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Let us start with an intuitive and somewhat naive comparativestudy
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wedefine a particle's function Y F D called wavefunction

trajectory by space time which is defined in the space time
coordinates FCOwhich

canbe expressedby three valued The function can also bedefined

d hh

linearly independent in a basis set of linearly independent
unit rectors as functions Yn Fit't called Hilbertspace
FCH alt I acts The most convenient basis set is the

energy eigenfunctions H Ynet EnMira
and X F D I Cnt MnCF e



I

an obstat Hilbert vectorspace without

specifyingany domain We will denote

such a set of linearly indysentabstract
eigenstates eigenvectors by May also

called the bet rectors as I IN En la
and a general bet state is thendefinedas

I 7 In CnYn where Crane

www.msn.ae
no physicalmeaning as such but the
advantage is that you can choose your
domain whatever you like such as
space time or momentum frequency etc

The procedure to do that briefly is to
define He bet status in the domain for

example in the position domain we have

dd

theposition operator as I try x in

where n is a numberdenoting a position
in the coordinate space and then

we obtain the ware function Xcry
inthe Schrodingerequation as L MY Yea
we need to define what is in state



Y

there is a conjugate the complexconjugation ME n

space called the

momentum
space We A Hilbert space is defined with all

essentially define bet rectors lens which have conjugate
the trajectory in the states called the dual space and denoted

position momentum by a bra vector Len Then the

space thephone

apace

general state 41 is defined as

241 InCt Unl where Cit
is the complex conjugate of en So in

most cases the dual space is defined by
the Hermitian conjugate t transpose t

complex conjugation formatrix rectory

we don't really

tannin
measure a vector amplitude and phone The amplitude is

defined by SEL YES YES LYET

magnitude and then we had the orthonormal condition
direction The Idf XI Flynt 8mn for the basis
magnitude adefined or eigenstates

as

IF F T
NY21.3 t

here Ny2,3 MY 7



The unit rectors are In the domain free abstract Hilbert
orthogonal as defined space we have the amplitude defined

by Fez Tj Sis by the inner scalar product Lyn Ym 8mn
for orthonormal eigenstates The general stateLapua um y

LY 4 M In
eaten LYmYn

I lent

How do we retire thewavefunction Mind

I we awe an age space to the Hamiltonian

ItMy En lens Then we wantto know thewave

function in the position domainwhichalsohas an

position operator 2 In Kin where n

is theposition ofthe particle Then we write

Hn Sdx Loretta in

fdy Knees In
where we have the energy eigenvector

Hilbert space is discrete finite or infinite
and the position eigenvector In as continuous

and infinitedimensional



on the otherhand if We have our domain
in the momentum space we have the corresponding

Hilbert space defined by the eigenvectors ofthe
momentum operator as I b P ID wir p

being its eigenvalue then the wave function in the

Jumna named simians147 dp LA la Ib

Jap Yn b lb

Note that An G K lb are related toeach
otherby the Fouriertransformation This isbecame
theposition momentum space are related to each

other being conjugal variables and have uncertainty
relation between them This corresponds to the fact that



TA cautionarystatement about the analogy of the dual state
Unl with the momentum conjugate state in the domain
we actually should not be making this analogyto either ofthem
and consider the dual space as it is In quantum mechanics

I I courses the dual space is just a Hermition conjugate
C't ofthe pet stat In quantum field theory course in
certain cases we will find the dual space hasthe interpretation

of a conjugate momentum to y field

L
something that takes

a function You to

of N N are

same then its a local operator otherwise
it a non local operator eg thedifferentiation

I

two functions x y separated in the domain

by infinitesimal translation se ant Sse wilt

8h40 In quantum mechanics Hermitian



observables correspond to the expectation

value of the operator in the Hilbertspace
If the operator commutes with theHamiltonian

then they share the same eigenfunctions and

He corresponding eigenvalues of the operator
are its observable1
space has the same role It acts on the Ket
state 147 and sires another betstate H'd
In the discrete or continuous Hilbert space the

operator is a square matrix of men dimension

where N is the dimension of the Hilbertspace

N component The expectation value is defined

similarly as 241818 This canbenoted
in any domain as

fdxdx LY n Lalol n Lx IN

J anthem outpost
where we have inserted a completeset Ifdx Ink

I

and we assumed o is a localoperatorhere You

can do it in any otherdomains In the above

definition its easy to refire the interpretationofthe
expection value as statistical averagevalue with



LinearVectorspace

What we have seen sofar isthat a quantum system is described

by a Hamiltonian operator II with a corresponding wavefunction

Mex and energy E One ofthe postulates ofquantummechanics
is thatthe wavefunction contains all information about the system
We can associate a probability dimity Scn X'CHXin wilt

the wavefunction's amplitude and the totalprobability offinding
the particle in the entire space is 1 This means Isondn Itede
L This says the wave function must be squreinfegable then

for every observable we have a linear operator whose

expectation value is the measument result and defined by
Loy Idn 4 9 8cm kid Aparticle of arbitraryenergy E
in a given system It is associated with a wavefunction toy such

that E EYE Itemdoe How do we solvefor a general

wavefunction Yea

According to linear vectorspace any square integrable

function can be expanded in a set of orthogononal linearly
independent normalized unitamplitude basis functions states

called the rectorspace this is analogousto the expansion of a
vector in a coordinate system of orthogonal unit vectors If the
basis functions are eigenfunctionof any Hermition

operator then these basisfunctions are linearly independent



normalizable complete set of function the correspondingvector

space is called the Hilbertspace So we can expand the general

wave function Yin in any Hilbertspace that is convenientto
us So whats the most convenient Hilbertspace of a system

The Hamiltonian II is a Hermitian operator and therefore
it has a complete setof eigenstatesuncutwithenergyeigenvalues
En which form a Hilbertspace

HMn se En Tn k H where n are

usually discrete set of integers as na o e n can in principlebe

negative N is called the dimension ofthe Hilbert space which
can be finite or infinite So we can expand Xen in the energy
Hilbert space

Y Int E Cnet Y Ca t a
expansion

where the coefficients on are complex in general and is givenby

en LIdn Yiu Xin 3

en is the probability amplitude of the generalstatetendto be
in the n't state Since x is normalized to one and Yuen are
orthonormal in SYEDYmir doe I 8mm so I lent I in

the totalprobability f findingthe particle in all the eigenstates

in the entire space is 1



Therefore solving a Schrodingerequation means solving the

energy eigenvalue eq C But unfortunately solving eyes
is not always easy especially for complicated potential
Vex and when many particles are present Therefore although

energy Hilbert space is indeed the most convenient Hilbertspace
but its not always available to us What other Hilbertspace
can be helpful

We have already used another Hilbertspace is the

Hilbertspace of a momentum operator 1 This Hilbertspace
is also the eigenstates of the kinetic energy operator ofthe
Hamiltonian I I tr i became K Esm This Hilbert

space is called theplane wave basis state because its
the eigenstates atte freeparticle Its not a Hilbert space
in the strick sense because plane wares are not normalizable
and we need some boundary condition e.g box normalization

periodic boundarycondition to normalize it Theseboundary
conditions also restrict the allowed values of

momentum or

wave rector todiscrete values This made the plane ware Hilbert

space discrete and finite or denumerably infinite Next
we constructed a warepacket which is a general wavefunction
expandend in the plane ware basis as eqa with Yak tact
I e ik N wt and Cnn Ok The coefficients On has the same

meaning
as on that it gives theprobability amplitude of



occupying a given momentumstate Without any potential

free particle on 8Ck ko where Ro is the only eigenvalue

of themomentum operator takenbythe particle Onthe otherhand

del for all k values for a delta functionpotential inwhich
all possible momentum valves are allowed So clearlyor
depends on the potential energyandthe boundaryconditions As a

potential energy is involved with a condition that the energy

of the particle is higher and lower in separatepart of
space Then where E IV we hone plane wore oscillatory
solutions and where EL V we have negative kinetic energy

imaginary momentum where the wavefunction decays

exponentially This confines the system and we hone discrete

energy eigenvalues and ware packeteigenfunctions One lesson

we learned is that we can split one Hamiltonian into two
parts It Hotit hits saynowHo can be solved exactly e gthe K E

part and obtain a Hilbertspace and then the wavefunction

of the total Hamiltonian can be expanded in this Hilbert

space In this choice of Hilbert space atleast somepartofthe
Hamiltonian to is already solved and forthe otherpart It we can
compute the expectationvalue to obtain theallowed energies ate
theory This method is called the Perturbation theory that we

will learn later



when we have a degeneracy in the Hilbert space say
the nth state has M fold degeneracy in same eigenvalues We

expressthose degenerate stats as Cn i Yn 2 Yam suchthat

HMnm EnYn m Then the general n't eigenstate canbewrittenas

a linear superpositionofthese degeneratestats as

XnIn It d n m Yn m Ge
This gives

y y H If In mYnmen
É dnm H Yamen

since It
is a linear
operator

d nm En Mnm G

tf I'm dnm Ynmid

En Mn

This result is a manifestation of the superpositionprinciple
owing to the linear Schrodinger equation that where there
a a degeneracy theparticle has finiteprobability to occupy
all degenerate States and Id n mlgives the probabilyamplitude

So our takehome message is that wavefunction Xin
encapsulates all information ofa particle in a quantum systemIN
with a given energy and we needto find a suitable Hilbert

space to expand the ware function I



DiracBracketNotation AbstractHilbertspace

Dirac realized that in choosing the suitable Hilbertspace
for a wavefunction theposition domain I has very little or
no role in it So far in all examples in thepreviouschapter the

position domain actually played important role since it contains

thepotentialprofile and dictated the normalization condition
Then normalization condition was importantforobtainingquantized

energy eigenvalues and eigenfunction
so Dirac relaxed the normalitability condition in the entirespace
to general normalization condition or innerproductor scalar

product notation as

aYÉÉdnYYen Yen
I

for any two abstract quantities 142 and I which are

like column and row vectors respectively They are called Ket and
bra vectors and they are abstract formalmathematical objects

Their physical interpretation in termsofmeasurable or not isperhaps

not present apartfrom column I row vectors of N dimension

However they take the strafeof wavefunctions YaCn L a 1427

and Yt 241k where lies isthe bet rector oftheposition
operatorto be clarified later If Mi is the Ket rector and



241 is its corresponding bra rector called thedualspace bywhich
the innerproduct normalization is defined Mathematicianshave

figured out the abstract algebra of thesequantities each
algebra can be reproduced if we treat bet a bra stabs as
column and row vectors or if we take a projection to any
domain like position we reproduce all algebraby thewavefunctions

LY ly 2421415

LN Icky CLY Nz forany complexnumber

Let Yay LY ly
24314 427 24314,7 t 243142

I Yi and MI are said to be orthogonal is their innerproduct
vanishes ie 24 1427 0

Mi is said to be normalized if 24144 1

We can combine the last two conditions into the orthonormal

condition for a set of kit stats rectors and as
2 Yn Ym 8mn



IT
Heisenberg andDirac realized that square Hermitian

matrices also hone eigenvalues and eigenfunctions Therefore
Hamiltonian can alsobe represented as matrix which takes a rector
and gives another rector from the matrix algebra

atn operator is an abstract object which acts on a

pet staterector and gives another bet rector As we projectthe
bet states and operators into a specificdomain then theoperators

have the physical meaning of actingon a wave function and

gives another wavefunction like differential operator momentum

operator Hamiltonian etc Similarly the expectation rate has
tobegeneralized to innerproduct as seen below

So another flat of quantum mechanics is that every
dynamical variable is associated with a fear operator in
the abstract space An observable measurable quantity is
a special dynamical variable which is associated with
a Hermitian operator
so an operator gives A147 1427 Sometimes M is

written as Ha litres ni I 145 AM ctn operator is

said tobe linear if it satisfies the following property
8 C Y 91427 c 814 t a 8M

for any two complex numbers 94 Cz and anystats Y Y



The expectation valueof this operator
betweentowstates His

and 142 in

LY lil K LYIN LATHiltz

in the n domain I Idn YeastYu IdnMyth

where we have used the identity 24 1A42 Lattin
hit try to calculate

LY IAMay fdie 4 ta ta

J d n fatAtY 2421Atmy
LAY IN

whenever t acts on a functionand scalarnumber it simply
gives the complex conjugation a

EigenralveandEigenvecty at bet rector 14ns is said tobe
an eisenhut or eigenvector of an operator I if I acting or ten
produces the same bet rector Yn as

Al4ns an 14ns 5

where an is the corresponding eisen propervalue which
is in general a complex number Taking Hermitian conjugate on
both sides we sit

In It antcent 6

ne see that if Mnl is an eigenvector of A wilt eigenvalue
an then Inl isthe dual eigenvectors of Atwith the eigenvalue



ant In the above expression ten Llnl are also called

rightand left eigenvectors

an is said tobeshedproper precise resultof a measurement

of the dynamical variable Ioperator 1 Because its an eigenvalue

the valve has no uncertainty or variance It can be checked

eqifg.gg
taints variance is defined as La A LUAAH

when A Lent AWay an and

LAY LYN AZIM an So LAA 0

The totalityofthe eigenvalues of an operator iscalled the
spectrum of that operator One can hone discrete nor

continuous n valves and also the totalnumberof eigenvalues
can be finite or infinite In all the examples we haveseen
in thepreviouschapter the spectrumofthe Hamiltonian er the
eigenvalues are hereto and infinite



HermitianOferators 8 since the results ofmeasurements

are real numbers so we will

only concern ourselves with those operators which are guarantee

to give real eigenvalues we can figure out the constrainton
the operators which guarantee to give real eigenvalues from

ego and 6 since ant an we have

These operators are called self adjoint or Hermitian operators
Its called self adjoint becomes the operator t is alsocalled
adjoint operation or Hermitian conjugation

Not only the eigenvalues bat the expectationvaluesofthe
Hermitian operator on any general state is also real Lets
consider LAY LYDIA LY IAtty LY AN LA

All physical operators in Quantum Mechanics are Hermitian

operators Let check for the momentum operator in theposition

space to it done Pt it fx so it does not look
Hermitian But you have to see how derivative operatoracts on

the state Let see an example

If big tatty
E let 4 41 G x

so when a derivative operator acts on a wave function Y its
Hermitian conjugation acts on y't Thatwhat notationstandsfor



Once we incorporate that we can prove that 241811
4418 10 when Pacts on O and Itacts on Y

How about the energy operator E itFe and I it E

Formostotheroperators we do nothone to worryabout it
much Only for those operatorshaving it is little subtle

Bikers Let A B two linear operators their
product is defined by CAB 147 A113141 in which B acts

first on x and then Aacts on the new state CB147J In general

AB BA The difference between theirproduct is called the
commutator and is defined by

A B B A A B BA

CABt BtAt j A At Failure c is complexnumber

Functions of operators Much like how thefunction of a variable
canbeexpanddinpowerserver analytic function we can

expand the function of an operator as

f I Eo Ci ti where Ci are complexnumbers

Then if Mn satisfies Imf anMn then fCA Tn fanMn
The adjoint of tea is I cast ÉCi Ai

t

É At co flat

Popular functionsof operator that we use are e A sina cosa etc

Then EAeB e AtB I A B I A AB

this iscalled BakerCambell Hausdorff formula



Projectionoferalis A HermitianoperatorP is said tobe a projection

operator if Tpp If we apply P on a state lens it gives

a new state F PHD Then applyagain Pan PTYa PM
A much used projection operator is P IN Yul

Any state 147 can be written interms of two linearly
independent orthogonal status 197 ID where 29177 0 by
means of a projection operator P as 107 P 14 or p lo y

and X I P Y Then we are

147 107 1 7

Now 291X LPYICI P X 241 R PYIN LY IE P y O

Since P is Hermitianend P P Note that I P isalso a

projection operator

Lofty
Also called Raising Lowering operator

L Un Ym for n m and
Mn and 14ms belong to the same Hilbert space is called

theLadderoperator It acts on the 14m state andtakes
us to the Cen state Clearly 22 0



TIIYIMF.pe alor thathaves any function

y unchanged I 4 Y

If A B are two linear operators which satisfy
AB BA I ten B A n said to be

the inverse operatorof A
An operator is said to be unitary if it satisfies

u
t
s ut as u ut U to I

A unitary operator can be expressed in theform use
it

where A in a Hermitian operator Ut LeiA
t
e
iA t e ia

Multiplication of a bet vector by a unitary operator leaves

the innerproduct and expectation values unchanged
Lets say lx is a state which is transformed by a unitary
transformation V to H U147 Then 241 helot so we get

Lil y LY ILYIN LEIA

LY IA ly LY I UtA U IN LUI AN

where an operator transformsunderthe unitary transformation

as A U AUt CHW Show that if A is hermitian so done A

Operatorequations remain unchanged under a unitary
transformation Let us consider an operator equation

f A B C c A t z BC



A A U AUt and so on er er are complex numbers Then

fCA B c U fl A B d ut e u Aut t ca V BC ut
Tt insertItu I

C A t Cz B e

So commutator relations remain unchanged LA B A B

Eigenvalue equations equations of motion remain unchanged
e g Thetime independent schrodinger equation

HMn En la A n'y Enlien's

where It U AUt Mn U IN when U is any

unitary transformation
Eigenvalues En remainsthe same so

does the exfectionvalves as shown earlier This is also simply
because any scalar number remain unchanged under a

unitary transformation U cute c u ut C Onlyvector

changes as 143 V14 and operatorchanes as a u Aot

For the same reason a wavefunction Kent remain unchanged

since its a complex member and expressed as an innerproduct
Hey Late where n is the position eigenvector seebelow

the time dependent Schrodingerequation also remains

unchanged it IN AM it I 47 H n7



It we define u et to as a unitary operator it leaves the
innerproduct ei probability dimity constant in time at
all time This is one of the fundamental postulatesof
quantum mechanics

LY IE IN1H LY Ho UTE to UCtEDI HID
LYIN YET
A constant in time

Ext The gauge transformation or phase arbitrariness of the wave fun
that we defined beforeand said to leave thequantumsystem invariant
is an example of unitary transformation X x eity



Ext The solution of time dependent schrodingerequation

it 81414 II UCH gives

MCH etIft to yao at It to ITCto 8

where we have assumed time independent Hamiltonian

Therefore Octto e
it to t is aunitary operator a tn ofit

which takes a bet vector at to to another pet rectorat
t therefore the unitary transformation defined in thisway
gives a time translation or time evolution of the state
rector this is consistentwith what we learned in classical
mechanics that if time translation is a symmetry then

the Hamiltonian energy is conserved Noether'stheorem

Therefore any conserved quantity generates a translation

of the corresponding conjugate variable And the
translation or evolution of that variable is generated by
a unitary operator

Ext Following theabove example its easyto generalizethe
above form of unitary operator for time tanslation I
evolution to other unitary operators whichgeneratespace
translation angular translation rotation and so on Its
clear that the unitary operator made of domainvariable
and its conjugate operator can be the right choice



Lets take the ansatz UCn no elf n ndIt as a

unitaryoperator for spatial translation Notethat in the
exponential I is an operator and n no are scalar variable
We demand that 4 n U Ge no X no To provethat

we are the position representation of the momentum operator

I it Ex Then we hone

e
la nosEx

pong EI antifar too

most e no Il EY l
The R HS in the Taylor servers of X n w.r.to no

X n

Therefore it proven that UG no indeedmake a displacement

of Y from no to n we know that a derivative operator
generates an infinitesimal displacement So Uenno aiactually a

product of infinite numberof infinitesimal displacements
between n to no This is the manifestationof a continuoussymmetry

ItW show that Uco Oo e
t co 8 It makes a

rotation of a stat 41Oo to MCO I i the angularmomentum

along the axisof rotation we also see a common propertythat

that the formof the canonical conjugate operator to a
general variable q is defined in quantum mechanics by
it where q t n t etc whose conjugaloperators I I II



EigenstatisandHilbertsface

We now revisit the eigenvalue eigenstatesproblem for
linear Hermition operators which make up the dynamical
variables of quantum mechanics Let It be a linear Hermitian

operator such as the Hamiltonian I momentum I positionheld
which have a set offeignrabies an and corresponding
abstract eigenvectors Mn

ayy I am er 9

The index n can bediscrete or continuous and can have a

finite or infinite total numberof eigenstates
For the linear Hermitian operator its eigenvaluesand

eigenfunctions obey the followingproperties

All eigenvalues an are real
b The eigenvectors 14ns are normalizable which is

also called square integrable
Yr Ying I fig

I of we solve the eigenvalue equation we maynot

immediately obtain i on the R It S but we may getsome

complex number say n But then we can divide the betand

bra stats by 14ns tenMa and Lyn I Final
Now since It is a linear operator any constantmultiplication to



eq a does not change the eigenvalue equation So without

loosing generality we can write egg

Orthogolatily One of the important property of the
eigenvectors of a Hermitian linear operator is that all the
eigenvectors are linearly independent ie orthogonalizable

by the Gram Schmidtmethod and hence we simply call
them orthogonal To prove that we consider any two
eigenvectors Itn and Mmg of 17 with correspondingeigenvalues

an I am respectively I Nn an Nn Nm I am 14m

Take Hermitian conjugationof the and equation htmlat ait am
and subtract the first equation

LuntCit IS Itn 2km1Can't andlens

Lum E A Ya Cam an LYmi ta
9

Since A isHermitian since am are real numbers

Cam an hunting 0

When an am in the two eigenvalues are not digerati

we get In Tn o 111

Since Itn Ym are anytwo

non degenerate eigenstatesof11 so all non desinate

eigenstates are linearly independentand orthogonal



I when am an i.e for any twodegenerate eigenstates

we can not say anything aboutwhether the twostats are
orthogonal or not But any linear combination of ofthe
two degenerate eigenstates Y C Mn t ca lym is

also an eigenstate of the linearoperator it H W Prove this

statement Therefore even if they are not orthogonal tobegin
with from the infinite possible status is made of two
states we can always

construct two linearlyindependent
states which then can be made orthogonal by the Gram

Schmidt method In otherwords we can always choosetwo

linearly independent eigenvectorsforthetwo fold degenerate
state

This statement isgeneral for any m fold degenerate

case in which any linear combination of the m desenati

stats in an eigenstate and hence we can construct m

linearly independenteigenstates
Thetotal numberof linearly independent eigenstates

in a finitelydimensional operator think ofan operator
as a NXN matrix here for understanding is fixed tobe
N and hence if thereis m folddegeneracy thenthere are N m
distinct eigenvalues

Typically by are combined into the orthonormal

condition if g
which is equivalent to normalization conditionfor men



A ClosurefamphtinessProferly all the eigenvectors of a
linear Hermitian operator follows the closure completeness

properly defined as

In IYayLyn I 13

where the summation n runs over all eigenvectors say N

and I is a Nx a unitmatrix This closure relation can
be proven but it is often postulated such that if the
eigenvectors of a linear Hermition is complete then any
square integrable function can be expanded in this basis

state or if a square integratefunction can befullyexpanded
in a given set of eigenstates then that eigenstates are complete
Not all Hermitian operators gaurantee to have a complete

eigenstates but those which do correspond to observables

physical quantum operatorsand vice versa

Eq I essentially say that the eigenvectors of a linear
Hermitian operator form a Hilbert space Therefore any
general state vector of the same operator canbe expanded
in the Hilbert space of its eigenvectors

147 E Cn Yn f14J

where en are the complexnumber which can be obtained as

en LUnl I show theinterpretation of these



coefficient are already given suppose the expectation valueof
the operator A iesay whichmatches milk any one eigenvalue

of the operator say n eigenvalue then LA an and end
and Cm n 0 Then the operatorhas a precisevalue Onthe

otherhand if Las does notmatch wilt any ofthe eigenvalue
then its generic wavefunction can bewritten as equal Wich says
the gate Y has finite probability any to besimultaneously

present in all states in this Hilbert space and zero probability

to be in any otherstate that is notpart ofthe Hilbertspace
This last statementcomesfrom the normalizability of Ai state

as 24147 1 I lent I so the totalprobability

of finding the state within this Hilbertspace is 1

Of two linear Hermitian operators commute ie A1137175 IA
0 then they share the same eigenstates and here the

Hilbertspace Suppose May in an eigenstateof 17 AMa aka
Then I BMa Bit 14a B aMa a Bma So BYa
is also an eigenstate of A with the same eigenvalue Now

BYa and May bothbeing the eigenstate of it withthe same eigenvalue

a so these twostates can either be orthogonal fdegenerateeasy
2YalBYa 0 or linearlydependent ie BY bMay for

linear operator the 2nd option works This means Na is

also an eigenstate of B with an eigenvalue b One car hence

attach two quantummembers Ma b toeach eigenstates inthe
Hilbert space



tie

mum
see for example for position momentum operators whole
eigenvalues are continuous and hence eigenvectors are continuous

spectrum thenormalization and closer relatifions

modify to
yy s p y 8 s s 1

Jds 141424181 II 43

Sothat I do 241414017 1

where I is the variable oftheeigenvectors Noticethat

for a continuous variable it is customaryto write it inthe

bracket in a function while for discrete variable we call

it index we write it as subscript or saferscript Egg
is also sometimes called resolution operator relation I



Hilbertspauinati Since in quantummechanics we deal with
warefunction which is a complexfunctiondefined in the domain

of position momentum time ele we need to findthe suitable
Hilbertspace for the wavefunction to be expanded So fore in the

Previous chapters we have solved the eigenvalue equation of the

time independent Schrodingerequation in theposition domain The

normalizibility condition and the continuity of wavefunctionand
its ist derivative gave us the quantization criterion of discrete

set of energy eigenvalues and eigenfunctions specific to the

2nd order differentialequation ofthe Schrodingerequations we

always get two sets of linearly independentsolutions But
we often end up using one of them became thats the normalizable

solution Since normalizibility square integrability is a criterion

of the Hilbert space so all normalizable eigenstates form a

Hilbertspace
Let us consider a system defined by a domainfree abstract

Hamiltonian operator I k et which has a Hilbertspace lens
with energy eigenvalues I IND En la 4

Then if we now add a particle with a fixed

energy E into the systemdefined by itsHamiltonian I then the
particle assumes a state rector 14 which is definedbythe condition
4117147 E Then the particlesposition momentum etc are determined

similarly by 241214 LHP x Determination of M becomes



easier if we choose the rightHilbertspace If we expand lies
in the eigenenergyHilbertspace we hone

14 In on 1Yay XD

We get twoconditions I 24147 1 I knit
Gil And we have H IN E CnHMn Inen EnMn
EM suchthat E Een En Therefore the particlegets

distributed
among different energy

eigenstates under twoconstraints

that the total probabilityof beingtheparticle in thisHilbertspace
is i and the total energy E is conserved If the energy of the

particle matcheswith any energy energy eigenvalue
then the

wave function he will coincide with that eigenstate say lens
and the corresponding coefficient en I and Cm n 0 Otherwise

for any general energyvalue E this is an average expectationvalue

ofthe Hamiltonian This means there is a variance uncertainty
in its value A E FELT where Litt EleniEn
44 LN 1HIM ENTER Clearly I E 0 Therefore

the time uncertainty At This means thevalues of Cn are
not fixed but en is time dependent bat thecisnormalization
condition Cii total energy condition remain time independent
To evaluate their time dependence we needto invoke time dependent

Schrodinger equation So simple time independentSchrodinger

equation its easy tosolve on it enco é tenth



Ingression

toQuantum statistical Mechanics
Anotherpossibility we can think of adding a heat bath tothe

system such that the particles energy changesby Kat but
the system's Hamiltonian and hencethe Hilbertspace remain

unchanged Therefore since the energyoftheparticleE is
changing milt temperature and so does the ware fuselion 14
where H Nn En are fixed Therefore thecoefficients on
become temperature dependent Wilt different temperature
He particle's wavefunction's distribution orprobability amplitude

into different eigenstates changes suchthat the normalization

and is average energy conditions remain unchanged This

actually becomes a quantum statistical mechanicsproblem
now where we have to now minimize the freeenergy
with the constraintsof Cacid The Lagrangianmultiplier to

implementthe normalization condition turns out tobe B YKat
But there are manypossible

values or configurations of en
which satisfy conditions is I which gives theentropy

term This gives a partitionfunction and Boltzmann
distributionfunction which sums over all possiblevaluesof an
under the crashinto issei heading to an entropy term and hence

a free energy f H TS The idea is to maximize the

entropy to minimize F thermal equilibrium Aftersolving
the free energy one obtains ten n e BE called

Maxwell Boltzmann distribution function in the classical



Amit actually or ten n étnI inthe quantum
limit where I signs are for twodifferent forfes of particles
in the quantum limits called fermions like electrons

protons etc which has half integerspins and bosons like
photon phonon with integerspins respectively We will make

this distinction in QM II course

I



Returning back to our Hilbertspace discussion we hone

sofar discussed about an abstract energy eigenvectors
The Hamiltonian isdefined in thephase space of positionand
momentum So we need to obtain results in our physical
domain The advantage of working in the abstract domain
which we will eventually convert intomatrix algebra for
real computations is that the results are unique and we
can now project the results into any of our favourite
domain either position or momentum or anythingelse

The way to do that is to define a Hilbertspace forthe

specific domain Let say se is the value of the position in
the spatialdomain and then there is an operator at whose

eigenvalue is n and eigenket is IN as defined to be
Te re n 12 I5

The Ins status alsoform a Hilbertspace since it is a linear
Hermitian operator buthere In States are continuous and ranges

from 1 4 to 14 The states are orthonormalized as

Lula fenny and the closure resolution relation is

Isdn n LM 1



Now we can project any abstractbetstate
into theposition

domain to obtain a function Yen Let 4 whichgives a

mapping from the domain space to afunctional space In fact
instead of choosing the energyeigenstate's Hilbertspace toexpand
147 one can choose the position space to expandthe general

state of the particle as
142 dn cons in big

Note that eqy is actually same as equal inwhich I Sdn
and Cn C n In fact cans Nat Lal ta Therefore the

wave function we have defined in thepreviouschapter isnothing
but the probability amplitude of the particle to be at the
Ins state i e at position n Thetwo conditions we did forthe
discrete energy eigenstate becomes now

Ie Intap In eaten I SdnMUNCH L

Li I Knt En E E LYI IN
n I I faxing

I fdnInsa

JInda Nin LNHln
a ally

Ign NEDHUNG
where we have used the fact that the

Hamiltonian is defined locally i e Lal2712 Hen Stasi

Conditions is I are the two important definitions we hone



been using for the normalization ofthewavefunction and the

expectation value of a quantum operator in thepreviouschapters

One can also expandeach ofthe energy eigenkets14ns inthe position
Hilbert space in the same way 14ns Idn Tna Ins then

the normalization condition of the energy's Hilbert space becomes
Sdn MntIN Tn n Snm Similarly the abstract eigenvalueA

equation II 1Yn EnMn becomes

LH III Un H EntYn
John IIIn'ten'tun En Lama
a Tas ex x

mail.gg itiii i.itong.autat
we have used before

The above projection of a Hilbertspace into theposition
Hilbert space can simply be generalized to projectionof a
Hilbert space into another Hilbertspace like a projectingthe
Hilbertspaceof a particle in a box into the Hilbertspaceof
the simple Harmonic oscillators Lets say we havetwodiscrete

Hibert spaces Yn E Jt ofdimN Im Eltz ofdim m then for
each n't component of Yn Mn I 91Mn dm where

2AmI4ns Unum Yumis theanalog of wavefunction in thyp space



Momentumistilbertspace The momentum space Hilbert

space can be defined similarly I 110 p lb with 210117 845
and 97 11072101 1 This isalso a continuous infinite dimensional

Hilbertspace unless some constraint is imposed Forexample for a
particle in a box we here discretemomentum valves or for a

peridic lattice p is periodic outside octant forunit length
As we expand a momentum state 1105 in the Hilbert

space of the positionoperator we havethe expansion coefficients

which we call wavefunction as halt e t There are the

plane wave stats that we defined inprevious chapters Instead

ofderiving it we can verify this relation fromthe fourier
transformation relation

n

As any generalstate It is expanded in the position
and momentum Hilbert space we have

147 dr Yen Ing fdp fo Ib 47

Multiplying with Il from the lift MEget
for tens

Iggy fat co MEpIn

Yin Jtf rep e i ta

Fits
which is the Fouriertransformation expression Yea Yet

are the wavefunctions in theposition and momentum space They
are different functions actuallyandtypically denotedbyKent ICH or

0 betc



WhatHilbertspacetouse.fr egeneralstatek

By now we have seen atleast four Hilbertspaces energy planewave

position and momentum and clearly there are many more

Hermitian operatorspossible for a given system inch as angular
momentum angle operators ele etc If we have two operators
commute then its even better became the bolt operators then sharethe

same Hilbertspace

If we add a particle into

the system defined by a Hamiltonian with a given energy E then

the particle assumes a state rector 14 To evaluate in it

always a good idea to expand 147 in any ofthe Hilbertspace
specific to the system in the Hamiltonian Obviously themost

convenient Hilbertspace is the energy eigenstatesHilbertspace
A lens Enemy St the Hamiltonian commutes with Tome

operatoris then the energy eigenstates are also eigenstates ofthat

operator Forexample if linearmomentum is conserved then
momentum operator commutes with the Hamiltonian to be

derived below or if the angularmomentum i conserved for
rotationsmainly then theangular momentum t commutes

with the Hamiltonian Then the energy eigenstates Mn are

also eigenstates of those conserved operators I Yn t k lung



or I Tn et 144 In such cases the eigenskets can also

be indexed by k or l as appropriate as Mnk or ten e
We will see examples ofthose later

But we may not be always lucky to solve An entire
Hamiltonian to obtain the energy eigenstates especiallyfor
complicated potential Howwould you in general afford it

We will look at the Hamiltonian and try to find ont

first if is any conserved operator like momentum angular
momentum ett If there is one or more we are essentiallydone

We can use it Hilbert space to obtain the Hilbertspaceofthe
Hamiltonian

But if this is not the care we will lookinto parts of
the Hamiltonian say kinetic energypart orpotential energy
or if TheHamiltonian involves angularmomentum operatorete
Then we will start with theHilbertspace of such an operator
In the way atleast somepart of the Hamiltonian is solved
and we will proceed to solve the remainingfort
accordingly Let us think ofthe generic case of III et

Typically the kinetic energy operator it is a function of
momentum operator Hence we care use the momentum space
Hilbertspace IP I 1 117 KCf 117 where keto
is the eigenvalue of the k operator in this Hilbertspace



Butpotential energy operator is typically a function of position
operator I 2 Therefore the momentum states 110 are theworst
States for the potential energy because I 5not an eigenstateof
the position operator 2 this is became of the uncertaintyprinciples
between position and momentum We will show below that the

uncertainty between two variable is related tothefact that the

correspondingto operators to net commute Since theydonot
commute they donot share the same eigenstates so theeigenstate

of the momentum operator is not an eigenstate of the position
operator In fact Its is the worst statefor the position operator

became M n the eigenstateof p whichthus hone no uncertainty

Ap 0 This makes the uncertainty of position inthis Ipssteles
He maximum as An 3 It

For the same reason the position States se are theeigenstates

of the potential energy but its the worststatewithmaximum
uncertainty forthe momentum and hence the kinetic energyoperator

Note that the momentum states becomesthe plane war state

when projected ontothe positionspace as hall e toe which

we found to bethe eigenstates of free particles i.e no potential

energy and only kinetic energy This is in consistent withwhat

we just said above Themomentum of a plane ware lei its
wavelength is completely known but its position is completely
unknown since the farticle is always oscillating in space



Onthe otherhand the position state to
becomes the delta function when protected on to theposition

space itself because of the normalization condition K'In sixth
The deltafunction wavefunction means the particle is completely

localized and it has no momentum i no kinetic energy so
momentum uncertainty is infinity Therefore thepotentianenergy
triesto localizethe wavefunction while the K E tries to delocalize
them an interpretation whichalso hold in the classical Mechanics

what we did earlier isthat we rather constructed

something in between the two called the wavepackets which

are like damped decaying oscillation The decay length

ofthe wavepacket typically the classical turningpoint inch
that it has the G uncertainty with momentum waverectory

wave length inverse of the oscillatorypath This way the
warepacket are designed to follow AN ax his relation
and hence gives the least uncertainty when the wavepackets

become the eigenstates ofthe Hamiltonian wilt discreteeisen
energies they form a Hilbertspace

Apart from the position momentum operators the

other operators we often look at is to angular momentum

operator usually for sphericallysymmetric care the above

story then repeats between angular momentum operator
eigenstates versus rotation angle operator I and its Hilbertspace
We will see one example for the Hydrogenatom case



Relation between Commutator and Heisenberg

unstinting
We have mainly used uncertainty relationbetween
position momentum AnAp2,42 or between the phase

space variables We have also seen discuss that I I operators
donot commute and we have It it inheritingthe
Poisson bracket relations in classical mechanics x to e

Our job is to connect these two relations as Lan Lab I iLEAD

where the expectation values are obtained in any general Hilbert

space The uncertainty value depends on in which Hilbertspare the

expectation values are computed If there is a Hilbertspace which

gives LAX Lab 12 then this isthe least uncertainty possible Thats

the warepacketstate such least uncertaintystates are calledcoherent

States This relation is actuallymuch more general and
fundamental to any two linear Hermitian operators A B
which do not commute So we start with such a general
case first It is easyto

show that the commutator EI D
which is also an operator is an anti Hermitian operator for
A B too Hermitian operator Writing an antiHermitian operator
in terms of i'times a Hermitianoperator I we have our

startingpoint
A B i B 6.2



We also need to understand whats the definitionof variance

uncertainty In the probability theory this is called the 2nd

moment of an observablewhich measures the square of the
variation of the observable from its average expectationvalue
Lets
say we are making the meareements of the Aoperatorin the

generalstaterector oftheparticle 147 with the average value is
2157 241 IM Thenwe define an operator I which measures
the deviation of the result from its mean value as I A LAS

Then the variance uncertainty is defined as

CAA LYI EYY LAY
LA LA CA LADS LAY LAY

Similarly AB LBJ 433 B where B B B

Notice that A B A B i D 20

We want to prove that CAA B 7 I 12 A B

which is same as 4321537 I 1 E 53712 24

where we have squared boltsidesof eq 2D for convenience

2113 L 41 IT IN L XI ID since I n Hermitianu u

We call it a state Ya IX Similarly Yb 1547
Then the 1 AS of eg221 is Malta YalYb Lets now

use the Schwartz inequality
4Ya Ya 24s Xb I KYal b 123J



where Ya Yb L41 ABI4 a complex number Z

We now need to convertthe R It 5 to the commutator for which

looks like 2 27 241 FB BA14 LIM Z Ofcourse
12127 Imel Therefore KI 5712741125,53712 Substituting
this in eq

iwest1ayyy4ket.mty.o
HI In eq is RHS we have a Hermitian operatorD If we

choose its eigenstates B Id did where d is real

as the Hilbert space we hone L A B i d

Then we can showthat AAAB 7,912 wherethe variances
AA AB me for a measurement in any generalstate
Is it true that the hast uncertainty is obtained in the
Hilbertspace of B 2 I have not checked it

So the conclusion is that if two linear Hermitian operatorssimultaneously
do not commute then they cannotbe measured with arbitrary
precision
But if theycommute then theyShare the same eigenstatesandhence

in thateigenstates thevariances ofboltoperators are completelyzero



For A M B B we have ER B it then we

obtain the uncertaintyrelation An Ap7,4 2

A warepacket or a coherentstate is a state whichgivesthe

least uncertainly An Ab 512 Therefore if an is the

variance of the wavefunction in position space it should

roughly look like Yen r e exp II Themomentum

space wavefunction wouldthenlook like
p D expf 411113 Dext 21 1 1

Plugging them into the Fouriertransformation we get

ya pGdp exp 24471 exp ibn

no ext list n expf CHEM
a



MatrixRepresentationofstaterectreoperati

All the mathematical formulations we have carriedout above
for the bet bra statevectors operators eigenvalue equation are

very similar or even same to the matrixalgebra The connection
between the abstract linear algebraand the linear matrixAlgebra
is as follows A betrector 147 becomes a column rector its

dual bra rector 241 becomes a row rectorwiththecomplex
conjugation of all components essentially the Hermitiancongrats

I operation we define in matrixalgebra an operatorbecomes

a square matrix while the innerproduct and expectative
valves becomes scalar numbers Thedimension ofthe rectors

matrices are not fixed and it depends on the Hilbertspace
dimension The Hilbertspace becomes a setof linearly
independent

Combinedreforms
of dimension n where N is the

Hilbertspace A simple example would be for a Hilbertspace
of Mn E Hn we can have

1 imyI Nxt Nxt Nx 1 Net

and the dualspace is Lyle l o o Unl o o D
IXN

we keepdenotingthe columnrectorsby 147 although its not a standard
notation



The normalization is defined by Halen É Eg

o o to I l

Its alsoeasy tosee that these unit rectors are orthogonalanim fam

Theyalso follow the closure relation Conterproduct
G

IE Ikn Lent i o J t

g
lo i o g t t o D

O 1 0 o

1 mix l unitmatrix

Therefore any arbitrary column rector can be expandedin
this unit rector space Hibert space although one doesnot

call it a Hilbert space in the matrix algebra language

9

es at eat e eat

In anti where en snits



An operator I is a Nxne matrix in a unitvectorspan
of dimensionM and its components are an m

94 912 913 Any
921 922 923

A ay azz azz az

in aim at h
ANN

A Hermitian matrix means At A Lamm amn

where the Hermitian conjugate means complex conjugation'ttransfuse

Expectation rate of this operator is defined as

Aa an
La Lal AIMS Gc E

La an

IE
at ca

a C area einen

Mi lien

CT aye are aime t c l t

I Cnt Ann Cm a
Min



Eigenvalue and eigenvector of a mbaTrianaanrecamthiteinrahia
then IMF am where A is a x x x matrix H is a Ix N

column rector and a is a scalar number I is real if A is
Hermitian For a NxN matrix there are a eigenvalues including

any degeneracy which are index as an and for each eigenvalue

there is a corresponding eigenvectorHal It can be shownthat
all the lxN eigenvectors are linearly independent canbe
normalized to unity and follow the closureproperty Therefore they

form a Hilbertspaceanalogof complete setof n component
basis rectors Any general normalizable n componentcolumn

rector can be expanded in this basis unit rectus as eyes
Using all the eigenvectors we can construct a unit matrix

by arranging them intodifferent column as

u gig

whichis a Nxn unitary matrix Ut Ut
Utv this is

the particular unitary rotation transformation to thematrix A
which diagonalized it In mathematicalform it reads
UAut D where Dis a diagonalmatrix with the eigenvalues

an are in its diagonal positions



The unitary transformations are defined as inthe abstract

linear algebra Matrix A A UAot
Vector Y Y up
scalar a al u act a

The innerproduct normalizations eigenvalue equation and
expectation values are invariant under unitary transformations
as in the Linear Algebra case Therefore symmetry operations

are denoted by unitary transformation
The trace of an operator is defined byintroducing a complete
orthonormalsetof basis rectors on

Tra In an l Al un I am Sum over eigenvalues

Thisdefinition is useful because the trace where it exists is

independentof the choiceof basis vectors

This gives a brief but comprehensive introduction to thematrix
algebra to show that the quantum mechanics can be formulated

as well by matrix algebra This was done independentlyby
Heisenbergand Dirac



i iÉ IÉÉi nation
momentum spare in the linear Algebra care are ratherharder
to find exact analog in the rotor matrix algebra But

for practicalcomputations especially in numerical simulation
one would discritizethe continuous variable and then

define a matrix We will see one example below

For Effetginincontinuouspositionspan
this is not a partof Qin I course but I have added it just to

get a feel of how one solves a Schrodingerequation on a computer

We start wilt the schrodinger equation in one spacedimension

Tfm Ig ter t very toy E tent G
ye

we see that all forms are local fÉ int
and defined at agiven position except
the first term This term is actually a second order
differential equation We use the definition ofthe derivative
as date bgm.tkfH

If leg nf É slim
times tan y



Therefore we can discritize the space into small bin ofmid ex

and denote those discrete positions by ni where i e integer

running from a to a Eachposition see in an eigenvalue ofthe
discrete Hilbertspace now 2 ri ki ki At eachposition
we forget the staterector Mdtodefine tenis L nil X Yi

Startingwith some position ni the and derivative term then

reads as dff big tea Y it t Yi 1 24

Then from the Schrodingerequation we hone

It Y ite t ti i ni Viti E ti
This equation can be converted into a matrixequation by

defining a stat column rector

ftdI

I 01 0

9 Emet Ism 1 Q
t y ti9 Emmett t

n s e

lui

4 o
m i Es

n É Y E Y



This way we
converted our Schrodinger equation in continuous

space to a matrix formulation I Y E Y areas solve it
on a computer or we can do a discrete Fourier transformation

We will not solve it here though This is clearly an

approximate method since the accuracy increases with reducing
E For numerical method we also haveto truncate it at some

finite size siphon or one takes a periodicboundary condition



ti.name
motion for continuous variablesG p and a continuous

function Yea which takes the shape of a discrete eigenvalue

and eigenfunctionformat when we enforce normalizability
condition on the wavefunction and certain boundaryconditions

Heisenberg independently also proposed a matrix

formulation of the quantum mechanics mainly fordiscrete

basis such as spin etc His approach was more of
taking Hamiltonian formalism in the classical mechanics and

making them as operators In hisway of constructing
quantum mechanics from classical mechanis which was later
also expanded by Dirac is as follows

is Quantum Mechanics

Vari alÉ E opert orsf.I.IE it

Time It is not a degree of so time i also not an

freedom rather it governs the operator in a strick sense
dynamicsto the degrees offreedom but a variable

Dynamics is defined in phase we have Hilbertspace

space of Ep G L madeof eigenvectorsof operators



Dynamics in the plane Dynamics in QM is restrictedby
is restricted by Poisson commutator a bx it heading

bracket se t3 1 to uncertaintyprinciple EenersN PB
time uncertainlyhas commutator

Time evolution is governed Time evolution of an operator

by Hamilton's principles is governed by Heisenberg
si 8,4 p 8th relation tobederived belong

and more generally for a

II it J IIvariable A

day A H
p i It

01time evolution of the wave

function Hilbertspace.ci
determined by the timedye
dentSchrodinger equation

it FIX It I YCt
conserved quantity A are conserved operator it is

denoted by A H
p of denoted by It 3 0.1

Caution The dictionary analogy between classical

variable to quantum operator is a hyphoses observation of
Dirac and there is no rigourons proof or theorem to justifythat
Bohr's correspondence prinufsicle is also a hypothesis that any
quantum mechanical equations should reproduce theclassical
equation as h 10 this is what the expectationvalues of operatordoes
according to the Ehrenfest's theorem to be seen below



Timeerolution
We briefly discuss the time dependence ofthesystem in the

abstract state rectorand operator language we start with the
time dependent Schrodinger equation

it felt its I HAD u

This is an abstract operatorequation which can beconvertedinto

our familiar Schrodinger equation by projectingonto theposition
space Lal we will continue with abstractspacehere

EqCy points the directionof thestaterector excess at all
points in space er egg is local in space we have
discussed its solution earlier that the solution withrespect
to the boundary condition that at initial time to 0 1414
I 4101 and It is her assumed to be time independent

This gives
1414 ICH 1410 é Mk Ncos

where I a é ith is the unitaryoperator whichmake
sure the states innerproduct is time independent in

L41011410 LYK I NEED

The expectation value of an operator A at time t is

LAI LYLE I I Y where we have assumed



the operator it has no explicit timedependence in ft o

but dd may not be zero think of it as I I II etc as

example Then we write

L A t L KID IF I VIED
L e int xcos I Al e

it
yea

Leo left A Etf Kcop
me

L 410 I It Ncos

We see a wonderful relation that it does not matter
where the time evolution is implemented with the state
rector 14147while keeping A time indefendant or the

state rector is kept time independent V10 and the

operator is evolved in time it the expectationsvalues

don't change and of course the state vectors normalization

also don't change This was the propertyof the unitary
property of the time evolution operator which stems

from the Hermitian propertyof the Hamiltonian operator
The former procedure is called the Schrodinger picture
while the later procedure is called the Heisenberg
picture More about it will betaught in QM II course



Lets proceed with studying the dynamicsof ACt we

obtain

dI day e
it h o e

it th

Title effigies
with itself

ei Atl t doite e
i Atl't

te't th pigfist éittlt

e Ath III co Alo a e
i at It

eittlt off to e it tf t
c Thisis to say
thepartialderivativeof
it at to

AMIN E It Firstbartial
derivative is
done at too and
then it isevolved
in time

Lot 1EMIDIII as

This is the Heisenberg equation of timeevolution of the
system if the time evolution is embedded in theoperator
and not in the state Otherwise in the schrodingerpicture we
hone the time dependent schrodingereye for the time
evolution of the state operator is time independent Bolt are
equivalent



If an operator commutes with the Hamiltonian and that
this operator has no explicittime dependence then this

operator and it eigenvalues are conserved ie time

independent
Hamiltonian commuteswith itself so Hamiltonian and energy
are always consered

Since conserved operator means it commutes with the
Hamiltonian so they share the same eigenfunctions

Therefore energy eigenstates can be indexed with the

eigenvalues of the conserved operators They are called

quantum numbers

HI Using Heisenberg picture show that dd AIDIAD
and ME I Ict PhD much like the Hamilton's
ri n oles in theclassical mechanics

TStarting from these relations and usingthe
commutator

CE I it obtain the Hamilton'sprinciples HII
and If 8ft caution I am not sure if these
relations are truefor operators or the expectation values
I have not checket it explicitly but you have to
check it and find out whether therelations hold for
the operators a P or for the expectationvaluesand Jj



da LA É LEI D IIt

It W Redwine eggsusing the Schrodinger end

Ehrenfest'stheorem we have derived this theorem

before that the centerof the
wave packet 15 and its momentumLF follows Newtonian

equation dog in257

1 2 Every
6

We had a longderivation of this theorem before but
now it much easier to do wring eggs in which
we substitute I É I cry The interpretation

of eq is that if we take the expectation value of
the position and momentum operator w r to a wave

function 418 which represents a warepacket of a

particle then the trajectory of the warepacket i



governed by the Newton's laws inwhich we can readof
the average force on the warefacket as LE I v7
which is equal to the acceleration Remember that
Ego is not valid at the operator level but only forthe
expectation values

HI Its obvious that one can hence obtain relations

like averageangularmomentum Li follows

das LI xF LF x Ev LEX E

Thevirialtheoremoo We have used virial expansion
in statistical mechanics for a

weaklyinteraction molecules in which departures from
the ideal gas laws can be related to the virial ofaparticle

27Fi E We can obtain that relation here that

L F E E TV 2 214 A

where K V are the K E P E of the Hamiltonian
It Ktv Mam t vest In classical mechanics the

average is taken over a long time which is assumed
to be equal to the average taken over ensembles in
statistical mechanics called Ergotic theorem Here

in quantum mechanics the average in eq is



replaced by the expectation value in a Hilbert space

The virial relation in eq is a stationary state
solution of a time dependent quantity Lt F

We can calculate its time dependence from eyes

LET LEH T.FI

Ht n Show that

A F I it G Ev ait LK

This gins do 48 F 22kg E F v
The stationary state solution of easy yields eq

The virial theorem becomesparticularly usefulwhen
the potential energy has a powerlaw dependence on

the position typically they are long range interactions

such as coulomb interaction vert Yr or simple
Harmonic oscillator vet m r One usefulproperty

of such potential is that they are called homogeneous

function If we strechl contract the position by
a constant say X as r x r then the form of



the potential does not change only a x comes ont
from the potential energy as

xx I VCD when D

is called scaling dimension and depends on the

potential energy The homogeneouspotential
satisfies the Euler identity F Ev D VCE

Then from eq we get L K I 24 at the stationary
state

Continnityequatio CAWJ.isDerive the continuity
equation for the probability

density 5 F LYCH TCF and probability
current ICP from cats

Using continuity equation prove that 8 fear



foperatorapproachtottarmonicoscillator

We have already solved the simple Harmonic oscillator

problem by solving and order differential equation and
found that the normalizable solutions are those in which
the series solutions truncate at finite values Those series

of values give different linearly independent wavefunctions
written as a productof Hermite polynomial and a Gaussian

warepacket the corresponding eigenvalues are En a tin

Now we will employ an operator approach also calledthe

Algebraicaffroach to solve the same Hamiltonian The
harmonic oscillator potential in unique in which bolt
momentum position variables are quadratic

17 Imf tmw's where weFE

tmw motto t it e

This quadratic form of the Hamiltonian makes it
possible to write this Hamiltonian in a factorizedform
A ATA

g where is some non Hermitianoperator that
we will build below Ata is hermitian This factorized



Hamiltonian gives a very simple and elegant set of
solutions In fact we will see that we only havetosolve
the groundstate wavefunction by solving a first order
differential equation and then we can just build all the

excited states by simply applying At operator on the
ground state This method is so simple and elegant
that in the future perhaps QM III or Qft course we

will replace any of our Hamiltonian with a fictitious
Hamiltonian of this Ata form wilt both havingthe same
set of energy eigenvalues that is to me the Hilbert

space of this operator Ata and expand any Hamiltonian
in her Hilbertspace that procedure is called the second

quantization method Therefore the solutions of Harmonic
oscillator is going to be useful for our entire life
even in advanced research



Let us factorize the Hamiltonian in equ It has the

form at b which we can write as fa ib Cat i b sakes
This is correct when a b are numbers Butwhen a b are

operators we have to be careful with the position ofthe
operators since they may not commute In general for
operators we perform a it at ib a ti as it a

52 8 32 i a B Since I p do not commute
so this commutator will appear for us Let us define

I I ti Ew Its I iEq

Then we have AtA i iEa ni ti Ina

Mt Egg Ew it
Tf

I't mtg It
substituting ear in eve we obtain the Hamiltonian
as

A Emw ItII
The last term is just a constant energy shift to the
entire energy eigenvalue spectrum and it just a



constant term to the potential energy minimum Therefore

its not a term to worry about Then apart from a constant

multiplication tmw we have the factorized Hamiltonian
that we wanted we can infactget rid of this ugly
constant multiplication by redefining A

as

a TAI EEEe L at ME It Fyffe In
54

I Em at a I Tgif at a Hermitian

Eb

recall frompreviouschapter that É Ew i a lengthscale

equal to the distance to the classical turningpointwhich
gives the decay light or uncertainty in position ofthe
warepacket outside the classical turningpoint
These operators a at donot commute and their
commutatorvalue i related to the commutatorvalueof
M and P We can obtain that CH W

1aatten.FI
r

substitituting egg in the Hamiltonian we get a simple
form

taffeta



We already have the eigenvalue solutionsof the S H o fromthe

previous chapter which is t w Int 12 where n is interser
Therefore we anticipate that the Hermitian operator at a

has the eigenvalue of n Indeed that is going tobe

the care and we will call it a as a counting or

number operator But we dont want to solve this operator
ata became thats same as solving the Hamiltonian itself
Rather we have done all the hard work above totryto
exploit the factorized form of the Hamiltonian

abstract
operator's eigenvalue spectrum we want

to solve now The reason for factorizing the Hamiltonian
will now become clear because thatswhat we are going
to utilize now Suppose we consider a general normalized

state 147 and look for the expectation value of F then
we have
E 241 A 147 KW LY I at a IK t EANLYIG

hw hall and hw

So we see that the expection value of energy simply
becomes an innerproduct of a new state Ny alk
Rememberthat a is not an Hermitian operator therefore
we should not look for the eigenspectrum of this



I operator although we can and those eisen rectors are

complicated called coherent stats that we will learn
in QFT course Rather we will just study the
inner product

Lt 147 Lay lay 7 O

Became accordingto one of the axiomsof the vectorspace is

that the innerproduct of all states must be positivedefinite
and it can only be zero when the state itself is zero

this makes sense from the phyeical ground also became the
inner product gives as the probability which isalwayspositive

Now since this innerproduct in aq
a is alwayspositive and

we is alsopositive therefore all energies of the Hamiltonian
in egg arepositive we still don't have a justification onwhy
the energies will be quantized though But we can actually
say some thing about the ground state A ground state

by definition is the state that corresponds to the lowest

possible energy state From ear it clear that the lowest

possible state is when Lax a 4 0 From egg this ispossible
when the state itself is zero This means



I 117 0 Go

Therefore the ground state of a s It O oscillator is the stateno
which is being der or annihilated by the operator a
Note that eq co is not an eigenvalue equation of an wilt
Zero eigenvalue Although one can think of it became

of the fact that 0147 0 but we don't want to call it
an eigenvalue equation because I is not a Hermitian operator
There are issues with orthogonalization forthe eigenstates of
a non Hermitian operator And we want to built a
Hilbert space of the Hamiltonian rata starting with No

being its ground state Rather we will denote Hos as a

ground state given that it destroyed or annihilated by the

operator a This is why I is called destruction annihilation

operator Then It will be called a creatonoperatornetich

will take us from the ground state theatedstates as
we will see now In that way I will take us from the excited

state back to the ground state This iswhy Tiat are also
called ladderoferator The ground state 1405 of such a

factorized Hamiltonian is called vacuum state became its
the eigenstate of Ita with zero eigenvalue Since Ita will be

called counting or number operator so the ground state is

something Hat gives n o as if it contains no particle Asof



now however we will refrain from calling it a vacuum

state and simple call it the groundstate of the S A O
The form of 140 can be obtained by solving ego in the
position basis n LN Yo Mold Multiplying Inl from

left we have
Lala Mo o

4 I f du in Lil

Jax La a la You o

La's in BE mini EwanIlse's
Ten n Eff Casey

So we have

My fax G Ew x 86 d tocry so

WitonL E

This is another
advantageÉf using the operator approach

that we don't need to solve a and order differential equation

We only have to solve a 1st order differentialequation and
as we will see below we have to solve it only for the ground
state and the excited states will be obtained by simply
applying the creation operator at



The solution of eq ID is very simple

J dy Kyadu

Yoens e Noe
key

which is a simple Gaussian with the variance I as expected

from the solution obtained earlier we can normalize the
Cassian warepacket to obtain ME FA so we write the

ground state energy wavefunction as

Eo It w Yo a Eg e

which matches exactly the earlier results

Excitedstates As we promised we will be able to generate

all the excited status from thegroundstate

For that purpose we need to workont
few identities and commentators first

Let us define a number or counting operator

I rata a

This is clearly a Hermitian operator and commutes with
the Hamiltonian Therefore I I share the same

eigenstatesand the states we are developing are indeed the

eigenstates of the number operator I with integereigenvalues



In the present care the Hamiltonian linearly depends on the
numberoperator and hence everything is simple There may
arise cares where the Hamiltonian depends on some alsebrio

powerof it in which case we don't get equallyspaced
eigenvalues Nevertheless choosingthe Hilbertspace basis ofAe
numberoperator which has the unique definition of a

factorized form of ata always helps solvingsuchHamiltonians

easily It makes things so simple that we will introduce such

operators by hard even if the Hamiltonian is not in this
form of Pt n Then every otheroperators includingthe Hamiltonian
have tobe expressed in terms of at and a This procedure iscalled

the second quantization procedure

So far we know that Ho is an eigenstate of IT with
Zero eigenvalue recall that Mo i not an eigenstate of a tough

I Hol at a to 0 to a

Now if a annihilates the ground state No at cannot
annihilate it In fact became a at do not commute as

we have seen in the discussion of uncertaintyprinciples
above if two operatorsdo not commute their uncertainties
cannot be made arbitrarily sew rather bounded by the

value of the commutator



So we have a at I a at at a I

Acting this commutator on theground stat we get
a at 1407 II Wo as a at Ho I Wo to

o fromear 4

a at No No 5

to emphasize again Tekin the ordering of operators makes
a whole lotofchanges Its so important thatthere are convention of
how to order these creation annihilation operators

In what follows at tho gives a new state that we denote

as 14 at 140 We can keepofflying at again on exo to

get anotherstate No and so on Therefore we can get a

hierency of states by simply applying at operatoragainand

again
Mn that 1Yo 16

Whats it good for we will see that these stats are

going to be the eigenstates of Moperator and herd of the
Hamiltonian This means all these stats are linearlyindependentSo we need to evaluate

L Tm Tn L at to Cat to fam
L NoI amcat to

m
a

and I Hn E n un 175



We see that to evaluate these innerproduct we need to

play with a lot of commutators e.g A a EM at etc
Let first evaluate them

I a ata a at a at at a a a
1 0 say

485I at at
same
ay amquag kindaI am I a

am N amy a am am I N am2J a

2am am fly am3J a
m am so

it at m at Ga

a at a Cat
mt at at La at

a fatty ft Im at m t

m at Mt Ise
at am m am 18



Now we can go back to eq b

N Hn A Incat In Ifncat t at ni lo
TH ND OH

Inn at No

n fun I

Therefore Mn is an eigenstate of it with eigenvalue n

Therefore the
nomenclature of it being a number or counting

operator is justified

L Ym tn Lto I am at No from a

Leo am a at Yo

Lto I am Eat'tcat a to
a to 0

L to n am I t to

LY In in D a m lath
m
Yo if man

O

or LY ol n in D I am n I ko if men
O

LY I ment 1 to to menor

N1 2401 Yo
I n ME 1

ni 8mn



Therefore Mn f at 140 620

somebooks simplywrite instead of 14ns These are

the eigenstates of the number operation here are the

eigenstates of the Hamiltonian with the eigenvalues
hello tw as obtained to be

ftp.twca
NIM 2

hw In a Has

at a as Raising and Lowering operators Ladderof

at in F at no

Iq
one fat no

turned 22 a

air
I n at t at a yo usingerased

O sin a Ct Ko I 0

ay FYn 2b



Egs420 and 122b justifythe name that It and I are

the raising and lowering operator since they take to to
one

higher and lower status respectively They both together are
also called the ladder operator

III WJ using these lowering and raising operator properties of
an and at prove that NMn n wa and
a at in a Mn

Wave functions of excited states

We have already computed the wave function of the

ground state by solving the 1storder differential equation
La la yo 0 a yoCr 20 which gave us ewers

toCa II e
n E e

we can now obtain all the exited status by simply
operating the at operator

4 n Lal Mi Lal atNo

fax in Ln in in asked

atCa Yo n



VEE Cr int if e mean

FEKETE Eatin De mean

D Ln Ew EEE an e
mm ran

42
e
MN sa n

y K MyTh It a cold Hermite polynomial

Ea it and e to

Similarly n't excitedstate canbe obtained as

Ken Ifans no

it W GET An ka e I 2

This exactly matches the wavefunction we derived

in the previous chapter



Lets try to evaluate the expectation values of T and P
operators in this number operator's Hilbertspace

LIE Lunt my LYTLECatat ten

Ya Ant any Lkl attn
Want any Tn in
and LentYm so for men

O as expectedfrom the Gaussian
wavefalloutmilkcenterat no

257 Lent to Mn Ft i Lulla at yn o
h

25 Fmw Len Caeat latat Itn

Talat aIEEE eerie

2103 i M 2 Yn at a at in

m wt IntE mEn

f rel

hi

any gym
Uncertainty in position An Fan NEED Kites

latantm.LI



Thats exactly we found in the previous care that the uncertainty

in position of all the eigenstates are determined by the
corresponding turningpoints ad air and since the

wavefunctions are the Gaussian wavepacket whose spread
in position and momentum are determined by the inverseof
each other such that I f an n t Therefore each

wave function has the least possible uncertainty in position
and momentum This is the definition of coherent
States

HI Prove the virial theorem for the Harmonic oscillator



i HigherdimensionalHarmonicsosillalix

Lets solve for a three dimensional Harmonic oscillator The
Hamiltonian

y 11megg II tmw e y'tz ED
wilt the same spring constant along all directions Thismakes

all three frequencies to be equal to w Elm
We notice that all three directions are independenttoeach

other and hence we can employ separation of variablemethod
to solve the above Hamiltonian The wavefunction hence can

split into a product state
I Ynen no thx 14ns Tmz ta

such that as we take a projection onto the positionspace155 171514

we at
Thxnynz F Tnx a Yay a 4,12 1255

we can define three setsof creation and annihilation operators

ax apt ay artand at at in thesame way Then it easyto
see that the Hamiltonian becomes

A t w f ayat ayat tazat 3
KW Kent t He 312



Ground stale Hood is such that it annihilated by
all three ax ay ha Ai 140007 0

Excited states Yanina ftp.t x Cat1attlYooo

A Ynynynt Aw ny thy the 1312 taxingnd
A Mn hw 312 Int e En en

where we have defined an intersex n my thy tht

f gi y0 I 0
i

iist

110 4110

101 512 14101
b fold

I I
14027 degeneracy

on
I

14020
202

4200



In general in a d dimensional Harmonic oscillator the n't
eigenstate is nd fold degenerate

AW a show that Mn tnxmypt are orthogonal even when

N E hy th tht remains the same

I Obtain the matrix representation of the Hamiltonian
in numberoperator at a operators in the

infinite dimensional Hilbertspace INn

in
Define an unitary operator I e

i
where dis

some number Act this unitary operator on some

wave function Mn Show that it gives a new

wave functionas Un e nd whichis same as Yn became

we know that wavefunction is gunge invariant

Therefore the numberoperator is the generator of
the gauge transformation or phone transformation

Therefore if the theory has gauge symmetry which is
true for the global gang transformation ie a constant

phase a then me in a conservedquantity Thereverse

is also true that if the theory is a grandcanonical kind

of ensemble in which numberofparticle can bearboritary
then it phone must be fixed or coherentstate



of you have heard of Bose Einstein condensation which

says photon phonon which are a special typeofparticles
with integerspin and often are the quanta of plane wave

solution but not restrictedto it then suchparticles all goto
the groundstate energy at T o This is sortof an example

of obtaining a fixedplane condition or sometimes say
phone condensation This course is howeverwaytopreliminary
to study that


