
 

Lec28ModernQuantmMpffissonsden book
From the previous discussions we learntightanant

ideas which work for both electromagnetic wane as amatter

of fact any ware as well as particles

Is Dawn Bohr Sommerfeldquantization

inverse

Energy is quantized in unit oftimeperiod E hw It
Momentum is n u a piratelinger lo at k la

Ang momentumis n u fireLrotation L Am my
Cleary this relations can be generalized to all phasespace variables

particle can be decomposed into
the plane wave basis Fouriertransformation which

make it clear that a classical trajectory is actuallymade

of short wavelength waves an 10 m Once we go to

such small light scales we observe the wave natureof
particles and vice versa Such a trajectory will be

defined by a mathematical complexfunction X Fit
Its amplitude PCF t 1415412 denotes the probably
density of finding theparticle at F at t



it
Sitgtiitipantiths finite probabilities of taking
multiple stats like two states in a double slit
experiment where the two states are accessible within

its wavelength X n t and period Tn hlf then
the particle actually access all these stats intact

all possible states in the universe but the probability

of accessing otter status outside this range is
infinetily small and hence we can neglect them

This is the linear superposition principle

Y Fit Qi Xi tit j
coefficients T basis

where c 1 is the probability density of accessing
the it state Qi Fit if no other states are accessible

and Kit is the probability of accessing it stale
when all other storks are also accessible Ekite

Chi linear superposition principle is not so
surprisingfor light since the plane wares are the
solutions of the linear 2nd order PEE its the
above superpositionprinciple isalso valid for severalparticle
wave function so the corresponding equation of
motion is expected to be linear differential
equations c f Schrodinger equation



i
Now we want to create those wavefunctions which are in

functions can have finite width and finite range of
wavenumbers ei finite uncertainties in both position and
momentum Howmuch uncertainty in eachcoordinate do we

acquire That we will see to be linked to the lowest

energy possible which we will call the groundstale energy
Aplane wave corresponds to free particles i.e particles withonly
kineticenergy and withoutanypotential energy or restmass relanistic Onthe

otherhand a f function wavefunction is fully localized
and hence no kinetic energy Therefore a general ware

packetcorrespondsto systems with both K E P E K E dependson Fand
hence delocalize Itt ware PE generally defends on se ord hence tendto
localizeconfine it and we henceneed a ware packet as a compromise
between them which willalsominimize and in certain casesquantize the

totalenergy Therefore we anticipate a connection between ware

packet uncertaintyprinciples and groundstate energy

91mgI



This means we are talking about wavefunctions
of the above shapes which is confined in some are

such that as are fourier transform to the momentumspace
we also get a finite width Ak with A pan 1 t thestate

acquires minimum ground state energy when Ab An n t as

we will prove below

We can construct the above ware packet as a collection of
plane waves spread across Ak arond ko We have seen one

example for a Gaussian warepacket where Ann or Ak Yo
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The above picture demonstrates that a ware packet
can be constructed with a linear combination superposition

of several plane waves in the width Ak around ko It
can be also viewed as standing wave of plane wanes
reflected from the potential barrier near the boundary at
no I A no where the reflected wares brose gain momentum

A but a R and the reflected waves interfere with theoriginal oneto

give wavepacket There are more aware packets possible
with modes in between as shown in the

adjacent figure in different colors but

with nodes Iii shorter wavelength will La

with largest wavelength and no node
In modernl awavef.achef is often referred as a mixed stale
since its a collection of many well defined momentum States

The spread ofthe warepacket in the realspace an look
like inverselyproportional to the spreadofthe wavefunction
in the momentum

space Ak To establish that hits only
consider three wares as shown in the above figure which

are spread over in the range of Ak This momentum
spread between the three words determines when a destructive

interference will occur and the distance between the

two nearest destructive interference points determines the spread



of the wave packet in real space Ax Mathematically
we false a linear superposition of three inch waves milk

He wore at ko his heights weight ko whereas the

othertwo waves have 9 Kotak v Iko 2 So we get

ex Ocho eiko tt e ikot't geekayyy

eikonfit asCfn a

Therefore the wave function vanishes at ft K n n I 1,4

Therefore An shortest distance between them is Akan 4T

This can be written as

Ap An 12 I t 2

This formula relates He spread in position as inversely

proportional to the number of momentum stats required to
produce a ware packet

III consider the above wave function and compute In Ap
as the standard deviation from the average valueof
the position and momentum meanned for this wave function

Then we can reproduce the above relation in eared
Therefore the spread in position momentum in the



wave function tells us about the variance in the
measurement in the position and momentumvalms
Its clear now that they are inverselyproportional
to each other and hence both uncertainty
can not be made arbitrarily small In fact if we

tryto make one small then the otherone grows So bolt

position and momentum cannot be measured

simultaneously with arbitrarily small precision
Their board is the smallest possible phone space area

ex

APargHL

The same a true for all pairsof phone spacevariables
such as HE At S A A L At I t etc

This is the HeisenbergUnurtaintyPrinuf

the above derivation is done with a specific example but
the uncertainty relation is completely fundamentally
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Particle For 4 k 1 HIF 867 An o apt a

Wave For dCk 81k ko yet v e R t Ax a Ab o

Warepacket In general k Nlt hare finite spread in
momentum position space relatedbyApAny t

Q Then the question is how much position and momentum

spread or uncertainty a particle ware takes 2 Whatdoes

it defend on 2 Which uncertainty is preferable for a givensystem

And It turns out based on the boundary condition the

system tries to optimize the two uncertainties to achieve the

burh ie the ground state

hits put this hypothesis on test

1 Bohr's Atom hit us consider what is the uncertainty in
the ground state energy oftte Bohr Atom or by



optimizing the positions momentum uncertainty do we

get the Hydrogen Atom's ground state energy
An electron orbiting in a circleof radius r

can hone the maximum uncetrainty in

radius is AV r Then the

uncertainty in momentum is boarded tobe

April o É E
E Ism offs theThen energy operator is

average valueof energy is

LE 75 41 o

Now how is It related to457
A p 1452172 which measures the variation

of momentum across it mean value Now the average
momentum 47 0 in an orbit otherwise theparticlewill
move awayfrom the orbit so 217 A n EE 7

so substituting eq 7 in 6 we get

Minimizing the average energy war to r gives

71
ro ÉÉÉ a Bohrradit Hor z D



The energy at the Bohr radius is

IE LEI't Efta b b ex

as Bohr estimatedfor n 1

ItW c Reproduce the above result by wing the uncertainty
principle in AL At It Can we alsoobtain the

same result with AE At 7 t relation

Estimate the Ground state energy of an harmonic
oscillator A Mam t's muse
Estimate the Ground state energy for a particle
trapped in a box of high 2 The particle in a

box has the potentialprofile of Ven o for
M L L VCH a for 27 L



Can we predict the diffraction pattern of the
double slit experiment via uncertainly principle

If we do a full calculation
we at the condition for
diffraction as

Where N Il IL

correspond to the minima

We want to show that ne Il fringe
corresponding to the minimum uncertainty we can do it

for position momentum A W but hitsfocus on the

angular momentum angle uncertainty A Lz A t t

The spreadof the wavepacket Ay between the nearesttwo
minima is the uncertainty inposition For small angle this

corresponds to the uncertainty in the angle it as a 0 A1

The corresponding spread in momentum Aly t lay for
radial ware the spreadofthe wave in AD isrestrictedtothe
spread of the Fourier mode in thevalues ofangular
momentum ALz we will learn more about it later



Now Lz NPy Mbp Gtx since the particlehas

no momentum along G
So ALz da ly dby since beds fixed

Since A Lz At t
ADx Jaggy

so dat Epp 712 TI Px

Px x
dAo

This proves that the angler spread ofthediffraction
for a particle wave of deBroglie wavelength X hip for a
double slit distance d is determined bythe uncertainty

principle indeed



3 If our liftimeordecayratifastat

Much like the uncertainty relation between nap is understood
via the Fourier transformation ofthe wavefunctions a similar
argument for the Fourier transformation ofthe time to frequency
can be given to derive AE At t

Focussing only on the timefact we have notconsidering

X t I dye ay é
int go

theposition

91W J d t y eye
int ay

Therefore Yet denotes a timepacket or pulse which is

negligiblysmall outside the time spread At Thenthe time

packet can be expressed as a mferfosition of monochromatic

waves dew within the angularfrequencyspreadof An

Such Eat AW At 7 1 HE At t This says if the
timepacket exists in the time interval At then the energyoffhis

packet cannotbe measured below Heprecision h At In

otherwords if we consider an ensemble of identicallyprepared
systems particles described by the wavefunction Y then the

measurement of an energy on each member of an ensemble

will produce a range of valves spread over an coiterral
A E of extentgreater them or of the order of Hat



Another interpretation ofthe energy time uncertainty nthe
decay time of the particle If we say the energyof a

particle is completely fixed inch that the variance in
energy A E o then the time interval to find the particle
in this energy state in infinity This means the lifetime
of the particle in Thai state is infinite Otherwise if the

energy variance of a given energy state is finite thenthe

uncertaintyprinciple suggests that the time inferal to find the

particle inthis spreadof energy state is also finite At Tae
Therefore the particle has thefiniteprobability to leavethis
state and make a transition to another state The spread
in energy AE is called the natural energy width of that
state and At a e HAE iscalled the lifetime of a

particle in this energy state The ground state is the

lowestpossible energy level of a system Aparticle in
the grind state can not lose energyto go toany other
lower energy status Therefore the lifter of a ground state
a infinity and the natural energy wide is Zero Aparticle in

the ground stat is the most stable configuration

In most of our description in QM I andalso in QM I we like to

use the wavefunction forwhich energy frequeey is completely known

and lifetime is infinity for convenience Thisiscalledenergyeigenstate



Ei

then wave basis
where is the center ofthis warepacket at t

Ishii
mim IIthe probability density See ti Mints

A single plane wave's velocity is obtained fromfrequency
wavelength relation c v a w Ik which is called phone

velocity
But now we have a ware packet It propagates wilt
a group velocity A group velocity differs from the phase
velocity mainly when the frequency wavelegit relation wCk

or the energy momentumrelation f 1 differs from the simple
linear dependence of a plane wave Such a relation wCk

or E k is called the dispersion relation

Assuming a general form of E P we obtain the

phase of ware as e t
where

PCP pm E b t C



Assuming that the phase BCD is a smooth differentiable

function around the warepacket center then we can

expand B b around the momentum Po in a Taylor's series

PCP a PCto t to p pot 0lb
bot

es
when

p
so we hone 1B P PCbo constant

which makes the dispersion Echo tobe a fixed function

of p and hence as we showed above the centerofthe
ware packet becomes stationary at no This condition

so is called the stationary phase condition

We can now rewrite the ware packet as

tinct e
N
HIERdaw pay elk

ko nnd
e
int

where f1H ttk

Therefore the wavepacket is actually moving became

of the energy momentumrelationt

When we havepotentialenergy term E
17amt V41 no it canbe

complicated



what is the velocity Group velocity 9 87

ng 87 feat

ffp box Eck It

ffp
po

og tf

I n

This group velocity differfrom the phase velocity which
is the velocity of an individual plane wore Upi

W R

Denoting the group momentum as p ie Ug Hm
we obtain the Newton's equation

Kim

E I'm t constant wesetconstant o

this proves the correspondenceprinciple

EW in ton about a relativistic particle'sdispersion E to

Gi Consider the Gaussian warepacket introduced inprevious
chapter and obtain the uncertainty and group velocity

Gii Consider a 3D plane ware e ik t wetandobtaingroup
velocity dispersionrelation



É
namely a delta function and a plane wane forlight
These are two extreme limits of all possible wavefunctions
that we can build because the delta function wavefunction
is fully localized in position and completely undetermined
wavenumber momentum Onthe otherhand a plane ware
is a completely oscillatory delocalized in position but have

a well defined single waverector momentum But none ofthem

good wavefunctions for non relativistic particles and we need to
construct ware packet

To figure out the position momentum energy and any
physically menenble quantity of a ware function we

need a prescription on how to compute suchquantity
For that we will snort to the probability description
but modification is required because of complexwavefunction
For a probability distribution of Strict PCsi t any
physical quantity is obtained as an average value of
many many measurements and defined by

Loy f o see t doe foteeny die g



The above description does not howeverdefend on the

phase of the wave function and can be incomplete in

many cases Therefore a more general average or

expectation value is defined for wave mechanics as

f MG.toxcntdr.tl

The above definition is sort of an ansath but we will
see that it works and does not lead to inconsistency

The above prescription does not yet define wheatis
the quantity o onthe right hand side whichwould

correspond to the physical quantity that we are measuring
on the L H S We actually hone to define them
We call them and often denote by a hat 8
We dont measure an operator but we measure its
expectation value 202 Lets take someexamples first
Lets start with the plan wave case

XF H A e
NIT wt

RW

we know that this is the solutions of the ware

equation and its energy momentum are

E A D I D AF



From egad we want the energy to be

Aw E LET JMEH EN Et dir
By inspection we see that

É
Therefore the energy operator what we call the

Hamiltonian operator is defined bythe derivative
of the conjugate variable i.e time Thismakessense become

timederivative9ft I Yettstth gives time translation from t to41test

which can be determined fromthephasespace if we knowtheenergy face versa

Similarly the momentum operator is obtained

to be
KE P LET J TCF t I Fits dr

F F

So similarly the momentum operator is defined

by the Citi times derivative w r.to it conjugate variable

Since Y Cnt a defined in the n t t space the

position and time operators are simply at E
E LE J Got A Text d R

J tt LET SX Cat I tact d n

Cjent definition



The operator I E are some mathematical notations

for the wavefunction defined in the Cgt space In

some sense we are saying the position time associated

with this wave function at a given I t are well defined
we will find that Yancey is the eigenfunction

Eisen means proper of the position time

operators.J
To elaborate the above statement we

can go to the
momentum energy space and

define these operators again The wavefunction

inthe momentum frequency space is nothing but
the inverse fourier transformation of X act as

XCFctl vfdtgdfeikt weJqE.w

Q E W Jd at XE H e
II F WH

8

son 9 k W are the momentum energy space ware

function corresponding to X cacti Now

AT p LE J Ekins Packing ditty
Kw E LET S a Cking I alkin EF



I It Jacking fi k a ckingEY

t LE f 9 1KD i ToJackyEE

a

We can very much define the restofthe operators
such as angular momentum ele from these operators

HII c Evaluate position for the wave function
812 a Evolve its momentum Then
evaluate the uncertainty in their corresponding
values

ie Repeat the same for a the plane wore

Y Act A elk F Nt

12 Express the continuity qation It É

in terms ofthe operators
S 1412 I St S Im in

position space re



Khriding ation
For a classical particle we want to know nets and

this comes from a solution of the Newton's equation of
motion in the time domain

Complex

In quantum mechanics we have afunction YGeet here
equation of motion has tobe generalized in spaceand
time In some sence Tinct encodes a mapping ofthe
trajectory of theparticle into a functional space of bolt

space time to incorporate to wave nature uncertainty

of Iteparticle not being fixed atCet ie the probabilistic

approach rather than a deterministic approachtotheparticle's

trajectory

Once we startwith an initial wavefactat some
initial condition no to the job ofthe equation of
motion is to predict the wavefunction Nenets at a

differentposition a later time We just saw in the

previous section that if we know the groupvelocity

we can predict the centerof the wavepacket.ata latertime
That istrue But in general the energy is not a simple
function of p only but complicated functionof momentum

and space as E 2km TV in



So we need a proper equation of motion in bolt

space time to predict tinct What is the

equation of motion

Mit For a photon which is also the quantum

particle of theelectromagnetic wave we know the

equation of motion That was the wave equation

II if Cin ee c

This equation if we write in the energy and
momentum operator from looks like

IT Cut Etr Xen t É it IE
Then multiply y not pom af

E it odd

and integrate in space to obtain

J t É y da of I'tact dx

LET day usingthedefinition
of expectation value

E top we often don't use 4

for an expectation rate
So it works for relativistic massless particles
We need an equation for non relativistic one whichfollongE 142m tray o



T can we think of the continuity equation

If It o p

as a possible equation of motion It does not
involve the phase ofthe wave function atleastnot in an
obvious way So it looses a lot of information about
the phase of the wave function But this equation n'a
valid equation so whatever a proper equation of
motion be its solution must reproduce the continuity
equation So we have to do this sanity check

Idiatigregatitifiamation of motionfor non
relativistic particle It should be an equationsuchthat the
expectation valueofLET 255 I should follow the

energy momentum relation LET LIL TE
Using the definition of the expectationsvalue we get

fd n Meng É Teng dx waitsIEmeig
Xin t

where E P operators are defined aboveas É it ft
I'm gifts Thepotential operator is deduced by

replacing n wit R operator in its variable ei vin Tca



Then the above integral is valid for anygeneralfunction
and is equal at all points in position Therefore we get

HEY ALI tidy
Since these operators are hermitian and hence has real

expectation eigenvalue so we can assume that they act on

Y on the righthand side This is actually a general
general result that we can see from linear algebra
Therefore we can eliminate the exit state fromthe lofty
Then substituting the operators we get

1 it 4mt a EitMImyIj C

This is our Schrodinger's equation of motion In

3D 8 T V TCD TCF X Intl T X Et

THW Lil What wiltbe the schrodinger equationforthe x'in its
state

show that the wavepacket
Yin t I LfYa k e ikr wt

is a

solution of the Schrodinger equation where p tk
Elloftwly



Properties of the Schrodinger equation

Étidiogeneons Therefore if Mets are

two solutionsof ex and X a Kit cat isalso a

solution of the same equation for a tea being constants
linear

Therefore the equation allows Hepsuperpositionprinciple

FTP t order in time but 2nd order in

fostion This is because the energy is quadratic in
momentum This is in contrastwith relativistic photon
where boltposition time derivatives are 2nd order Honee

we had a linear energy momentumrelation

act first order PDE solution has one unknown

and a 2nd order PPE has two unknowns Therefore to
know the full solution Heat of eq we need one

boundary condition in time and two boundary
conditions in position In some occations thesolutions

and the physical interpretation ofthe wavefunction can

vary drastically based on the boundarycondition therefore

boundary
conditions are extremely important

Since its a 2nd order PDE inposition x should

be continuous and its first derivative should existandcontinuous



In anotherwords if the wave function XCait is
known at a given time to lie the boundarycondition its known
at all later time t to at the same position

Similarly if the warefunction Xena and its first
spatial derivatives are known at a givenposition or the

warefunction is known at two different positions at the

same time two boundary condition are he provided then

the wavefunction is known at all otherpoints in space atthe

same time

eighties and savedexpects torte data
magnetic field that the wanefunction associated with a particle
in quantum mechanics has a statistical interpretation in

which 86,4 14cats denote theprobability dunity of
finding the particle at net Thisputs two more restrictions

a The total probability of fininding theparticle milkinthe
entire space is 1 at all time in

f dn lyin t I 5

Yin t

this is also became the Schrodinger equation is homogeneous

and does not have any source term Therefore the



particle creation or destruction at any time is notpossible
within the Schrodinger equation

Eq also indicates that while the LHS has time

argument but the R HS is constant This means underthe
Schrodinger equation the tents should always have a time

dependence inch that M1 e x exit tent becomes time

independent One simple and quitegeneral examplesolution

is 4 cut Ya D é
E't
This condition is also called

arity which we may learna Titman condition bywhich welater
can fix one ofthe freeparameters of the PDE equation

We also saw from Maxwells equation that achargeparticle
like election follows the continuity equation This istruefor
all particles and related tothe above condition Thecontinuity

eq in

ft F I 0
at a given

where s V1 and I is yet tobe determined The
dot term appears to contradict the condition 5 wherewe

said S does not have any time dependence What we

actually mean s does not elite defend on time
But it can change in time due to the time dependence

of its variables I but its change in time at a

given position is equal tothe flow of probabilitydeserts

away from it which is the probability currentdimityJ



So let us see whether Schrodingerequation satisfies these

two conditions Considering a small volume length 2 milkin the

entire space inwhich I du kN 1 we differentiatewithtime

I Sav i fav YE EH

Now we replace It 8 fromthe schrodingerequation to
obtain

rats Jar In Y ED EY x

r The potential term cancelsonly

Performing integration byparts we set

for Em F A Ex ExTY
Te

Therefore we obtain the probability current dinerty as

I is EF X EXT x

HYGIENE
it TH
TARe Y tie MY

Notice that I operatoracts on Y whereas its complex
conjugate PAacts on Yt



II 443,1
Y E

This expression looks like It here with charge es

and dimity S x'Y
Sorice the volumevis chosen arbitrarily so Ar integrands areevil

Hence we prove that the Schrodingerequation satisfy the
continuity equations of its probability

The above unitarycondition of theprobability in east is
also a manifestation of the fact that the energy functional
É II tr is Hermition This energy functional
operator E is called the Hamiltonian operator
in analogy with the standfined in classical

mechanics

Thi
Then the Schrodingerequation is written in a concise

form

Dien a

e Taking complex conjugate on both sides we get

a i k day CUH It 4 E y IF



Then starting from equation wilt 11safe entire space we
have

I fjar y o du E CITY

from era Pdx E HY G In
a

Lgd X H H x

Since this result is valid irrespective of the formof A so
the integrand must be Zero This proves that

Real orHermitian for
a matrixoperator

Therefore the time evolution of a wavefunction under
a Hermitian Hamiltonian is always unitary is the

probability is conserved Hermitian operator also ensures
that its expectation value is real CAW Lateron as we

will convert eg into an eigenvalue equation where the
eigenvalue of the Hamiltonian will be identiedwith the
total energy we will claim that the energy eigenvalueof
a Hermitian Hamiltonian is always neat

d Forthe and derivative of x toexist Y and its firstderivative inanalytic

space should be continuous finiteand single valued at all n



ObseraEExHt_FY
Anything measurable in quantum mechanics has a corresponding

operator whose expectation value is what we measure Since the

meatumbles are real numbers so the operators are Hermitian
The expectation value is a quantum mechanicalanalogott
statistical average rake with the difference that

E Sdn Y GH É Mt X Int I

where F is a Hermitian operator which acts on X
on the right Being its Hermitian it also acts on the

left except the momentum operator that facts on y
while I acts on y on the left So I sometimes

prefer to call the momentum operator as non Hermitian

operator which happen to have real eigenvalues But
most books denote P as a Hermitian operator wilt the

above property
wehere already encountered mostof the operators

we need to discuss n I I i kdog E it It
Iz It 5By it n Fy bE I EI Tee
Em Yw Ta and so on

TH W Generalize all theseoperators to 3D andalso intheyspherical and cylindrical coordinates



Equation u actually denote E as an operator in the
position space since its acting on the x states is the position

space only The operator in the Fourier ormomentum

span changes They can be derived fromthepositionspace
operators by Fourier transforming in the R H s in eye
The measured quantity on the L A'S does not

depend on whether one is using position or momentum

space

T LF f dy Yine I exit Y ND

fax fast éiknock ft e
ik Eck

Ight e
ik actin

EyGajda Elk
HÉckt cry axe ik n n n

This
by day 9 Kit FCK KHACKD J

Show the operators in the momentum space becomes

I it fp I É itGt Cz nb y ly it by body

I Em t Vfitfp and so on



More in chapter 4

1 1bet ntw.pe
Unlike in classical mechanics or staticalmechanics where
the orderingbetween two operators say it I do notmatter
but in quantum mechanics the result may changedepending
on which operator acts onthe wavefunction on the right
The difference between the product of two operators is denoted

by a bracket called commutator defined as

I B AB BI

This commutator is clearly a new operator If Heexpectation
value of this operator a zero ten we say the twooperators
commute otherwise they don't commute

E g I A B Px

Late Jax x ntitoddy

spin Jax X fit Ix xx

fax x'f it a y n fit't
wing the chainrule

So I I Tx L bx ten

Jax it x'y it Hyde

it



Since this result is general for all states yea so the

equality can be deduced at the operator level as

Laika
where the Rtt S represents a constant operator

In fact one can go ahead and connect this commutator

with the uncertainly principle in

Effie m

Where the average or RAS is taken over any w f Yin
We will prove this identity later the result

suggestsHat all variables and their canonical conjugate
variables which cannotbe measured simultaneously
due to Heisenberg's uncertainty principle their corresponding
operators donotcommle It can be said in the

reverse way that if two operators do not commute then
these two operators expectation values cannotbe measured

simultaneously w their variation's are restricted bythe

Heisenberg uncertaintyprinciple



Ci FI EsBy ETI it

En By is By o for all meh combination's

Px by Crib 0 n

I Iz 9 Tx I Ey it where 05 the

angularoperator for a rotation arond the z axis

and so on

we know that AE At 242 but there is no
such canonical relations between E E

The non vanishing commutator between position
and canonical conjugal variable is analogous
with the non vanishing Poisson bracket in
classical mechanics The definition ofcommutator
and Poisson bracket are completely differentand
there in no relation between them

T H W C Is If an Hermitian operator
How about 21 8 2 a

I



To be discussed again in chaffer4
Corresfondenceprinu.pk 94 sCM Ehrenfesttheonn

As Bohr suggested any good quantum mechanical theoryshould

reproduce the classical mechanics result at the limit t t o

Lets see that for the Schrodinger equation whichwas done by
Ehrenfest He suggested that the expectation value of E p
n etc should satisfy the classical Newton'seq We actually
started with the E 14am t Vigrelation to derive the Schrodinger

equation Now let us see if the F Tv equation is also

satisfied for the expectation values

In deriving the Ehrenfest theorem you alwayshone

to keep in mind that unlike in cm where a stationary

least action path in the action exist which gives our equation

of motion in QM the action S n h does not hone

such a stationary path rather it is allowed to fluctuate
in order of h This is called quantum fluctuation which

govern uncertainty in the expectation value of all quantities

The derivation of the Newton's law is slightlytinglybat
straight forward and can be seen from Branden's book

See 3 4 Below I sketch the solution



aPx a fan y C it fr x mftfdn tnx mates

show

If it do fan 4 8,4
EA totalderivative
when it passes intoit f du ft
the integrationbecomes

it daff E In a partial derivative
VIC D

Thesetwo derivative commute

so we can write off8Then we substitute the Schrodinger eqand
replace ft in Emertvent If ilk Eritrea
Hen use Green's integral formula to obtain on the R A's 184

and we derive the Newton's law
d CH

I
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We have chatter 6 entirely for higherdimensions

SchridingerEqualioninttishe Dimension

The form of the Schrodinger equation remains the same
and only the Laplacian operator t increases itsdimension
as

we fit t.ie r

Then the equation becomes

f AIM on a very ULF I it Y IF D D

Its now clear that all the variables are in the kinetic

energy term are separable If the variables in thepotential

energy are also reparable then we can use separation of
variable method for the solution YEH

11117ththe case then the general solutions can be

Y 15 t Y Rt Ya Cast 43 Z t

In the Fourier space

Y Et if EjYgyygggeikxr.tk
that wt

Q I KxW duckyW QB Kzn
LBJgig dig eik.T

wtJ
Ck.w

III Write it in the sphericaland cylindrical coordinates
and express e ik F interms of Bessel sphericalHarmonies



Time
indefendentschidingerequatiies
Any explicit time dependence is not there in the kinetic

energy term KII
Of the potential energy V17 is aho time independent
we can employ separation of variable between position
and time and obtain a time independent Schrodinger
equation Although the separation of variable will still
work even if the potential a time dependent bat time variable
is separated from space variable but in this course we

will not consider any explicit time dependence in v So
the total energy is a constant of motion
So we hone

it I IFy FACE I Git E

Emet res

we use the separation of variable

I CR t Y F fit
This gives

if 14 I a ter

E Crome constant independent

of time space which
we will identswith

total energy eigenvalue



HE

Then we hone Idf in E f It
tof to

t feel e
ith Elt tod

where f to is to be evaluated with the boundary
Condition we set to o for simplicity Then we

hone too i absorbed in yin below

I Fit Y E e
H E t

So we see that the timepart is purely a phone and

disappears from the probability density Slits since E is

real and II is Hermitian So If o F 5 0 It w

Then we hone from the R AS

44 1 13,7 4434814821 60

This is the time independent Schrodingerequation

E is the expectation value of energyoperator ei the
Hamiltonian II and we have

E LI Jor X CJ II YET



Eigenvalue In fact E is notjust the expectation
value of the Hamiltonian but accordingto egos it
also the energy eigenvalue of the Hamiltonian

operator We hone studied eigenvalues in both classical
mechanics and mathematical physics which gives normal

Yn general an operator say It acting ha

function Y gives another function 114 9CD Eigenvalue

and eigendirection i one special solution in which
the operator maps the function onto itself i

I MET E YET at all variable
F This means E does not depend on F in Er a

constant of motion since E is a constant ofmotion
this means E does not fluctuate and it has no uncertainty
associated with its constant value This means E is

completely data This can be proved easily

by the fact that any n't power of E is deterred

by nth power of the A operator

En LID LIM Sd x y Y dx IN
Therefore the variance AE JETT 0 In other

words the lifetimeof particles being in the energy
eigenstates is infinite This is precisely what is happening



in the Bohr's orbits in atoms All the orbits with
different n c e corresponds to different eigenvalues

of the corresponding Hamiltonian Each energy levels En
corresponds to different energy eigenvalues and the

corresponding eigenfunctions Xn er are the solution ofthe
time independent Schrodinger equation

H Un F En Ynet
M e e is called a quantum number Aquantum

number is associated with titian valuesof
an operator Here the operator is the Hamiltonian ord
n are thus the called the energy quantum number

One can have more operatorsforwhich the wavefunction

may become the simultaneous eigenfunction E g
the energy eigenfunctions Yn F may also be a

simultaneous eigenfunction of momentum 15 and or
angular momentum I and so on For each inch

operator say the angular momentum as an example

there will be a discrete eigenvalues and an associated

quantum numbes soy
I I O

Le Yn mot ma Tnm F



Then the wavefunction will have bolt the quantum
numbers Ya Cry Then on each level both energy and
the angular momentum are known It can now be shown

that when y er is a simultaneous eigenfunctionoftwooperations
Hm there two operators commute and hence these two

quantifies can be simultaneously measuredwithout any
uncertainties Another greatadvantageof having quantities sharing
the same eigenstateswith the Hamiltonian is thatsometimessolvingeigenvalue

problem of that quantitymightbe easier than solvingtheHamiltonian
Therefore what Bohrpostulated that the energies ofthe
homie orbits in an Hydrogen atom are quantized and

they are quantized in quantum unit of the quantized
angular momentum can now be identified by the
simultaneous eigenfunction ofthe Hamiltonian operator
and the angularmomentum operator We can now

actually solve the time independent Schrodinger
equation for an hydrogen atom and reproduce the energy
ofthe Bohr's energy lords We will see that notonly
a single angular momentum that is quantized batthe

total angular momentum isalsoquantized and one hone

three quantum numbers En em associatedwith eachorbit
We will actually solve the hydrogen atom problem in details

in this course



In the Hamiltonian I Bin 712 Itv the kinetic
CK potential T energies often donot commute became

often kinetic energy is a function of momentum

while potential energy is often a functionofposition and
since momentum and position do not commute hence
K and I do not commute Therefore even though the

total energy is conserved but the kinetic potential
energies are not individually covered In otherwords

the energy eigenfunctions knit are not a simultaneous

eigenfunction of the kinetic potential energies Plane
ware solution e it n'an eigenstate ofthe momentum

operator and hence is an eigenstate ofthe kinetic energy
term I 172m but as a potential energy is turnedon one

obtains wavepacket which is not an eigenstateofthe
kinetic energy anymore while awarepacket is an

eigenstate ofthe Hamiltonian

wave fondutyhas Ab Ik n t AE 0 A t
t
AE T AL oAO a



This will be discussed in chapter 4

Moreonenergyeisenfunctions

I N E Ennen E d

Its a property of the generic eigenvalue problem that we
hone encountered in Mathematical Physics Course that

all the eigenfunctions are normalizable ei square integrally
and are orthogonal to each other for Hermitian
operator matrix which is what the Hamiltonian is

ie Fdr YECK Ymir 8mm a
a

So the eigenfunctions of an Hermitian operator
forms an Hilbertsface Since Uncas are linearly
independent and complete any general function Xin
be expanded in this complete Hilbert space

X F E É enHY F
N de

E Sdx I X

where Cn t are Complexnumbers constant in space Yn corresponds

to quantized energy eigenvalues If a particle has

energy exactly matches with one ofthe eisenenergy then
the particle will go to that state and stay there forever
But if a particle has any arbitrary energy Ken



the particle will not go to any particular eigenstate but
remain in a superposition state with finiteprobability
cent of being in all eigenstates The rates of en are

determined by the boundary conditions as well as the

average energy ofthe particle
E fax cusHex Xo Jaxget45 Enemy

numbers andcommit

f dy Imneatcm In AYm with It

Ten Mm fromewes

Inmetom Em dating
mn from eq 3

In Knt En

Do determine the time dependence of Cn It we have to

solve the time dependent Schrodinger equation Its clear

that the time dependence shouldonly be in the phase of
Cnet lent et Enttench that fnl remains time independent
in the above expectation value We will learn more

about it in QM I course

I



Farinimiesinitimette
quantum system it goes tothat lad and stays forever they
Hea posses quantum of energy and exhibit quantumbehavior

Usually the elementaryparticles havethose small quantum

energy scales and exhibit quantum behavior Onthe otherhand

when a large body consistingof many many elementary
particles n co23 then their energy momentum becomes

large C1023x h compared to the quantumof energy and
momentum so we don'tsee thequantum nature

y



it
try 272 Ven E Yea y

This is a linear homogenous 2nd order PDE
As long as VG is finite everywhere Tx is also finite
Therefore Roy

d dn are all continuous finite and
analytic functions of n

Since the Hamiltonian is Hermitian so if Yen is an
eigenstate ofH then on is also its eigenstateof it

The Schrodinger equation and the probabilitydensity
and all expectation values remain in variant if me

itiply the wavefunction by a constantphone
This means if we multiply NCH t Yen ei where
d a real and arbitrary Ken T Get 4 May e it

and egg does not change and also See Y N

and expectationvalue 207 dx toy remain

invariant This is like a rotation Imy

in the complex ware functional space ie

This is a symmetry like rotational
symmetry we studied in con and calledthehanse symmetry



Therefore the Schrodinger equation uniquely determines
the amplitude ofthe wave function but theplaneof
the ware function remains arbitrary If we fix thephone
at a givenpoint soy at the boundaryconditionpoints then
He phone is fixed and well defined at all x However
one can only multiply a constant phone eid to the warefunction
but the phone cannot be a dependent Became other

wise the derivative term will acquire a new termdfg
which will change the Hamiltonian Therefore the quantum

theory has a global gang symmetry a constantin space

and time but not always a local gauge symmetry
C local means acast dependent

As mentioned earlier we need two boundary conditions
in space and one

boundary
condition in time to uniquely

determine the

Every system prefers to be in its lowest energy configuration

Therefore for a genericpotential the probability of finding
a particle at the potential minimum with constanttotal

energy E is highest forthegroundstaleenergyThisgives an
intuition on how the realpart of the wavefunction should
look like in a givenpotential profile



The normalisation fi thesquare integrabilitycondition on
the wavefunction fonts constraints on the asymptotic behaviorof
the wavefunction a

2nd Ldn Y a Yen 1

For this integral to converge as a It the wave function

must fall off faster than YI in ID or Y129 in d
dimensiont Because He die fast grows linearly with
N in ID and hence the integrand part hasto decayfaster
than Hel and hence

YinYen I ITE
as a a

Lift

Therefore any potential

energy which makes the
solution

ofthe Schrodinger equation with wavefunction X Ed be

in ID is not a physical and stable solution In this cone

the particle will hone increasing probability dusty
as a It and the particle will never be bounded
One of the example where such an unstable solution
arise is when V a as n Ia so that the particle

goes to lower energy V D as n to and it will never

be bounded and the energy will not be quantized



Therefore the normalization condition alreadymakesthe system

bounded which has implications on the quantization ofenergy

The above condition that the wavefunction must decays
as n In suggests that the wavefunction has to have atleast
one extremum in between where dat 0 and fftedYo
Interestingtily at thepoint where diIdn o the momentum

operator it Ex also goesto zero But the momentum is not
necessarily zero there aless H is also an eigenstate of the
momentum operator From the Schrodingerequation TY
and y have Same opposite sign when Ven E 20

Lo respectively

Therefore what we are seeing as solution of the equation of
motion in quantum mechanics is very differentfrom the
solution of equations of motions in classical or electromagnetism
or statistical mechanics Here the solution of an equation

of motion is an eigenvalue equation and not all solutions

are allowed or physical One ofthe featuresof theeigenvalue
problem is that there are discrete eigenvaluesEnwithcorresponding
eigenfunctions In and all He eigenfunctions are linearly
independent whatthisphyrically mean is that lets take two

energy eigenvalues E Ez milt corresponding eigenfunctions Yid



Ya One cannot continuously deform an eigenfunction Ycry to

obtain Ya lies Its like two orthogonal unit rectors in a

This also implies that one cannot continnonly gofrom E toEz
Therefore all the solution's Yn and En are discrete and there

is no continuous path to gofrom one toanother As we

Said above all eigenstates mustbe normalizable and hence
have atleast one extremum Two

smoltly deform one into another

and thus they are linearly defendant

Since Schrodinger equation is linear in x

then all wavefunctions are linearly dependent smoothly connected to

to a given eigenfunction Y hone the same energy eigenvalue and

thy correspond to the same state For example multiplying K x by
a constant number or a phone donotchange the schrodingereg
and as long as they are normalizable they correspond tothe

same state On the otherhand for example the three stats King
honing 1,2 3 extrema as shown in the above figure are linearly

independent If they correspond tothe solutions ofthe same schrodinger

equation then their energy eigenvalues must bedistinctand
notto be connected with a small deformation ofthe war
functions



So what we have just learned is that the solution ofDie
Schnidinges equation of motion being an eigenvalue gratin
have discrete energies which are unique but their eigenfunctions

are not unique but linearly indefendant and must be
normalizable Colin makes it completelydifferentfrom Her

classical solution nets of Newton's ear whichisunique

A loose analogy between tacit and I 25 as in solutions

of QM ACM respectively can be drawn as follows The
classical solution Tees can be written as a linear combination

of three linearly independent basis 1unit vectors in 3D
The solutions of theQM is a function tenets The eigenstates

are similarly the basis like unit rectors oftte rectorspace1
Hilbertspace Each eigenbasis are linearly aidysendent
and corresponds to discrete energy eigenvalue A

general sontroin then can be written as a linear

superposition of all the eigenbasis stales in the Hilbert

Space corresponding to a Hamiltonian



Werickotentialsandstt

ny
Since the potential goes to a

as set a in this example the

energy is also x and the

particle will roll down to
a then the probability and hence the real partofthe

wavefunction keeps on growing as a t a This is not a

normalizable wave function and the energy is also not

finite This is an unbounded unstable system wewill

not consider such systems

This is a generic.finitepotential

profile with one minima
iat semin is what we

will conlider now for
different values of E Imin
rememberthat any constant 1
energy added to the potential
will not change the eigenvalue eigenfunction spectrum it
will only give a constantshift to all eigenvalues



Noclassical solution existsbecame

g my my
iii is

the extremum of Y does

Eyvindnot exist at any finite
valueof x because

Cen E 4 0Him 0 as

2 increases exceptwhen Yen so which corresponds to an inflection

point Therefore no normalizable ni physicallyacceptable

quantum solan also exists This is an unstable solution

Fthregion the kinetic
is i

and hence a classical

solution exist N t na

are called the classical

tans which bound the classical Iginla region
quantum solutions alsoexistand will beadiscrete setof linearly



independent solutions Yn with discrete energylords En In the

lowestpossible energy Ec which we call groundstate theparticle

will hone higherprobability to be atthe minimumEnergy
frostion is at seinen Hence SGet H 141 i expectedtohave

a maxima at semin which means Yicry will either have a

maximum and minimum at semen Now at amin V E 20

so from the Schrodingerequation Iter y hone opposite

sign So if Y n 20 then Into 0 so it has a minima and
vice versa The ground stat is alsowhen the uncertainty
Ap are rt has the least rake This means it has the largest
wavepacket with least momentum uncertainty The wavefunction
warepacket wilt one extremum satisfythiscondition So we can

roughly sketchthe expected wave function as shown here
Now we see the two functions

Iin red and green here a

maximum or minimum but n

they are linearlydependent Beame
we can multiply the red one with
I to obtain the green one But
a constant multiplication doesnot change the schrodinger eq
and probablydenity So they both are the stained solutions as

far as quantum mechanics goes Weusually choose one of
them Within the classical turningpoint we can hone war functions
with more nudes ei oscillatory scatteringstatus withdifferentenergy



For seal se sea In this region a classicalsolution is

forbidden since momentum becomes imaginary But CA
Schrodinger equation has a valid solution with decaying
Warrepacket also since the ware function is continuous across

the figure Therefore Hei i

to tunnelto the classically

forbidden region although

usually wilt much reduced

probability density on factthe
wave function will tail further in the nan region than in themins

since thepotential barrier is lower in the formerdirectionthan

in the later one This is called quantum tunneling
There will be more possible energy lords and wavefunctions

42 Yy all normatable and orthogonalto Me and we will
discuss them with specific example



CaseII Et u

on this care there is t

only are classical i

turningpoint at a 13
For Naz no classical
solution ispossible Therefore

in this region the particlewill I

l

wall at no and some

part will be transmitted
beyond n but the wavefunction
will decay rapidly But for sea
Here is now no potential barrierand

hen the particle is like a freeparticle plane ware wilt

wilt a slightly n dependentpotential vent Therefore it will
be an damped oscillatory wavefunction with a largerpeak
at amin where the probability of finding the particle
we'll be higher since the energy in minimum Such
wave function which has EE V r positive kinetic energy are

called sea



energy is alwaysfositre
but its position dependent
Therefore the corresponding

1
momentumPexand hence

I
the wavelength X x hipeg

ÉH
Therefore although we ont

solution everywhere
oscillatemore jigglyoscillateto

but there is not fixed
wave length and hen yay

fixedw length

ware function is a superposition of
Severaplane waves with different wavelengths and hence
momentum Fouriermodes The spread in momentum will be
determined by the spread in position according to the uncertainty
principle a pan t So we do get a winepacket here
which is however movingforever and not normalizable
we will learn in next chapter how to normalize back

planewaves



Summary

In summary we have essentially found two sorts of
solutions of the time independent Schrodinger equation

My cry 272 Vix E Yay I

The two possible solutions come from the sign of the R A S
Notice that the dimension of the RHS is IT ei the R its

gives a lengthscale tothe system We can use the lengthscale

to associate it to the wavelength of the wavefunction andfor
to the uncertainty in the position which turns out to bethe

decay lengthscale of the morefunction Let us see that

We have two signs of the R A S

A E Vex classically allowed solutions scattering oscillatory

waves

In this cave the K E of the freeparticle is
reduced by the potential energy but remainspositive
So for the residual K E we can associate a residual

mom of freeparticlemomentum as

E vers at very attend Eat
residual momentum



The particle with residualmomentum is associated with an

wavehector R hence wavelength X whichdepends on n Then
from en d

try titty
The solution of this equation is roughly like a plane

wave free particle one except k is positiondependent if we
take the Fourier transformation of Yen we will find abunch

of wavevectors with spread A k n hlane for theground state
This is precisely what happens in Case III above

B E L V4 Classically forbidden region decayingsolutions

For E e Ven the residual K E is negative

and residual momentum is imaginary Therefore this is

a classically forbidden region But due to uncertainty
principles the quantum particle can tunnel into An region
Because K is imaginary we can define a real number K

as
ke i ke

Then we get from eq t time Xin

This has two solutions n r e for no clearly
e kn blows up as set a and hence we ignore Then we



have a decaying solution Yen r e
k

for a o

Therefore k which has the dimension of inverse length

gives the decay constant of the wavefunction in thin

classically forbidden region In fact la can be found tobe

related to Yan
This is what we saw in Case III on the right hand

side we see that a wavefunction can tunnel to the classically

forbidden region from the classicallyallowed region But

if we have a situation as in Case I where ELvend at

all n wi the entire space is classically forbidden then there

is essentially no positive momentum to begin with and hence the

warefunction will simply decays everywhere in ceasesto exist
This gives an unstable solution Finally Care I was the

only care where both sides had classically forbidden regions

surrounding a classically allowedregion in the middle Therefore

the wavefunction decays on both sides but oscillatory in the
middle and hence the warefunction is properly normalizable

However the oscillatory scattering plane wave by itself
is not normalizable and we will start our next
chapter by this dricussion


