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In classical mechanics we deal with individual coordinates

of each particles in spatial dimensions x ̅ It and
also its momentum as the dynamics happens in phasespace
Then we have the equation of motion for x ̅ It governed

by the Newtonian equation or equivalently by Poisson
bracket with a Hamiltonian H P F T.tv as

ni 8 ni p bi It Pi H p B

In statistical mechanics and quantum mechanis
I and also in electrodynamics we do not solve the

dynamics in the coordinate space Rather we solve the
dynamics or equation of motion in some special
functional space F It In statistial mechanics the
F function is the densityof particles 5 Rt which is a

simple real number furction In electrodynamics we have
fields I x ̅ t B x ̅ t whichfollow Maxwell'sequations In

quantum mechanics the F function turns out to be
some complex functions X F t Yp 154 i Rt
Most importly Y R t are not just simple complex
variables functions they belong to something called
the rectorspace or Hilbert space These I belong to a

space of functions which follows linear Algebra

FRoughly as we see for the care of rectors all vectors in a

d dimensional space can be represented by d linearly
independent unit vectors with components A I as

A lie t A x ̅ t T Az x ̅ tiz Admit id



And there are vector addition multiplication rules So
all these rectors form a vectorspace called tangent space

The quantum mechanis is defined by a equation ofmotion
in this vector space for how 4 I 4 changes in space
time and its given by the Schrodinger equations

it tait H YET

For a given Hamiltonian H in a given spatial dimension x ̅
all possiblesolutions 4 x ̅ t of this Schrodinger equation
must belong to the same vector space and more strictly
Hilbertspace The vector Hilbert space is equipped with a

fixed number of basis states which are analogous to the
unit vectors in the tangent space such that all much
wave functions sit can be expanded in this basis
statu Q 5,1 i 1 2 n where n d

Before we solve the schrodingerequation we want

to recap there important concepts of the vector space
Hilbert space that you have learned in the Mathematical

methods of Physics course Its part of something called
the Linear Algebra



lecapoflimarlgebry.LVectrp.ae
we firstwant to define the
vector space of X in t say IT

Mathematicians figuredout that the axioms of a vector

space IT is independent of the position space x ̅ and can
be formally defined without specifying the coordinates x ̅ 7
This is called an abstract manifold Without specifying
x ̅ 1 we denote such an abstract vector by

147 called ket reltor
we can always project owe abstract res or IV into

the position or momentum or angular variable space
or even to a matrix form as we will see below This is

called a representation and the key properties axioms

of the vectorspace remains independentof the choice of
a representation
Formaldfiation space is a set with a structureamong its
elements A vector spaceTis a specific space with a structure

that obeythe following axioms axisomsmake a structure Their

elements denotedhe by 14 E T are called Ket vector or vectors

All vectors N following the below axioms form a vector

space denoted by IT Then all bet rectors H E V
must obey the following axioms

closure under addition 4 10 V

M 107 M E V7



cis commutirts M 19 147

i Associativity M 107 1 3 4 197 x

0 Null vector The vectorspace must include a wall
under addition vector 10 such that

14 10 14

4 Inverse The vector space must include an inverse vector

under 1 47 such that x 1H
addition 14 1 4 0

i scalar multiplication for α IR ascalaror field
014 EVI if H E VT
α β E IR or II

α B o 4 α BoM
where in the scalar field multiplication

in the multiplication between a scalar field
with the vector

Typically these are simple multiplication as we
see for scalar matrices

Vii Dilution a 14 107 α IN a d

β 14 α 14 B14

Ciii Identity There must exist a Scalar field 1 such
that 1014 a X which leaves the

bet ractor uschanged



Creators For a given vector space V thatfollows the
above axioms one can prove that a vectorspace
is equipped with ñ linearly independent
basis rectors denoted Tle Tif in

n is called the dimension ofthis rotor space n'depends
on the typeof HamiltonianA we are going to solve and
also on the spatial dimension d but n d Mathematically

we call it the span of the vector space span lei
which is a subset of the vectorspace leis C V or

one denotes ei ei lei in an element of it

i analy infendt The linearly independent basis
vectors imply that there n setsof
basis are the minimum number of

vectors one need in this vector space to span expand
write all vectors t V

There is no unique choiceof the set of the basis
vectors Ki One can do a transformation ialled

unitary or orthogonal transformation from one setof basis
rectors to another linearly independent basis vectors This
is analogous to the coordinate transformation in ordinary
Ms

The setof basis rectors that spans a vectorspace

must be linearly independent Mathematically its

defined as n

of E ailei 105 well vector



then ai 0 for all i if lei are

linearly independent

There basis vectors need not be orthogonal toeach
other persay however any setof linearly independent
vectors can be made orthogonal by Gram Schmidt
Orthogonalization method

i spanningor expansion All vectors H can be

spanned or expanded in the
set of basis vectors as

It I ai lei
where 9 E IR or or sometimes called fields
which are scalar numbers called expansion coefficients

defined as ai Leilt where this angular
bracket S will be defined later



Eg
1 Matrix representation Lets consider a 2 2 dimenional
vector 4 Yy where 41 42 We can choose

the basis vectors as
e ler i

Then the spanning or expansion of 14 in ei yields

1 x Yi Me led X b a 9

Now choose another basis

leis less f

show that lei's are linearly independent
Expand 14 in the lei basis and obtainthe
coefficients ai Lei 4

i The Fourier transformation from position to momentum

space or time to frequency space and vice versa is
a basis transformation or expansion of a function in
position space to that in the momentum space

191 I 2414 441 tcas

where 24in 911 and _Jdk



Aicpa It turns out the wavefunctions W in quantum
mechanics have a more stringentcriterion on the
vector space in a subset of a vector space with

two additional properties innerproduct and complete
Such a vector space is called the Hilbert space H C VT
This is sometimes called the complete innerproductspace

To define the innerproduct we need an additional vector

space called the dual space w̅ whose elements are devoted

by 241 called bra vector or dual vector corresponding
to each bet vector H E V Operationally this is defined
by the adjoint or Hermitian operation which consistsof
transpose T Complex conjugation a t

Dual vector 14 241
wave function var tray x cry

T

c Under this dual space an inner product or scalar product
in defined by

LN 0 α scalar number

or 24 97 5 4 14day dk α

see Q x a are defined at the same location

x is locally



The innerproduct must satisfy

1 Linear in the second argument u 9 le

Lyle 2 19 CEC

b Conjugate symmetric

2 19 29147

Positive definite is 414 0 with equality

holds iff 147 0

The norm of the rector x isdefined as

71411 IF quantum
This norm has the interpretation of theprobabilitydensity

ofthe particle to be at theposition w̅

11 The set of basis vectors lei must be

complete each that the spanning expansion of
any vector H in this basis set converges and

keep the vector within the vector space V The

mathematical definition of completeness in

leisheil II



Physically completeness meansthe baris states spans the entire

space This means any rector x I can be expressed as a

linear combination of the basisvectors If we apply theabove
sum lei Leil II to any state IN we get back the same
state No part of it lies outside the spaceof Ili

Employment
Fink dimensional care vector in a

Ii
then 2414 It 4 X 11H11

and S Yi is the probaboitsduty of the state
µ to be in the ith basisstate

Infinite dimensional care vector in 2 IR

min L IR

11 d

11 112



es ot x file
Then 241 I α Leil

Now with Gram Schmidt orthogonalization
condition we achieve the basis restors to be
orthogonal and normalized such that

Leilei Si

Then we have 24 4 114112

I ki1
iz

Here α Leily I can be interpreted as the
the vector or state ISIEY.IE e

bastis
state where Kitt is the

corresponding probability

So sometimes the Hilbert space is defined as a vectorspanof
square integrable function ei innerproduct denotedby
For example e via growing function in se and hence its not

square integrable

Iw Diagonalize all the eigenvectors of the Pauli matrices and
show they for 2 dimensional Hilbertspace



EEEEIIE.Ei.me
always less than orequal to the productof length to two
rectors Mathematically

Kx 414 1140197

This inequality is analogous to the triangular inequality
of vectors A.IT II 151

as ABI ALIBI loso and 0 coops J
In probability theory there is an equivalent called covariance
inequality Let x y be two random variables The

covariance between them is always lessthan or equal to
the product of their variances

Cov x 4 AX AT

The equality holds when X Y are completely uncorrelated

This inequality governs the uncertainty principle between

any two quantum operators x ̅ x ̅ If they are uncorrelated
in they commute then they can be preciselymeasured

simultaneouslyotherwise not Then uncertainty is givenby AX



Proof Lets consider the projection operator alongthe direction of
the 1.47 vector The unit vector is

e LIE
Then we define

10 red as lens

Nowdefine a new vector X as

1 7 101 f let
them 2 1 7 2919 afterthealgebra

Since 2 1477,0 so

1410712 241429197

GramSchmidtorthgonalization Revise yourselves



Operators An operator is a map or rule thatacts on a

vector space 14 and produces a new vector 197

Its written as

8 Iv 18 4 197

Typically for sure in quantum mechanics we wantthe

operators that keeps the new vector IQ in the same task
The correspondingdialvector 01 2841 41st

In thecartoon on the first page we showed

ti 4 tf and H t in general have to remain in the

same Hilbertspace The operator that produces the time
evolution which turn out tobe the Hamiltonian mustnot
project a state out of this Hilbertspace The same in

position space also that ki t 4 01f t must

always remain in the same Hilbertspace If this doesnot

happen then we have an unphysicalsystem

Mematildfiition operators also belongto a space called

operator space Sts as usual a set of
points numbers fields with a specific structureforaddition
multiplication and scalar multiplication
The most common operators used in quantum mechanics are

Linear Hermitian and unitary

Le An operator 5 is linear if it preserves thesuperposition
prinuple Mathematically

J x x β107 α 14 β8107 when a p e



tertian Anoperator IT is Hermitian if its expectation value
is equal to the expectation value of its adjointoperator
Itt alsocalled Hermitian conjugate or transposeand
complexconjugation

Mathematically

24 HP HX 9 14 10 E H

This identity is also written as
24 H 9 241 4 197 as the expertationvalues

of H At

The self adjout operators 17 Htalways obey Hermitian
condition The reverse is not necessarily true In quantum

mechanics we only deal with self adjointoperatorand
there are referred as Hermitian operators

The important property of the Hermitian operators is that all
its expectation values and eigenvalues are real Therefore
all physically measurable quantities are denoted by
Hermitian operators in Quantum mechanics

HW Prove that Hermillion operators have real expectation
valuers real eigenvalues



Untangperator An operator w̅ in unitary if it satisfies

ut u U U t 11 identityoperator

Properties 1 9F U is unitary then i Ut

1 The eigenvalues of unitary operator in unimodular
or pure phase H W

Ciii Under the unitary evolution of a vector the
norm of the vector remains unchanged

v 1 7 104 U 147
then Lt Luv v4 lutu 4

44 4 as U tu II

the definition of identity operator in

Y 14 H

In Quantum mechaniss anyphysical
measurable quantity

such as position momentum and energy are defined by linear
Hermitian operators The evolutions forth states in time space

are done with unitaryoperators such that the norm of the state
remains in variant Unitaryoperator rotates a orthonormalsetofbarsto
another orthonormal basis set So the bais status of a Hilbertspace in

arbitrary by an fixed int space time dependent unitarytransformation



twitter.ExpectationvalueandEisnvalueerators.fr
everyobservable in the one we can measure there exists an

operator rather an Hermitianoperator whose expectationvalue is
what we measure In quantum mechanics we alsohavetospecifyin
which state or bet vector the observation is to be made

Let ME It defines a general vector and be a linear
operator in the same Hilbert space Let 10 14 EH bea vector
obtained by operating 8 on 18 Thenthe Flowing threedefinitions
arises

1 Transition probability from estate 14 to 1X bytheoperator is

T 2 1814 E

I Expectation value of in state ID is

X 2 4 18 4 IR Prove that is real
it 8 is hermitian

Ciii Eigenvalue 14 is called an eigenvector of 8 if it satisfies

8 Iv β IN
where p is called the eigenvalue or propervalueof



All eigenvalues are also the expectation values butthe reverse is not
true

Show that if M is an eigenvalueof then its also an

eigenvalue of all its power ad also withthe

eigenvalues
8 x p 14 et Iv e Bit

We will show below that in a N dimensional Hilbertspace the operator
has N eigenvaluesand N eigenvectors otherwise itscalled a defective

or un lyricaloperator Moreover the M eigenvectors of any Hermitian
matrix form an orthonormal basis states



ammaorandunurtaintyrelatotwosu.cc
site operations say by operators A B do not

commute in the matrix representation of operators we will

see that its equivalent to saying the matrix multiplication
is not commutative

i e AB x BA Y

This is quite intuitive Bacting on 14 gives a state say 10
B IX and on the 2.17.5 A is acting on 10 On theotherhand

on the R A S A is acting on 1N giving say IX A Y Here

B in acting on IX So the result is expected to be different

This prompts us to define two quantities the commutator

and anti commutator between A f B

Commutator A B AB BA

Anti commentator A B A B BA

The commutator and anti commutators are anti symmetric
and symmetric under the exchange between A B So

we can write
AB A B 1 A B C



Next we are interested in deriving the uncertainty
principle between two operators The expectatation value

of an operator in LAY A 14 Its standard
deviation variance of the operation A around its
expectation value like the mean value is

Δ A LA 7LAT CALAST
This is equivalent to looking at the expectation valueof
of the squares of SA A A the fluctuation aroundits
mean value are also denote SB B LBS Then we

define
10 SA 14 1 3 SB 4

Then using Cauchy Schwarz in equality we get

491 71 291054 1 3

x SA B 4 CHAPµ x 8BJ 4

LSA 8B 12 AA AB fromdefinition

Recall the equivalent expression in classicalprob theory that

the covariance in less than equal toproductof variances
Now whirs g gp.gg SA SB 8A 8B

9
purelyimage Breveal

we have
SA80 1 1LISA SB 17 L SASB 1



Then we get
A B 14A B 1 1 A B

This is the Robertson Schrodinger uncertainty

principle
It the anticommutator vanishes or ignored then we set

AAAB I A B I



For mostpracticalpurposes if the Hilbertspace is finitedimensional
the operators can be written in matrixform

Suppose we have a Hilbertspace of N disunion Thismeans we
haveThebasisstates Qu In 1,2 N We expand 14 in this

basis states as
14 an On where an cn HEC

Now the expectation value of an operator 8 in thisbarisstate
reads an

x 2 1514 EAn 49 1 0 Edmund

aim
cakes

Em 979m Onm

Onm in theelement of an MXN matrix defined in this basisstats
hence the name matrixelement

Special care when IQn are the eigenvectorsof with eigenvalue

βn
8 an Bn an n 1

This eigenvalue equation is written alternatively as

An αOn 619 4919m Sam I len can I as the
n



eigenvectors of an Hermitian operator is orthonormal This we can
write in compactform as

Lan 1810m Pn8mm

In otherwords the operator 8 is diagonal with β being in the

diagonal entries in its eigebasis On Therefore finding eigenvalues

eisenrectors amountsto diagonalizing an operator

Connelinbetweenthesnectorsadanitaryperator

There is an interesting and powerfulconnection between the eigenvectors

of an Hermitian operator and an unitary notation that is often
used in quantum mechanics as well as in other branchesof Physics

Eacheigenvectors Pn is N I rector or column vectors Next we
construct a matrix U byplacing eacheisurector at subsequent
columns as

1915 102 1

Clearly U is a NXN matrix Its adjoint i

ut

when In in a IXN row

vector

Then we get UTU On 9m II
as 19m are orthonormal



we also set out I 19m and II as 70in arecomplete

Therefore the eigenvalue equation can be written as a unitary
rotation tranformation to a diagonal matrix as

IT is D where D diay β P2 Pn

U consistof correspondingeigenvectors

or I JDit



Untangrotation transformationevolution

An important propertyofquantum mechanics is that underany
unitary transformation which isalso referred as unitary rotation or

evolution the physics should not change Pg physics we mean
the observables or measurable quantities which are denoted by
expectation value and the norm of the state vectors of any
Hermitian operator 8 in any state H must remain unchanged
Since operator ad status are not observables they are allowedto
abuse with unitary rotationtotheextentthatthe expectation value and the

norm of thestate remain unchanged
Lets start with the expectation value

241814
i it.it Eiige s
LY to 14

First we insert I UtU before the stats Nextwe define a

new state 4 UH and a new operator 8 ut o u

such that the expectation value remains invariant
Its easytoprove that the norm of the state vector also remains

invariant as LX y 24 Utu t Y I x z x 4
This is the beautyof Q mechanis that the statevectorand operatios
are not well defined defined modulo a unitarytransformationbut the expectation value that we measure must be

invariant



The summary in under unitary transformation the things that
changes are

1 state vector 14 14 U IY

ii operator G I v8 ut

111 EO M The equation of motion that governsthe
dynamics such as Schrodinger equation also
changes under a unitary rotation

Physical quantities remain in variant

c Norm of statevector 44147
i Expectation values 241 0143
iii Eigenvalues of 8 14 X t

In short any scalar quantity that earlycommutewith
the unitary operator remains invariant



MatrixAlgebre

Anoperatorwhen written in a specific basis it becomes a matrix Needless
to say all propertiesof an operator its matrixform naturally
inherits

A matrixA is a setof real or complexnumbers which are arranged
with two indices Aii i 1 n f 1 M with a

specific structure defined for mat x addition multiplication
and scalar multiplication N M are called the dimensionof
the matrixA with total Nxin elements present
11 Addition and substration

we can only add subtract two matrices of
same diminion The addition subtraction haspends
for each elements as A B C is defined as

Ai Big Cii i i

Addition is commutative distributive and associative

i Matrix multiplication Thin has a special rule
suppose C A B

Then Cij Σ Air Baj i N i 1 M

R k 1 L

The ist index i of C must be same as the first
index of the fint matrix A and 2nd index's is same

for the 2nd index of the 2ndmatrix B The k index

in between in summed over Therefore the dimension

of A B donot necessarily be the same however



the number of columns of A mustbe same as the number

of rows of the 2nd matrix B
The matrix multiplication in non commutative

which plays an important role in quantumchanics
AB BA

we often define a commutator

AB BA D

so if DFO A B said to commute with each
other otherwise A B commute if D 0

i Sal multiplication If α A B α EG then
α Ai Bii



InvereMatrix The inverse only exists for square matrix
whose N M

Let A be a square matrix its inverse
denoted by A is defined as

A A AA II

We will not discusshere how an inverse

is obtained exceptthat A thing
Therefore if the def A 0 then its inverse

does not exist Such a matrix is called the

lingular matrix

Unitarymatrix u ut utv
ut u 1

of the entries ofthematrix is real then we
don't need to take the complexconjugation Then
we have U U T U T V II This is called

orthogonal matrix

tIimmatix Ht It for real matrix its called
symmetric matrix if HT H



Ifamatx a Tr A a

E Aii only defined for square
matrices

Tr AB I Aii Bi I Bji Aii T BA

Trace iscyclic To ABC Tr CAB Tr BCA

TRACB

Them Trace a matrix A is earcal to the summation
over its eigenvalues

Proof Sine A U DUt who D diag x

i are eigenvaluesofA
U eigenvectorsofA

Then Tr A Tr U DUT
To
IEP sie Tra is uselic

Trace D

i

Trace is preserved under a unitary transformation is
Trace is a physically measurable quantity



Deal Deletesmeat in another scalar quantity
that define for a matrix The mathematical

definition is a bit involved

AI def A Espent Ai rci

where Sn set of all permutationsof 1,2 n

Sgn o II if the permutation in even or odd

Ai oli are the matrix elements chosenaccording
to the permulation

e g 1 1 matrix scalar dit A A

2 2 matrix A 9 dit A ad be

ix malix Af al 11
shi



Properties it dit IA B def A dit B dit B ditch
def BA

ii dit AT det A dit A def A
ii det A det A A is invertible

def A Xi whe Xi eigenvaluesofA

Invariance of def A under unitary transformation

Suppose A A U Aut An
dit A dit UAT def O dit A dit u

dit IA sin dit ut ditto

Idet U 1 1 if U is unitary or orthogonal

Geometricproperties In R Idet A is the

scaling factor for n dim volume

under linear transformation x ̅ A x ̅

It dit A 1 its a proper transformation

or dit A 1 its an improper transformation

is it flips orientation



Ilicatnfdeterminant In eigenvalue solver we me

it as follow_of X ñ an

eigenvalue of A then its
salifies

dit A XII 0

This is called the secular equation


