density deviates slowly w r to its

equilibrium valve So we define

f r k t to look Sf r k t 8

AI def can be kept for thethermalcaseTed
By the definition of equilibrium the system reached tothe

thermal equilibrium dueto collision scattering ad hence

too 0

Then from eq a ignoring the explicit time dependence we

get

I4 y
K f

4
fi a

T
Generally arises Generally theforce

from T o in f duetouniform

forthermalconductivity electrostaticpotential
calculation
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As too 0ft de 89 14 So we have

MEtofteescena
Let us lookinto how the fermisurface responseto the twoperturbationon
R A S Calso discussed in the fermi liquid chaffer
Temperature gradient It excites electrons from thefermi sea

to outside the fermi sea
En

elections Ioan has

Onthe otherhand electricfield boost the elections and hence the

Fermisurface shifts towardsthe

mind t
to

aint th



Therdaxationteappoximation

Finally we introduce another important approximation called the

Relaxation time Approximation Here we assume that the distribution

function relaxes to equilibrium one fo after a chareafestic time
8 This means

lool E fog

More generally the relaxation time should be positionand
momentum dependent I Cr k which we will consider later

clearly how long does the system takesto relax to
equilibrium defends on the scatting mechanism collision process

that the system has w impurity election phonon confling
electron electron interaction For an integrablemodel where focusing
are the eigenstates of the Hamiltonian ie H f pg

0 fortheclassical

case there is no scatteringmechanism and hence the system doesnot

relax at all Here a a

So our job below i to comfort I dueto impurity election

phonon and due to election election interaction For the two later
cases it is tempting to assume the relaxation time I is the same
as the electron's lifetime that we derived from the imaginary

part of the self energy or from the fermi Golden rule They are
often the same but there can be some difference



Bysubstituting eq toa in en b we obtain the change in
the distribution function due to the external perturbation in terms

of the relaxation time 2 as

t fRU9 EtteE o

This is anbugto the linear response theory in that the
induced occupation dimity fluctuation is linearly proportional
to the external perturbation
Once we know Y we can evalue the induced denity

and obtain the conductivity E is a parameterization of
all the interaction scattering with impunity electronphonon

coupling term in a single parameter In fact in terms of
this parameter E eq b recovers the Drude formalism In

the reminder of this chapter we want to discuss formalism
approximation to compute e



Low temperature too conductivity Recovery ofDrademodel

Fykeepnythrdaxationméas aparametiradoong
to t 0 limit in eggs we can recover the Drake model's

result for the electric and thermal conductivities o k respective

and the Wiedemann Franz law

The electrical current is defined as

I e Inti fu
e I Lik to 8 f

ekg In f fr its Lung so in equilibrium

lay
For electricalconductivity we at ft so in egad Then substituting

eq we get from en 99

8th E Tn Le É scan q
substituting this in eatin we ont

I defying In É seen m

this Éialongtitieastedcited
Because of the S function the states nearthe fermi bird contributes

so we replace Uk with an isotopic fermireloity Ve

we also focus on longitudinal conductivity in I oÉ so

we have

Jx IT Ex v7 In SCE M
Tco dens it of stalis



j et Ex
vÉdÉ
q ng as do É

C for 3D multiplyby 3 indoo and for o do

deride by 3 for average r e age
The factor of 2 for spin alsodrops ont

Int e E 11b

Therefore the electrical conductivity is oxy FEE nehich
is the rude conductivity

Similarly the thermal current is defined as

Je Len Mcn Sfa

E E in on Et E M É
K F T when k is the thermal conductivity

Yo tensor

The function CE 14Ey has a double peaked structure
about M

Effigy
Todo this integral we can use the Sommerfeld expansion



and the final result is

k 1keT kid

Then the Wiedemann Franz law is maintained as

y ld Lorentz ratio Y

Yes
On ametal

k a

Y NI



Latonya
From the above discussion an intriguing physical interpretation

of the transport phenomena emerges which is analogous to the
fluctuation Dissipation Theory With external perturbation E or

F T we have excited induced St density at a given k stali
from its thermal
equilibrium and then asking with collisions it relaxes backto
its equilibrium valve 87 0 after a time scale e

So I measures how long an electron spends in thestat k er
É in the lifetime of the election in the k stats E is finite
because the election scatters from this starts k to some other
state k due to interaction electronphonon impurity scattering
we have computed the life time of elections for the former
to process as the imaginary part of the self energy I as

Enn En

We can also evaluate I wring the farm holden rule

Depending on the scattering potential there willbe difference between

the relaxation time and the lifetime of electrons in a system but
we will not look into those cases here The relaxation time I
is often called the transport time in which an external perturbation

is applied compared to election's intrinsic lifetime



It is often useful to express loll in termsof scattering
amplitudes for some arbitrary potential There are two

Scattering process one which scatter an electron fromthe

warepacket Yala to some other warefacket Ya Cry resulting

in a decrese in the occupancy at the Ck o point in the

phase space This is the Loss term For this scattering to occur
the initial stat Hairs must be filled while Ya Ir
must be empty of War is the scattering probability
then we have

loss 81
e
n f c Wan fink t Heinie

Has
similarly the probability dimity in cremes sain for a reverseprocess

Gain ft Iggyby f4 9 win l fer k 4 firing
XD

The Scattering is assumed to be instantaneous and no

me efktfthprenonscattningdndndd.me
also assume the scattering is only happening in the momentum

space ri J F Then we have

1 cousin Ifl gain floss e

on the language of gain loss of probability the Boltzmann

equation is also called the Master equation one encounters

in probability theory



In the above formalism the thermal equi
translates into the gains to_msamfsÉeÉ
at each k k k states is

Wak folk 1 toCk Wain folk l fCk Ba

where fo in the Fermi Dirac distribution function in thermal
equilibrium This equilibrium condition which is called the
condition of detailed balance can now be written as

Wan e Pat Win e B Ed 133
o

ftW 1 For elastic scattering Wan Wa r Then substitute

eq 13b on the R H s of eq 1a with the assumption
that f to St a fo on the Rites and in the 2 AS
we substitute the relaxation time approximation
of oilcop fo fo 88 e r Sf E Then showthat
the relaxation time canbe comforted as

Ine SEF Wun
J



Wilt the above form ofthe collision term we now have

to compute the scattering amplitude Wan for a given
potential say V CF It is obvious that the scattering
crosssection is obtained from v er via a 2nd order

perturbation theory term but here we are not interested

in the perturbation energy correction to the electron's energy
but its scattering lifetime i the imaginary fact of the
energy o

In the course we are obtaining the imaginary
part of the energycorrection i e imaginary partofthe
self energy by introducing an imaginary term in the
denominator I the same we did for the correlation function
and the response functions in the linear response theory
In a more rigorous calculation one goes tothe complex

plane and define propagator l Green's function and study
itsdynamics Then both real and imaginaryparts one

studied in equal footings

The 2nd order perturbation term is

Ed In
4
111,51 mhm aint vers

Now we add an imaginary term in in the energy
denominator and are the formula

f In PCI it 86 to obtain the



imaginary part which we denote here by Wha without
the k summation

Wun TEK KIHint h T SCEn En ID

Ioan thedefinition of the relaxation time

The scattering lifetime of a given state k is obtained

by integrating over all other k status

In SIts Enn

Substituting the relaxation time in the drude formula
we obtain the conductivity as

o en.ME Enon
or for the resistivit

I 3 In
Therefore inthe independent electron approximation each

b electionstalis near the fermilevel produce parallelly
connected resistor

The mobility is defined by the emt which characterises
the scattering process of the electrons



We will not explicitly calculate eq KD in this couse
Some of them can however be comforted easily

H W

G For chdifhononcoupling case we havealreadycalculated In

Here Hint Eq Gq enteran aq tata
in the previous chapter
on this case we assume the phonon distribution function

is in thermal equilibrium In a better and self consistent
scheme we have to write a Boltzmann transportequation

for phonon as well and compute the relaxation time for
both electron and phonon See Teno Selam and PPhillips

For an impurity scattering care we have Ver V 87503

with an infurityriat some fixed position to This

calculation can be simply done by going to the Fourier
space of 83 o I Feit't Then Its integrate
over or can be performedanalytically

In the Anderson impurity model for mixed valence

compound we have such a Hamiltonian

H s Efu
Catalano t Weat ao t unto do that

Herr the election gets scatters to a localizedelation stat



Cao via the last term This results in a reduction loos

of the valency of the electrons in its e ionicstate This
c ion's valency then becomes fractional Here one can compute

the scattering life timefor this mixed valencystate

For electron electron scattering case


