
 

OneDimensionalSchidingerEquation

In the trans chapter we
edit EE E aiqtaei

of motion and we discussed several generalproperties of the
solutions including normalizibility linearlyindependentset of
possible solution's wilt discrete energies Now we will exactly

solve for few famous examples in ID

AIFreefarlich Freeparticle means there is no potential
So the time independent schrodingerequation
is

Tty Imy Indian it Yen t Exact I

Comparing it with the relativistic wave equation for the electro

magnetic wave photos we see Heat non relativistic particles

have ist order time dependence the general solution remains

the same as
Xp A EX ED Be

in É Ik

which constist of two linearly independentsolutions in
position due to it and orderderivativeterm the wave rector
is easily obtained from end as

E KYI p

this isdifference from the relativistic ware er when E ctr



One may
also write egg instead in terms of sin kn cusk'd

but they are the same solutions

The energy eigenvalues only depend on k anddoes not

depend on the sign of k whereas the wavefunctions for t k k

k are linearly independent This is something new that we
have not talked aboutbefore Such solutions are called
degenerate solutions

A B are arbitrary constantstobedetermined Henceforth we will

only focus on the time independentpartwhere Ya D Had éietl

Since E is energy only kinetic energy so k is real and
the solutions e ik and e ikr are always oscillatory in

space ie always propagating and never decays even as

we go to K I So this is goingto cause a problem
in the normalizibility condition that all warefunctionmust
follow Withotloosing generality we only consider one
particular solution say e

ika and make the k variable
extend to t k to k then we have a simplerform to
deal with Ya try c e ikr 4

where c is the constant to be determined I k correspondsto

ware travelling right and leftdirections



It is interesting tosee that Yale is also a simultaneous

eigenfunction wavefunction of the momentum operator
with momentum eigenvalue fo k k as

PY it fit foy 5

This is obvious also because the Hamiltonian I Dtm commutes

with the momentum operator Therefore inthese eigenstates

momentum is fully determined and it has no uncertainty
Ap o So position is completely undetermined Anta

which i expected became the ware is propagating

for ever in space and is not arable so we cannot

define its position Therefore plane waves are alsocalled
momentum eigenstates or simply momentum status

Ikaw Itidn ifdn a Cs

Recall that this was the reason we had to invent warefacket
which was to confine the planewaves in a finite size
Practically this means we have to introduce a confinement

at the two boundaries of a length 2 This introduces a
maximum uncertainty in position to be ant L and finite
Ap also The plane wares reflect back atthe boundary and
create standing waves which are He warepackets



worry about the confiningpotentialist
tt

at the boundary of a box but

onlyallowed within a lengthscaleof l
In reality this shouldbe done byadding a confiningpotential called
particle in a box which creates warepacket but for the timebeing
we will continue to use plane waves andonly restrict theintegralfrom
o to L C this is clearly not a physical B C but rather a
mathematical treatment

findn Kyan et t p

So a Fe wewill notworryabout 1h

phonepartsince any phone
so Rft it c canbe absorbed in Ydue

to its constantflarefreedom
This is called Boxnormalization where o IL Wewill

see that in the example ofparticle in a box problem later by
setting v a inwhich all possible warefunction Yen hereto

vanish at the wall which will quantize thepossible valuesof
R and energy HW Estimate R E forthe longestwavelength

care wing uncertainty principle



Periodic.Boundarycordition
a o

We imagine there is some peridicity in the system due to
atoms molecules sitting at lattice sites in solid statesystems
ett so that the wave function must follow the peridic
boundary condition

The 4 Xen

e ei kl end c e
i kn

e i ki I

MIEN when he 0 Il I 2 i

and the normalization condition becomes

1 Y dn I ca lie

Now we see that the the feridic boundary condition makes k
discrete in unitsof 2011 and here the energy is also

discrete En 2

15 no

HW Is the momentum still conserved or the wavefunctionis

still a simultaneous wave function ofthe momentum operator

Ans Its consered modulo IMI L J



Now we see that k or n are the discrete quantum numbers of
the wavefunction

Yn n I et MI
n

egg

So different valuesof k or n correspondingtodifferent linearly
independent eigenfunctions except In status which are degenerate

and the orthogonal condition becomes

Yn Cn MmCaldn 11 e EnCn D da

Sm n from thedefinition

o of Kroneckerdelta
th



int
gtintdto the boxnormalization discussion

with completely rigid wall vs a

µ ma

I

112 2221 2

Therefore the probabilityof finding É
the particle outside the well is

Icompletelyzero therefore all possible
n

wavefunctions must vanish
at a I 42 Became He 1

potential inside is zero so the solution
s

ofthe schrodinger equation is still
plane wanes with the conditionthat I

only those plane waves solutions are allowed whichhome
nodes at 2 1112 This is to say all the wavelengths
X are integer multiple of L as we may have seen in

the discussions of ware theory in other courses Therefore
the condition

Macy c e
th

o

C o n a trivial solution But there are more non trivial
solutions To find that ont we exploit the freedomof choosing



the wavefunction linearly dependent and gauge flare
freedom to satisfythe boundary condition In fact as we will

see more and more later even for a given potential ei the
Schrodinger equation of motion the form ofthe solution and
hence quantized energy eigenvalues mongchange if we change
the boundary condition To rewrite the general solution in

a form suitable for our boundary conditions we proceedas

Yong A e i ka t B e
i ka

At B as Kx i CA B SinRx I

Then 41144 0 CATB Cos KY I i CA B Sin14 0

C Now we have two choices A B sink 0

R It n 2,46
or A B Cos Kt 0

k ME n 113,5

we donotnecessarily have to consider the negative n values

since those negative n values are obtained frompositive n values

by changingthe sign of A B So they are not linearly
independent

solutions

Therefore we have two sets of linearly independent
solutions for even odd integers of n therefore the

momenta and hence wavelengths are quantized for a



particle in a box and the corresponding quantized

energies are

43EE.ieIf
Its easytoprove that the eigenstates are orthogonal and

they can be normalized as

I dn Un Um L so wederide the

eigenstates by la which gives orthonormalized eigenstates

Parity 8 We notice that the alternative eigenstates being
coskx a sinkx are even and odd functions of
no This is actually not a coincidence It actually
comes from the symmetry of the Hamiltonian itself

You take all points ndo in the Hamiltonian and invert
a H then yousee that the potentialprofile remains
unchanged If the Hamiltonian has a symmetry then the

eigenstatesalso have the same symmetry In otherwords theeigenstates

ofthe Hamiltonian is also a simultaneous eigenstate oftte
operator representing that symmetry This symmetry is called

parity Lets say p is the symmetry operator whosejob
is to invert the position variable a to se in the eigenstate



So P is defined as PYn n Yne a XD

IDon't look for any mathematical form of the Poperator Hs
an abstract operator whosejob is to invert all n to se then

apply P again on Egly to obtain
P2Yn n PUne n Yn ng

So Yn n is an eisenstateof p with eigenvalue l since

P is an Hermitian operator whoseeigenvalues are real

so the eigenvalues of P can be Il So weget
P Ya la In Ga I told

where 1 1 eigenvalues correspond to the eren odd
valves of n Therefore owingto the parity symmetry ofthe
Hamiltonian the eigenfunctions are also eigenfunctionsof
the parity operator and hence each eigenstates hone well

defined parity either even or odd in spatial inversion
If a Hamiltonian does nothone the parity a spatial
inversion symmetry then the eigenfunctions also don't
have this symmetry as the eigenstates are not purely odd
or even in spatial inversion but a linear combination

of Item

AI l Assume thepotential i now shifted to k e at
Nz 0 I and VCH o for O LKL Does His system

hone parity



2 Estimate the ground state energy ofthe Hamiltonian
ei E Ift from the uncertainlyprinciple

3 Extend the calculation to 3D find the degeneracy
in each energy levels



c FinitePotentialwet

Next we will consider a

finite potential well means

negative potential Although

this is more of an idealized

potentialprofile but the conclusions

drown here are imitatively similar to the Yukawa potential
profile attractive potential We are interested in two energy
solutions Edo and Vo E 10 The solution of the first care is

easy to guess that because of the positive kinetic energy the solution's

will be plane wore like wilt slightmodification dueto the

potential Such solutions are called scatteringsolution became as if
a free particle is being scattered by the potential well although one

might say here that the particle is being attracted towards the

potential well Then the question would be can theparticle aviod

the attractive potential and jump to the otherside or become

trapped at the well Charly it depends on thepotentialheightVo
and width L

The Eco situation is interesting outside the well we

hone negative K E and inside thewell positive K E So the solutions

will be decayingoutsidethe well classically forbidden region and

oscillatory inside thewell Each oscillation with different wavelength



which corresponds to linearly independent solutions will have different
quanta of energy which are the energy eigenvalues
Do larger war length or spreadoftte warepacket correspond to

lower energy or the otherway Its mostly the wave packetwith

larger spread uncertainty inposition and hence lies spreadin
momenta correspond to the lower energystates the groundstate

often reaches the optimum uncertainty a pan t Oneshould

not take this conditionblindly in the future coursessince for
complicated potential profile and also when potential depends
on momentum like a chargeparticle in a magnetic field
things can start looking differently although ground state

having optimum uncertainty At Ax it is very muchthe care
in most cases

Because the potential and hence the Hamiltonian has
inversion x e symmetry so all eigenstates will hone

definite parity The groundstate war function will hone

one maximum at 2 0 where theprobabilitydensity shouldbe

maximum So we can sketch the wave functions in bolt

cones as follows



É
E

Ya I th

inftion i

him Wim Aiff
Inside warepacket

Inside wavepacket outside

decaying solutionoutside plane ware like

can we do the same we can use the uncertainty
him principle to estimate the

grind state energy



Nino it turn back to solving the Schrodinger equation

exactly We first consider the Vo LE 40 case

It TI Vo N n E Nen

If 272 Vo t E ten Letsput rolo
R E El

We hone three regions I I II where

potentialpens on me mind
I

Itand we hone exactsolutions At

the boundaries the potential rises

sharply So insteadof salving at the

boundary we will use the boundary
condition of continuityof wave fraction and its firstderivative
to obtain its value at the boundary

Region I N 42

Region III a 4
Vent 0 E El

If MEI Xin

W Y r 2

Where In IZMIT
K has the dimension of inverse length so it associatedwith decaying
length scale of the ware packetand uncertainty



So thegeneralsolutions are

YICD A e
t

B e kN No i'in
exponent

Y G c e
k

t D e kn

As a a in region I e k blows up So to have normalization

condition satisfied A 0 Similarly D 0 So we have

Qbmail.se 7

i
Region It 27g Nol ED Yen 0

R Ner when K Mtf
General solution is

MaG E e
ik

t F'e ikr

This solution does not have a well defined parity Since
the potentialprofile is symmetric under inversion so we

anticipate that all solutions will be either even or odd under

parity infact alternative solutions will be even s odd So

its convenient to write inthe sin ka curlbad form

Teenie 40
For alternating eigenstates E F are expected to be zero



We will evaluate the coefficients B C E F by the boundary
conditions

C Y C 42 Y CUS

B e 42 E costkt F sin Rt Raj

YI LIL YI 42

E cosCt tf sin E B e Wh Eb

Ii If a 42 Intlnews
K B e 1h42 E since t Fcos E Ed

e diet my If mark

E sin E tf cos E KB e 42 sd

For even eigenstates F o Ik ktanf fay
For odd eigenstate E o fke kco.tl1 65

Ears a 65 put constraints on the allowed values of the

plane ware solutions ie on the values of k separately forthe
even and odd state Typically a plane ware solution has
continuous values of k and hence'YÉegy But as a boundary

condition is imposed only certain set of discrete k values



become allowed which for warepacket with uncertainty
in position which is oftheorderof the width ofthepotential
well l In fact the spreadof the warepacket is encoded
in the parameter K Notice that the hers the dimension

of Length inverse It roughly gives us a length scale
where the warepacketvanishes outside the well therefore
the t An Tk then gives us the spreadof momentum across
its mean wore rector We can see that easilyfortheground
state

T The ground state corresponds to largewavelength ei small

waverector R For k to tanCky2 n 1242 Hencefrom eq as

we get K x k 2 Now the K E of theparticle is EMILIE
time Now the average momentum of theparticle in the

ground state is zero So theuncertainty in momentum

Ap JayLT at h EE Therefore the uncertainty

inposition is Aunt EI Since the maximumuncertainty in

the groundstat is of the orderof t hence K EE
From here we can also estimate the groundstateenergy

as follows Weknow that
An

ro e EE EE É Intel FE
therefore 1 1 47,432 An T

We will seebelow that this groundstate energymatcheswith theyexact calculation



instates Our next stopis to solve earsboarded
and find out the values of K and hence

the energy eigenvalues which are the allowedsolutions Its not

possible to solve ears Ga Qb analytically The idea is at what

valves of energy E the kits I L.lt'smatch For that we can

plot ktank42 vs E and K vs E and their intersectionpoint
give the even eigenvalues Similarly forthe odd solutions

From eq a

tan E E KEEFE
FEE

WET a

whine w PIE is a dimensionless parameter

depends on system lot and
particle's mass

We know that tann is a transcendental function defined
between My2 tann 1 21 for n integer and ne k 2 at
potof Rtt S FEI is shown by blue line Therefore

depending on the valves of W the Rtt S function crosses

only certain positive integer numberof fans which gives the
finite number of quantized energy We notice that

R.H.snkt W k at whichputsthe



t

k k

upper limit on the ware rectork We notice that as n so tannen

and MET tann an so e home w a Nit ni both

sideshone the same sign therefore there will always be atleast

one solution nomatter how small k This means there will

always eboundstate solution in a potential well suckthat
Heparticle will be confined inside the well andthe wavefunctionwill

die off fast We will see that bygoingto the narrow potentialwell
limit below But even for a boundstate the wavefunction spreads
outside thepotential well and theprobability of finding the
particle outside the well is finite which will not bethe case

for a classical particles



For odd paritysontions we have the similar result

We see that it is defined
between no to KeDt and
hence it takes the odd

integer if we rewrite inthe previous
form If we make k42292
the Rttas misses to cross the

cot442 line and hence no
FF T É

energy solutions This is the III
reason the odd parity or got
solution does not give a

ground state solution but it gives the first excitedstate and
all odd parity excited states

Summery For ELO we have tworegions Inside thepotwell

K E n positive and we have scattering oscillatory wanewith warerector

12 Outside the well we hare ve k E andhence decayingwarewith

decay length É Continuityof wet andandderivative gives a relation
between k k k saying not all waverectors are possibleand that
restriction quantizes energy Small k in larger wavelength always
correspond to lower energy Ground state has highest warelengthand

ist excited state has smaller ware length and so on In all cases

the wof spreadout ofthe well implyingthattheparticle has finite
probability of simultaneously being outside thewell



We can take two limits here Ref Marzbecker ch 6

I WidekDeefwed 8 We first consider to a limit
with L removing finite This makes Wta on this cane

the R Its FIT Onthe L HS we have tanx x x as

a Cnt 2 This quantize k as RE Get t 2

Therefore we get

Yo Enl Hat Em.ee

IMIEnl voCtytEEIh
n 0 2 4

Books write it as as E two n'Kfir where E is
assumed to be ve I have just substituted E IEl and

n runs from 1,3 J

Remarkably n o the ground statesolution matches well
with the result obtained in eq using the uncertainly

principle



Ware functions

Infiniteloot
well

Finitepot
well

we see that as we increase Vo the decay length kitdecrearis

this means the spread ofthe wavefunction keeps on decreasing
and the wave function becomes confined inside thepotential

well and hence we reproducethe results from our forevions

example



II.Dellafunctionfotential Another interesting limit is to
take Vo a while at the same time L t o such a waythat
the area under the potential cure I remains finite
This actually takes us to the delta tunction potential limit as

Ven fi Vol gStaVote fig
9

watchoutthe
problem withdimension

J gson
so in the tan Kt ht the RittsMyp L jpg

g my i
we hone orebourndstate but

no excited status because cot kya line is
not crossed by the Ert line The bound ground stat

energy can still be estimated from the same uncertaintyprinciple
In the k to limit fromegga K ktan t 1742

Now we m BE KI MEI ME

So K MY t This gives

If E EE EE



Thus the attractive ID deltafunction supports onlyonebond
state which is the ground state energy

W.ec obtanthresfsom full calculations
The schnidinger equation is

44 272 E 8863 414 2

We continueto call region I no region III n 0 whereas

where region II is now a line
In both regions I II we hone V91 O E let

so ddt 24 y k y B

where K JEFE corresponding

to the inversere decay length
Solutions in two regions are

for neo Yaaµ n He k
t Be

Cazx cry C e
k
Ye ka for no

clearly Ae
ta a as k a a and De a as nta

so for the wavefunctions tobe normalizable A D havetovanish

unconfined at no This gives B c

So we art YE n B et kn fig



But here the difference is that the first derivative of the
wave function in discontinuous a step function Become it

and derivative following the Schrodingerequation has a
singularity divergence at no Sera we know that a

delta function can also be denoted by the derivative

of a step function so we can anticipate that as are remove

a derivative term from the schrodinger equation we will

get the step function so we can write

1
see

Vin gsexy g Ge
Then we integrate both sides ofthe

Schrodinger equation from a to E

E to ta where E is an infitesimal number This gives
d
z ME Et

gsujy.EE

i T
From eyes we get

1 2B ke
t la

2K Tcg H
therefore from ear we get k 71
Then the ground state energy is

1E 1 39I est which issameasEge



I TIn this case the kinetic energy

ofthe particle is always positive
with an increase in kinetic energy in region II Therefore
the problem can be thought of as a scatteringproblem
particle like behaviorof a plane wave in which the

potential well serves as a scatterer which gives removes

energy oftheparticle
In region IRI we have free particles whose

solutions are

Malay Aei kn e B e ikr g

YAI en C e K t D e IRA 2

Where K ftp
In region I we have

Egil em MEC Vo E Y CH

K Y G

Y n E e
ik

F e
i kn G

whine k f2MEÉ
So all three solutions are oscillatory



The interpretations of the coefficients A B C D EF are as

follows A is theamplitude of 1

an incoming wane and B is
t

the amplitude of the reflected
ware from the potential well Ere
C D follow similarly I 42 I

42
II

We will not be interested in the eigenvalue problem here
Rather the present interest is a scatteringproblem We start
with an incoming ware with amplitude A and c is the outgoing

or transmitted ware from the scatteringpotential while

B is the amplitude of the reflected wave For such an

initical condition D 0 and the relation between C and AB

will be bridged by E F and the warerectors k k
To figure out the relations we employ the boundary

condition ri the continuity of the wavefunctionand its derivative
at the two walls
At 2 42

YI C42 Y C42

A e ik42 B et kill E e it42 Fei 42 yay

DIII y Film in

A e ik42 Beira e e
it k Feit4 us

Define Ke Ik I k s OE KIL



brei Keitt i seI th k éitt meth
H W

At n 42

Y 42 Y C42

E et 42 f e
ik'm a c e

ik
de ikke Gay

It now IFI n 42
E e't f e

ik th
by ceiba perkily

ed

f
te't meta
Keitt Keio f

Combining egg and we get

i I IM21

where

My ME cos All if sin ki elk
Miz ME II single

fay
b

where E Mr th y kn th



As we mentioned we assume the care where a wave is
incident from the left and there is no wonee incident

from right So D 0

Then we get

es

I It sgii.IE s n Eob

Now recall our definition that A is the incidentware's

amplitude while C B are the transmitted and reflectedwars

Therefore He bansmissiondreflection efficient are

defined as
T É j R III H

FAI show Hal THREAT J
T cosktitsink't

it J was

a E tEsITnE
HIIIII as



We notice that the 1 whichis in contradiction to the

expected classical result in which the particle shouldfully

Ii

Clearly transmission starts as El o With increasing energy
the transmission probability oscillates sharply at the beginning with
the maximum value reaching at T l From eqkaj we see
that maximum transmission occurs when sin k t 0 ie

R L NT N I 1,2 3

This condition is satisfied when the wave I and the

reflected wave Is are completely outof phase differ by
at phone theyhave an destructive interference Therefore

the wave cannot reflectfromthe wall at 2 0 2 and the

wave passthroughthe wall This is sometimes called anti
loci in thesense that when a particle loosesits

momentum via scattering it is said tobe localized But here



due to desortuctive interference no scattering or localization

occurs We can find out the energy levels ofthe well as

E VE Efm ftp.gnn

The minimum transmission occurs when K'la n 2

As E ta we reach the classical limit where to 1

As Vo a the transimission coefficient t o as we can

infer from eq 124 However as the resonancecondition Kent
is reached the potential term exactlyvanishes and we hone a

complete reflection



n Ven
D Potential Barrier d i

V o 1Quantum F

I Il I

42 42 nNext we consider a finite
potential barrier as defined

by Vcu yo yo for 422kHz
o otherwise

For El Vo we hone positive kinetic energy at all x and

hence it oscillatory everywhere with lessprobabilityof Anparticle
to be in the finite potential region The solutions are bunch

of plane ware like solutions called scatteringsolutions We will
not consider this car any further
for 09 E LNo we hone three regions I I I as shown

in figure Themotivation ofthis problem is not tostudy eisenenergy
normalisibilityof eigenstates etc but to demonstrate the quantum
funneling between region III via a potential barrier which

classicallyforbid tunnelingof classicalparticle with re K E

The Schidingerequation in three regions are

dry
III a q 2thhE y cry tf read

where KK 2MEif E had
dry

am



I IF EECE V Yin

K ten when k 2mfÉ yo
since EL Vo

Therefore k is
imaginary

we define tin whenkf'm g
The solutions of the above two Schrodinger equations are

easily obtained as
I Ya n A e

i ka B e ikr
too k 42

III Ya G C e Kat D e i ka for a 42

I Y Cry E e
t
t F et for z Lil

I

The interpretation of these wÉ É Éesolutions are as follows
In region one we have

an incident plane wave

of amplitude Al and a

reflected plane ware from the barrier at se 42 milt

amplitude 1131 The plane wave however becomes

decaying growingsolutions inside the barrier with

correspondingamplitudes El R IFI respectively Mostly it will

decay with El F1 Then the particle ware will

transmit through the other wall at n 42 and become

again a plane wave with amplitude CI and some part



of it will be incoming inregion II with amplitude Dl

This problem starts looking similar to the care of a
propagating wave is being hit on a transparent glassplane

and we are asking how much light ware pass through
the plate and how much is being reflected absorption

In fact this is indeed the case for the particle's wave nature
and the potential energy no stands forthe transparencyof
the plate There quantum particle can tunnelthrough a potential

barrier while a classicalparticle cannotdueto negative K E

Our focus here will beto study an incident particle from
region I with amplitude Al how much it transmit to the

region III is 41 7 In the classical limit 19 0 But

quantummechanics allows tunneling emit negative K E Its

clear that the tunneling probability depends on K

which measures the amplitudeof K E and the widthofthe

barrier In fact the parameter K has the dimensionof
inverse length I E and it roughly measures the

decaylength of the wave In other words it roughly
measures how far the wave can travels before it ceases to
exists ie how far the wave can tunnel for a given
negative K E



Clearly a rough lengthscale for the tunneling to occur
is when the decay length É is smaller than the width

ofthe barrier diet gal h

or É Lt

2 771
This suggests even for a particle ofmass'm with E O

it can tunnel a distance of 2 ofpotential barrier to it

24117,2
4

capacity

This dimensionless quantity 2mn11 is called opacity or inversers e

transparency

This tunneling is happening because of He quantum
nature ofthe particle ri due to having an uncertainty
in the valueof its positionand momentum Became of the
uncertainty in position Ah there ai a probability of finding
the particle about An around it mean position This means

the wave function is spread atleast bythis amount ofAse This

uncertainty in position is the cause of the tunneling and
clearly if An LL then there is a finite probability of



findingthe particle on the otherside ofthe barrier The
uncertainty Are depends on the barrier height Vo Infact
the decay length at is the measure of this uncertainty to
see that we start with An n Ap Now the

momentum unertainty at FT Lamest FEET
so we

ftp.f from era

Associated with the decaylength there is then a decay time
I n Mo n fu where re I isthe phasevelocity group
velocity ofthe particle we get

a to Ear FEE FEE
YEE where AE nLET



Let us now return to ear and obtain the coefficients A f

by using boundary conditions
The wavefunction and its ist derivative must be continuous

at all positions
At n 42 I KI C421 VIII 44 G a

dd
n yi fefetn.ie ED

A e
i k44 B e i k42 E e

k42 ee
k42

ED A e
ik42 B e

i k42
1 Eek42 f e k421

Define a complex quantity of Lk tile Then we hone

q e iWL ga e i arL

CI tetra e u
are

c I ed

similarly at me 42 we match it x and theirderivatives

niWL
or e

Eet t Il L ai
or e qe

By combining ears 6 we can get a relationbetween
A B c D which will tell us how much were function

bass through the barrier and how much a reflected

back so we set Ag
M 2

fM21
1422

where Mu Ms cosh k l t SinhkD e
i Kl

Miz ME i Sinh KL

and q LI ka j y Inthe N e 4



A B are the incident and
reflected wave's amplitudes

C D are the transmitted and

Nz 42 wall

We will assume that there is incident wane fromthe right

gie D 0 Then we get

Iiiine ca

Then the transmission coefficient isdefined as

T 91 lo

it w compute the reflection coefficient at the n 42

wall defined as R I andshow thatRIETI

it with u

This is the stickingfeatureofquantum mechanics wave native

that theparticle can tunnel or transmit through a potential barrier



Its like if we put two metals where FLIGHT
electrons are free and sandwich betweenthem an insulator
then the election can tunnel between them If we connect the

two metals with an ampmeter we will be able to measure
a finite usuallyvery small current The currentdimity
that will be transmitted is JE v19 while He current

that will be reflected back is Jr VCA BD where

re TRIM isthe phase velocity This is the mechanismusedin
the experiment called ScanningTunneling Microscopy where a

metallic tip is scanned slightly above a metallic sample but
He tip is not toned with a sample omg
a potential barrier between the metallictipand
the sample

Typically the average current will bezero and one needsto
provide some bias voltage to give the extra k E er increase

E close to Yo

This is obvious that as E 0 the fransimission to 0 and
T monotonically increases with E As E t Vo k so the

transmission cofficient becomes

T him
E Vo

t g

This dimensionlessquantity DII was defined above

called the opacity or inverse transparency of the barrier



ID In the limit of high large 110 and wide large12
barrier where theopacity is high we have K2551 and

2binh KL 226 shWL a e and we obtain

T I 16 e
t Rygg

16541 e
t

very small

This formula is often used in ScanningTunneling

Microscopy experiment to fit the data so the tunneling is
also suppressed exponentially with the lengthscale of Kt as the
wave function dues

2 In another limit of high large to but narrow smalls barrier

KIKI and we have Sinh kin Kh

e É aT HIIIII
So there is small butfinite
tunneling for E LVo



V N

43 Dellafunction Potentid
1

We now think of shrinking the

widthof the above potential barrier L t o

and simultaneously we take Vo t a such that at theproduct
Vol whichis the area under the potential barrier remains

finite Lets call this area as g Vol In this limit the
above narrow potential barrier is denoted by a 8 function

Va I
Vol g 8cm a

Although a dirac delta function is not a function in the usual

sense its integral represents a valid quantity Such f function

potentials arise as impurity disorder scatterers in solidstale
metals in which the electrons are free but we are askinghow
do they scatter off from point defects or imparity atomsele
Think of a co metallic wine There are defects impurities
in system It electrons were classical particles then theywould

have scattered back from impurities and we wouldhave never

obtain any current But thanks to the quantum natureof
electrons we hone finite funneling of electrons from such
narrow potential barrier delta functions and we obtainfinite
current



For the delta function potential the condition Kiki is

still obeyed Therefore the transmission coefficient is

given by WH

Hetty I

The currentdainty MATT remainsfinite
OLAFLBP

THW Solve the delta function potential problem
exactly as we did forthe negative f fu potential

D4 HW Solve for the care when E Vo



ESimpleHarmonictataks
Sofar we have only considered constantpotentials confinedin
a particular region We will now consider a position dependent

potential vent Unfortunately there are not many potentials that we

can solve exactly and only handfulofpotential that hasexact
solutions For example simple harmonics oscillator singleparticle is a
Coulomb potential changeparticle in a magneticfield We will
solve the first two problems in this course while the last can be
salved using the tricks learned in the firstproblem and will be
fought in othercourses

atmy continuous potential very at a minimum can be

approximated by a Harmonic oscillator as follows
ringWe can Taylorexpandthe potential

v
near the minimum for K not Ll range

as

vis roo dailyno
noO

dawn no t okn no
attthe mini men In so Veno gives an overall shift tothe

potential which eventually shifts all the energy values by a
constantvalue this shift does not change the overall result
and does not appear at the wavefunction This is called the



zero point energy So without lootinggenerality we set

Veno o We also shift no 20 by just a simple shiftof
reference frame Finally we define If not I k where
I gives the spring constant Then we hone the simple
Harmonic oscillator potential

VCH Ikot Ey

This is a goodapproximation to the potential as long as the

energy E ofthesystem is close to Vero suchthat the classical

trunting points food not41 The potential in era is again
plotted here we will no longer
concern ourselves with the limit onme

and just solve ewes as a

general potential given to us

1 g
The classical energy is

E atm I kN Kam et man a

where we define a frequency wa Tm This gives an

elliptical constant energy contour on the phone phase but
the particle can take any continuous energy
This is the motionof a particle attached to
a string which then oscillates around its



equilibrium position which we set to be at no we

have also studied many particles attached with each
other with springs and then we have seen that there are

normal resonance modes of vibrations inwhich all particles

vibrate together

Atoms in solid can also be modelled by collectionof
small particles of A size attached with each other n a

spring in a periodic manner Their collective vibrations

give similar normal modes w but became the atoms are
small in size and theirdistances are in the Ad scales their
vibrations exhibitquantum mechanicalnature Then these
vibrational waves have particle dualnature which are

called phonon

Here we are only interested in one atomb vibrations To

go from classical to quantum mechanics we need tomake
n p as operator which do not commute anymore

He Edm Imine y

III rt's mung y

with Cn pi it



So Hat In At t M M

see that onlydiscrete setof energy
contours will now be allowed fir a hwonly those solutions are normalizable

and physically acceptable Then discrete

energy contours are separated in unitsof t w as we can

anticipate from our introductory lectures because the phonespace

I decretized dueto uncertaintyprinciple and the smallest area

possible is a h So all the energy contourshereto be separated

in unit of h and w comes on ride bolt dueto dimensional

reason and also to incorporatethe information about the

potential According to correspondence principles as h to

we should get the classical result which we indeedget

We can first try to estimate the lowestpossible energy
which has to be KW occupying Ae lowest possible area of
the phonespace from the uncertaintyprinciple In all the previous

examples there was a clear lengthscale in theproblem and
we said the maximum uncertainty in position in thatbush
scale In the present care the potential is growing
to infininity and there is no obvious lengthscale in the

problem If we fix the total energy E then there is a

lengthscale in the distance between the classical



turningpoints where the kinetic energy goes to hero Became
the wave function must decoy outside the classical
turningpoint due to negative K E so thislengthscale can

justify a maximum uncertainty in position You will check

yoursolve that theresult below is reproducible or not wilt
this lightscale Now we will not attune any fixed energy
and try to obtain the lowestpossible energy

To estimate the uncertainty in resp we need to

have some idea of how theground state should looklike
First thing we notice from egg is that the Hamiltonian is

invariant under no 2 ei its eigenstates hone definite
parity Now the ground stat energy is when the particle spends

most time at the potential minimum Therefore the

probability density say has a maximum at the potential
minimum n o and has one extremum become the

ground state energy is something which have the largest

spread of it warepacket so the ground state wave function
in even under parity with this information we can now

estimate An A p AN MET and so on

ng JIN YEN T YOU 0 because this
a

47 Lian Meng Ta yo yo f
this is an odd
integral



So An n B Similarly 47 should also be zero
become otherwise the particle will get out ofAn spring if
it a finite average momentum tobe finite Hence at Ekg
Then the expectationvalue of the Mamikonian which gives us
the energy is

day LaFdm t Im HY
InhabitImwvCasey

Interestingly the average energy isdeterminedbythe

spread in position momentum But both and Alo are in Ite

numerator and one could expect the energy is ininimized when
both an o Ab o But that opposite to what we expectfrom
the uncertainly forineifle that if An o then Alo a and vice

versa This would then rather maximize the energy So the

system will make a compromise between Items We have

said that the ground state is obtained when a fan hk
so we substitute Ap n t I am in eg

E ImgIngs Iz
MwrCID2

Then we minimize E with respect to Ar

d E i ti 2

In ImFagged
M WAK o

cans4 qmh es



t
I Iiso we get Fgroundstale Ink JimW zm.tw

It w

This is consistent with the smallest phone space area in both

position momentum as well as in E vs t whine w MTT

in the angular frequency and it is the time ferrod therefore
the ground state enemy is obtained by the

µtime period it takes to complete a single
rotation's in the smallest Khan space area One h

may ask will thenext energy level be obtained
by the time it takes to completetwo rotations Shri sometimes

works but not always The reason being this sort of
quantization via phone space volume in the Bohr Sommerfeld
quantization procedure Wich we categories as old quantum

theory It turns out that not all the integer multiple
solutions of n tw h htt a a normalizable and or orthogonal

solutions of the schnidinger equations Thatwhat we have
seen in other examples where energy quantization's are obtained

in units of n 1st etc Therefore accordingto new

quantum Trg the normalizability and other boundary
conditions fats constraint on Its possible solutionsand that
quantises He energy ein raters We will see it again

for the simple Harmonic oscillator



From eq 5 we now have a lengthscale as the optimum
uncertainty ofthe ground stole wave function we denote it as
I defined by i pan FEW
I Notice that a factorof a i added justfor future convenience
Is this same as the distance between thetwo classicalturning

points nel 2 Its defined by the chitances where E kid
er where momentum vanishes Kee FI JI
Mma I where we have substituted E kwh W JEM

so it indeed the classical turningpoint that determines
the maximum uncertainty in position



Interestingly we can solve the Schrodinger equation exactly

as a differential equation solution

at day man Ex

One thing we notice is that the potential keepsgrowing
forever Therefore whatever the energy is there is a classical

turning point and the wavefunction will decay outside the
classical turningpoint The decay length is a Kt Ew
Therefore there will always be bound state or localized state

in this system From all the knowledge sofar we expeft the
wave function should decay as e

t in the asymptotic
limit of set In We will howeversee a slightly different
form ie a Gaussian form e as n It This function

also has the variance kit Inside the classical turningpoint
the kinetic energy is position and hence we expect oscillatory

solutions wavepackets milt quantizedwavelength

Before we plunged into solving it we will first try to

simplify the look of the above differential equation by
cleaning it up be redefining the position variable in termsof
a dimensionless variable u

M Kun FIL n



I sort of choice of dimensionless variable choice is very
useful in physicsfor both tomake the equation's looksimpler as

well as to be able to put it in a computer But if we want
to solve eyes its too annoying to put the valuesof t 10

m 10 31 etc In fact in most cases these numbers are even

Smaller than the smallest numbers any computer can handle

Therefore choosing a dimensionless variable always ganreenteeto
make it solvable For that purpose we hone one problem ei to

find a lengthscale which can hide all the unnecessary
variables Luckily we hone a length scale in our problem fora
given energy in I J

Substituting n ul k in egos we get

Egm digit I was Emas

Next we substitute I IT which gives

Ig dfa It w w y Ey

Ey n y Ew t N Y

where N Éw a dimensional number We call it



M but right now there is no constraint on the possible
valuesof N Thisform E ten however does indicate how

the energy eigenvalues are goingto look like The boundary
conditions will put constraints on the allowed valuesof n and
hence we will obtain the quantization condition

So the differential eq we hone is

turf a

Usually we solve differentialequations by series method
which gives some finite infinite series solution in powersof
U Then as u increases many ofthese series diverges and we

have a radius of convergence i e some limit on themaximum

value of u uptowhich the series is defined Here we cannot

put inch sharp cutoff on u since the potential ismonotonically

growing in n We hope there is also exponentialpartrelated
above the classical turningpoint which decays fasterthan the

growing power series
then the wavefunction will be normazible

so we first study the asymptotic behavior as I a since

n in a dimensionless constant it remains finite as at Ia so

the differential equation can be written as

It I WN God



This doesnot have a powerlawsolution became I AS decreases

two powers of u while R AS increases twopowers Ontheotherhand

a function of the form É will work became the and order

differential term on the L AS home to generate two powers of u

which exponential of this form can generate So we take an

ansatt as the general solution

Tcu flu é D

We only consider e became thats the solutionwhich will

be normalizable We do expect thattea will be a polynomial

substituting eyes inCos we get

data an data ten 1 t o

This is atally a well knowndifferential equation Hermite's PDE
Its solutions are well known and studied in detailsin

the Malt Phys cowese Here we'll focus more onthe solution'sphysical

properties and origin of quantization

First thing we notice isthat the original Schrodinger equation

is invariant under inversion no n So thesolutions musthave

definite parity ri they are even e odd under nt se Now

in eq a e is always even under u s h Therefore findmust

be even odd also underparity This is also clearfrom the invariance

of the Hermite equations underparity ust w



We solve it in the standard series solutionmethod by
assuming

g Ig us B

where J are positive integers became for negative integer Fed
will hone singularity at u o which we don'twant Wesubstitute

eq B in 2 and collect for n th term as

If I ta ja Ajtz Giel N aj W O fly

slow since all a terms are linearly independent therefore if
He sum of a series of linearly independent function goestown
then every coefficient must vanish This gives as the recursion

relation as
aier 3 IEad H

We notice in the recursion relation that became it skips
one coefficient in between we need to set two initial values

no and a and then every other terms are determined This

is not a problem because Schrodinger eq is and order and we

always need to boundary conditions

We also observe that because only even and odd

parity solutions are allowed Hereford in each ware function



either all even terms or all odd terms will contribute

but both will not contribute simultaneously In otherwords

when no to a 0 and we hone even solutions fern
and when no 0 9,40 we hone odd Holston's fodd
Then essentially we have only one free parameter ao or a

which can be determined by the normalization condition

But there is still a serious problem with the general

solutions The infinite series flu does notdivergeslowerthan
the e M term converge we can check the convergence
rateby looking at the ratio between 9jez and aj in the

limit j a which gives

t.ge Esu
So the coefficientdecrease as 10 but wehone the w term too

Letsalso check how e Y term converges

e Ma É t.EE
If I ft

wk
wedefine 2k J
where Jtakes
even integer

For Is E hi

Eoa as u
Same series as

to



Then It uh
ah nk

Rt's
at uh

Therefore both flu and e N divergeand converge respectively
at the same rate in powers of it therefore the series never

converges as we integrate from a to a in otherwords all
solutions are not normazable

There is however a hope From eves we see that

if any ofthe coefficient ages becomes Zero at some n't
term then all subsequenthigher coeffients also vanishes Therefore
the series will terminate at a finite n't term From the
recursion relations it clear that it terminates if it takes
interger ralus such that

Dt2 k where n o 1 2

recall that the energy is defined as

1E kdn twUÉ H
N I 0 1 2

Therefore He normalizibityrequirement ofthe war function
demands that not all energy eigenvalues are allowed but only
those values which turn out tobe integer multiple of tw are



normalizable and hence providesphysical solutions This ishow

the quantization of the energy levels arise in modernquantumtheory
The overall shift of KW2 is called the zero pointenergyand
it makes the ground stat energy for noo to be finite
We can draw those allowed values of the energy onthe
potential profile as Energy

r very I main

I

il
Éi

nil
1

We see thatevery energylevels hare differentclassical turningpoints

and hence the corresponding wavefunction will have different spread
or uncertainty Since the uncertainty is oftheorder of nel its

obvious that the ground state has least uncertainty



Wavefunctions o The corresponding wanefunction fortheabove

eigenvalues are the solution of the following differential equation

9ft an data an fn o I

This differential equation a called Hermite's differentialequation

and its solutions are called Hermitepolynomials denotedby
th E An in We can actually evaluate all coefficients an of
fn fromthe recursion relation except the constant ao for the

even valuesof h and as for odd wavefunctions This constant
canbe evaluated by the normalization constant TheHermite
polynomials are actually orthonormalized wilt the weightfactor
e Was defined by

giant itmay e du 2 n a 8mn

Then the full wavefunction of the Schrodingereq is

14 NnAn1yém2 where u Km

Interestingly the weight factor é turns out to bethe haussian

parton wanna mat www is ÉÉ
matically orthonormalized as fat casementdu Hi 8mn

N



where Nn FF
So we write the full wavefunction as

iF t
H Alternative Hermit
H u 2W polynomials are even

Hz In 4W 2 and odd underfairly
Hz h 842 12u

as expected

I these Hermit polynomials can alternatively obtained from the

Generating function

acu y e that I p And
We can plot some of these ware functions



I

Alternative wavefunctions are even odd as expected Evenstats
here amaximum at n 0 and odd stats vanishes at no They
are oscillatory inside the corresponding classical turningpoint
while they decay exponentially outside it To see that we

refolot the above eigenfunctions on top of the potentialprofileand

shift each eigenstates vertically up justonlyforvisualization

purpose

I I even

I odd

I even

I ood

i i even

d oXdy

As expected the classicalturningpoint increases with increasing
energy levels and the corresponding wave function is oscillatory inside

and decaying astride The number of extremum increases with increasing



energy lords The spread uncertaintyof the wavefunctionforeach
energy level is still determined by the corresponding ad

Iw 1 c Show with explicitcalculation that theposition uncertainty
ie thevariance in position foreach warefunction Axlmatches
with its corresponding classical turningpoint nee n

Also compute the momentum uncertainty in eachstate
Do youthink they can be related to the position uncertainty

bythede Broglie relation Evalne Anad foreach level
I If we hone a particle with arbitrary energy E which
does not match with any specific eigenenergy ofthe

Harmonic oscillator but the particle is still attached with
a spring think of a vibrating atom which was initially
at some eigenstate then we increase its temperaturesuch

that it gains some thermal energy to beliberatedfromits

specific energy level How will you exfrees its general
state f wave functionofthis system and how will you evaluate

its energy now Explain the physical meaning of
all terms

in We change the potential to rent I knit an
Then evaluate the eigenvalues and eigenfunctions

E Now put aninfinite wall at 2 0and harmonicpotential



a kn only for my o and vex for no sketch

the wave function ofthis potential profile J


