
 

Angular Momentum
O

Recallfrom the old quantum theory Bohr's hypothesis forthe
quantization of the atomic energy levels was that the angular
momentum of the

election's orbit is quantized This leads tothe
quantization of the energy level He did not have anyproof
but now we can prove it as well as understandanddevelop a

a very profound and handy algebraicmethod to study those
Hamiltonians in which angular momentum is conserved Became

spin i an intrinsic angular momentum ofparticles thealgebraic
method that we will develop for angularmomentum can also be
used for spins To distinguish these two types ofangular
moment one often refers the first as orbital or linear
angular momentum which generates rotations of aparticle in an
orbit and the spin angularmomentum or simplyspin forthe
intrinsic rotation of a particle w r to to its own axis They are

denoted by I 4 5 respectively We will also learn a total

angular momentum I Its When we say angular
momentum

itmay refer to the general properties forany of the three angular
momentum



Angular momentum rectors are different from othervectors like
F P that they are calledaxial rectors Became angular
momentum vectors are defined by the crossproduct of two
other rectors and by virtue ofthe crossproduct the divergence of
angular momentum vanishes This is the reason theygenerate

rotations Anotherexample of an axial vector is magnetic
field which hence can be described bythe crossproductof
two rectors B FX Is where I vector potential One common

property of the axial rector is that its components do not
commute with other as we will see below and in thischapter
we want to take advantage of thisproperty to define a

Hilbert space and algebraic method that we developed for
non commutingposition and momentum operators in thesimple
Harmonic oscillator case in the previous chapter

Returning back to Bohr's hypothesis Bohr assumed

that the angular momentum is quantized in some integer n

multiple of t and the same integer n calledthequantum
number appears in the energy as 11h2 In our modern

language we interpret it as the eigenstates tentof theangular
momentum Mn with eigenvalues n t e.g LMn at Yn is

also the eigenstates ofthe Hamiltonian AMn Gr Hn where

c in some constant This means the angularmomentum and



He Hamiltonian share the same Hilbertspace This means
I II commute with each other or EH I 0 Fromthe

Heisenberg's picture of the time evolution of an operates

i givenby tf A 3 we hence infer that É o

This means I is a constant of motion From classicalmechanics

we have learned that angular momentum is the Noethercharge

of the rotation of the Lagrangian and if the Lagrangian is
invariant under rotation then angular momentum is conserved

This Noether theorems of conservation rate in the Poisson bracket
language becomes Iet H L

p B where It L are classical

variablesnot operator We again see that the Heisenbergb
relation is a generalisation ofthe Poisson bracketalgebra for
operators as Dirac said We also said briefly that when
an operator is conserved it represents a symmetryfor its

conjugalvariable then the unitary operator u e't 0h

represents a translation of that variable recall that we said

ei Atl t city ane the time space translational unitary
operators where the Hamiltonian and momentum are time

independent conserved respectively

We do not want to discuss here the unitary
transformation of the angular momentum operator rather we
want to go back to the case where



I I 3 0 D

ei forthe Hamiltonian which is rotationally invariant or

symmetric Kinetic energy K
442m IF i always

rotationally symmetric It W write the Laplacian operator

t and the angular momentum in spherical coordinatesand
show that Ct 1 0 The most generalpotential that

is rotationally symmetric are the ones thatdoes not depend
on angular coordinates is V451 VCD Such potentials
are called central potential which causes rotation ofparticles
Coulomb interation and gravitationalpotentials are two common

examples of the centralpotentials Since election's orbit in an

atom arises from Coulomb interaction so angularmomentum is

indeed conserved and Bohr was right in assumingthat angular
momentum energy are quantized bythe same quantum number

So we could just simply me the Hilbertspaceof the
orbital angular momenta to solve the Hamiltonianfor atoms

Well we are almost right but the problem arisesfrom the

fact that angular momenta are axial vectors and all three

components do not commute We can show that the

three components of the axial vector followthis generic commutation
relation

In Ly it Lz I Ly Lz it Lx It La it Ls



This cyclic relation can be written in a compactform

filiation
Gish isthe antsymnsdndwhnei.isk nosit and

Eisk g
Cimarecyclic
i j are interchangedfor a given k

if i s s or I k or is F
The origin of this commutation relation is in its formula that
the angular momentum is definedby the cross productoftwo
rectors which are cannonicallyconjugal to each otherand
hence do not comite

I i tisk ri th 5

in which fi top it Sjk

F.wCi Using a prove eyes in both Cartesian and

spherical coordinates

Provethat if É o then a three components have

simultaneous eigenfunctions

Cii Prove that the commutation relation is equivalent
to the rector commutation relation

I x I it E

which is another definition of an axial vectorthat
the curl between itselfdon't vanish in the quantum limit
Does ear 6 have classicalanalogwith PoissonBrackety



Now the trouble with non vanishing commlator in

quantum mechanics is that there exists an uncertainty
in their measurements As we saw in theprevious care

eyes implies
a 42111 7,411 ti ti

344ns

Since Lx Ly It are Hermitian operators each one has

its own Hilbert space But one's Hilbertspace is not an
Hilbert space forthe two others If we consider theHilbertspace

of say Ck in eq then Lk in some numberand the

uncertainty in the measurement of Li Li are related bythis
member in such a way that if Ali o Ali 40 and vice

versa Became the Hamiltonian involves all three components

of the angular momenta andfittedHamiltonian also commutes
with all three components the Hilbertspace of any one

component is still not a good Hilbertspace for the Hamiltonian

so what do we generally do We will still go ahead
and use the Hilbert spaceof any one component ofthe T
We often choose Lz as a convention and also became Lt

has a simpler from in thespherical coordinates If it
But what we call the 2 component is a fare convention Then



one we choose the Hilbert space of Lz thispart ofthe
Hamiltonian involving Lt is now fully solved Forthe remaining
part involving Lx Ly which donot commute we need to
construct a ware packet wilt minimum possible uncertaintyin
both Lx 4 Ly such that LALn 22472 t 447 this is

analogous to the warepacket formulation we introduced

for Hamiltonian involving n p which do not commute
For the S HO Hamiltonian having a form then we found

it was convenient to even introduce raising and
lowering operators a ne i p at n it such that the

Hamiltonian becomes proportional to the numberoperator Kaat

The eigenfunctions of the numberoperator are the Gaussian

States in bolt position and momentum domain which isthe

warepacket having least possible uncertainty in bothposition
and momentum space

Therefore our approach will be along this line and
we will use the Hilbert spaceof Lz and introduce raising
and lowering operators 1 I Lx Ii Ly It distinction we
will find here isthat the Hilbert space of Lz is time
dimensional whereas the Hilbert space of the numberoperator
in the previous care was infinite dimensional Bolt Hilbert

spaces are discrete though



so we define tho Iii sigmoid lowering operators as

I Lx I i Ly 8

Notice that 1 L therefore theystandfor at alike operator

In analogywith the numberoperator I ata let us define a

similar number like Hermitian operator
It L x ti ly Lx it Lf thy i le ly

Lit Li th Lz L2 LE ALz a

i It L at Lz Cb
La LI I ALI Ca

Cz 4L z LY
Le LE the Li
LxCLa Lx Lz Lx Lx
Lx it ly t t t t y Ly it Lyly it Lxly

o ad

I 1 L o e

Therefore we obtain our important clue that
Lz L L J Lz 17 0 Cd

which means that Lz and 22 and Lt and the number like
operator share the same eigenstates and hence the ladder

operators can be used to raise and lower betweendifferent
eigenstates Therefore one can similarly start buildingthe
Hilbertspace startingwith the first state which is annihilated



by 1 in L 102 0 Notice that we are not calling it
the ground state or the raccum state became we do not

have here a Hamiltonian In general thepotential energycan

depend on L differently and hence which statewould

correspond to the ground state is not known a priori
But we have somethingelse here that all eigenstates of

the number operator are alsoeigenstates of Lt 4 L Therefore we

can build the Hilbertspace from there operators We know the

expressions of Le L and we can solvefor their eigenfunctions bat
lets proceed with theabstract Hilbertspace here In the abstract

care we do not know the eigenvalues of Lz L yet but we

know their dimensions From the commutation relations as well as

from the fact that Lottihas thedimension ofthephase space i e t

and the angular variable doesnot have a physicaldimension

so the dimension of Li is t and 12 t Therefore the

eigenvalues of Lz c will be t 52multiplied wilt
some numbers which are the quantum numbers Wedenotethe

quantum numbers by m e Then the eigenstates will be

denoted by there two quantum number as Kem E l m The

two eigenvalue equations are written as

Lz fl m m t Il my Goa

L Il my fleet tile my cob



I we have written the eigenvalue of it by a peculiar notationof
le le1 This is just too future convenience At this stage we
do not have any knowledge of whether m l are integers or

not and if there is any bound on the allowed values and range

of m l So we will just treatthem as some real numbers

because Lz I are Hermitianoperators of course we can guess

that atleast m hastobe discrete integers by the fact that v e
t

corresponds to rotation by angle 0about the z axis and rotation is

in build periodic that means a rotation by 0 25 shouldbring
the unitary operator U back to an unit I identityoperator
I I e since its equivalentto no rotation Therefore
La IA t 2am Lz Mt The same constraint is there for
the rotations along other axes and hence its reasonable toanticipate
t will also be integer But there will be more concreteway
to figure this thingsont

Letstake any component say 2x and the innerproductLl ml L Ilimy

lull m hall m LLx Yen lx Yem Since this is an inner

product of a state tem thxKem fromthedefinition ofan
innerproduct LLxNem I lx tem 7,0 This means

Ll m I I l m I o this implies that l le47,0 Thiswould

mean 17,0
I Alternatively one can say l s I butsinceone



can then redefine l Clt1 and get l'd o condition so we are

back to the same condition Hence est beingthe same condition
we reject it

From eq e we get
12111 lemy LI L Il m LHeyELI Kim 42a

Therefore It Ili m is also an eigenstate of 12 with the same
eigenvalue There are twooptions for this to be true Is LI team

is linearly dependent on Clem in Lt lcm X Ilm which

means Ili m i also an eisenstate of Lt But rememberthat
Lt are not Hermitian operator Or It Ili m team

are degenerate status of 12 in which care L Illam Ilim

are linearly independent i e I liml tall m 0 In the

later care LI Kim wouldcorrespond to the other eigenstates of the

same Hilbert space since all states in theHilbertspace are also

eigenstates of Lt so lets check whether the later is true Weknow

from eq c that Lz Lt do not commute but their commutation

however returnsbada LI operator So we have hope

Lz Ilmy LI LEI ALI I am from eq ad
It mtll.my I t Lil lim fromeq load
MII K LI Il m ab

So It Ili m are also eigenstates of Lz with difrent eigenvalues
this means Lt Il m are not linearlydependent to teams and



are different eigenstates within the same Hilbertspace We see

that 12 operator has lot of degeneracywhich are not degenerate

for Lt In otherwords if the Hamiltonian only has 2 operator
present as we will see forthe kinetic energy form then it will
hone degeneracy But in addition if there are terms proportional
to Lt I as a matter of fact any component Li whichhasto

be present in the potential energy term thenthosedegenerate

energy levels will be lifted by this term Physically havinga

term proportional to Lz means we have broken the rotational

symmetry of the orbitals and there is an energy gain to
hone the orbitals oriented w r to the Z axis Such a term can be

obtained by afloyling an externalmagnetic field In thecontext

of spin angular momentum as a magnetic field is applied
it orients the spins alongthis direction and we have a potential

term lug B 5 Such a term is called Leeman effect On

the Stern herlack experiment we had added the Zeeman termto

allign the orbital and spin angular momentum

Eq b also indicatethat It does have the effect of taking
the state Il m to another state 1e MII justifying its

name raising and lowering operator we can figureout
how its done by choosing a form



LI Ili m Cill m I l me 17 ed

nature Ct ein are the complex coefficients that we need to figure
out now Taking conjugation of early we have

Lf m Lt
t
LAmi Le L e MII CI Ili m Multiplying this

in ear 13 we hone

1 le m I l im till me Le ml L LH emy
Llml 12 LE KLz Ie m Tanga

I
Ll m felled m m t em

e lets mimed t herm e m

Recall that le m status being eigenstates of linear Hermitian
operators are orthonormalized is e Leim l e m See 8mm

Hence we get
tY 14a

upto some arbitrary phase which we can set it to be zero

by taking advantage of the factthatthe eigenstates Kim are

defined arbitrarily upto a phase Similarly we get

Ija dad

Now given the fact that I CI ein 2,0 we obtain
K2 lte mim El d o

filed 7 mime

leleedgmed 5



Therefore from ear e and mice ez o from equal we

obtain the board on the Hilbert space

_esm C

Now as we did forthe care of Harmonic oscillator the
lowest state of the number operator is something that is
annihilated by the loweringoperator Beame the job ofa
loweringoperator is to lower the m value to me If we are at

the lowestpossible mminstate there is no otherstate and here

I l mini IS mustnot exist Therefore the minimum valueof
M is something which is annihilated by L

L I l mmin 0 A

From Cq13 this means C Ce m min 0

ll led mmint min 1 0

mininef Ha

as also expected from ear

Similarly the maximumvalue of m i m max is something

which is annihilated by It Lt Il mmax so et Ce enmax o

This gives

minx 8

Now since starting from the minimum valueof m e e one

obtain all other status upto me e by repeated action of
It which raise the m values by 1 so the allowed



values of m for a given l is

Ine li ety ty get fay

Therefore for a given valueof l there are deets Became

of this constraint in eared and the factthat thetotal number
of status has to be Glee which is an integer there are

twopossible solutions and hence two kind ofparticles

21 1 I even integer 2,4 6 whichgives 1 42,32,512

fate angularmommtuminhalfinteger

multiples Since we cannotthinkof orbital angular
momentumbeingfractional which would correspondto
a unitary rotation e

i talk ei la e it 25 ein
1 This is interesting thatunder a 25 rotation

denoted by the unitary rotation on the Hilbertspaceteam
we do expect thestate to comebackto itself But
forthe care of half integer angular momentum we
obtain a phaseof IT is the state returnto thing

after a 2k rotation this is verypeculiar to happen

for a particle orbiting in an orbit But such
an angular momentum can be thoughtaboutto

happen for the spin angularmomentum This



is alsopreciselywhat Stern Gerlach experiment
reported for elections Therefore we concludethat the

spin angular momentum ofelection is 42 whose
Hilbert space has two states Ms I la Particles

with half integer ofsins are called Fermions Elections

protons are examples of fermions We will comeback
to the Hilbert space of spin 12particles below This

is clearly a quantum effect and it maynot have any
classical analog

anodaintani.ie iiifn i s
of angular momentum For angaleremomentum

having integer l values the 2n rotation leaves the
states unchanged Particles with integer spin
angularmomenta are called Bosons Photon

thoron etc are examples of Bisons Ofcourse
for a particle bolt fermions bosons rotating
in space can have inteser orbitalangular momentum

as Bohr assumed



To tabulate what we said above we hone

21 1 m orbital orspin particle

I 0 0 Bolt I S if
I am spin Jarmoiii

3 I 1 0 I Bolt By p ify
4

p.m

it

All these stoles canbe obtained by applying the raising or

lowering operators Lt starting from thestate with lowest or highest
valueof m ee respectively

le my Ny Lt
Mmi

lemming

N Lymmax I e many
Cd

where the normalisation MI can be fixed easily



Clearly Iemy form a finite dimensional Hilbertspace
of dimension Gleb Mygeneralstate of rotationally
symmetric Hamiltonian with angularmomentum l can be

expanded in this Hilbert space we will see more ofthat
later Onthe other hand a general state rector can beexpanded

in all values
of isg Em glem Il my where Yemi Lemm

the closure property of this basis is Etnaellm Ll m z I

Another interestingproperty of the axial rectus following
the commutation relation we will show that any
operator defined in this Hilbert space of same dimension

Cnn beexpanded in terms of three angularmomentum
This is shown by Wigner Eckwant theorem which
either we will see in this course or in QM I



Rpexnthinofumstabsmstuiclndinl
Earlier we had momentum status 110 which we projected

on the position states In to obtainplane wave solutions Similarly

we can project the angular momentum state le m onto its

Congngate domain 10,47 and we denote those stale
Yem10,0 Yam10,0 Notice that we have three angular
momenta La La La but only two variables 0 9 This is

precisely became all three angularmoments are not independent
only two components are independent and the third one can

be obtained from the commutation relation You may also
have learned somewhere else that the rotation on a Block

sphere on the surface of a fixed radius sphere is denotedbytwo
Euler angles The commutation relation Lx Ly Ly lx e it Lz is

also telling us that if we make a rotation withrespectto x axis

first and then w r.to y axis or if we make a rotation w r to

g axis first followed by n axis we dont get to the same point
but we needanotherrotation z

w r to the Z directionto
come to the samepoint
Because of two ruler angle

y
required for a rotation in 3
dimensions we also hone two quantum
numbers Il m



So we want to evaluate Ye m Qd here The reason for
denoting them by function Y mill be clear later that the result
will turn out tobe spherical harmonies functions

20,01 l my Yen ooo ay

The 10107 eisenbets defined on the Bloch sphere are the

eigenstates of angles 8190 0 10,07 910,07 010,07

It is a continuous infinite dimensional Hilbertspace for all
values of of It and 0 1012k but the Hilbertspaceis

periodic or called cyclic or compact became too values of
Oand ofoutside those range can be broughtback to the domain

The closure or completeness relation is

defined in analogy with tsiongaucat It in FI
a

fide 10 a 20,01 I Cd

where doc is the solid angle defined on theBlock sphere as

doc sine dodd
The innerproduct of local is

hmu defined as

koidlo.at s scf
1 1231



Let us determine theÉantular momentum operator in the

angular space
Lo Ti O o Li Qa 810 0181901 for ten y z

We can simply evaluate these operators in theanglespace

starting from their expression in the coordinate space
Li Eight Bk it fish r 8in we know that

20191210,0 n 8 sing cosof of a

Ya r s int sing o_0 It
Z 2 Coso o 19 125

Then we can evaluate

Ln it sinop fo Cotocosy 1249

Ly it cosof fo Coto51598 1245

Lt it go 1240

12 52to Folsino 8 stg II 249

I a Eid I doo ti Coto to kid



from eq 240 20,01 Iz emy it 2901ofteam
it Locallimy
it fo Yemi 9 a

we also know that I 21him Mt 111m ApplyingLoco

on both sides are at 2010122 Ilm m t Lo elem 2155

Equating eq a 212561 we get

to Yemen im YamCod ED

The solution of this firstorderdifferential equation isobtained

by the ansatt
yen g Fema e im9 7

which tells us a separation of variable method we
can now apply this ansatt to eq44d and recall again the

fact that Local Il limy elles t 20,01am ell Dt temlad
we get a 2nd order differential equation as

2 Fem Cott Fem ellet sit Fem o ay
We won't solve this differential equation but quote the

result that the solution of this and order PDE is the
Legendre polynomials Fem101 Pen Cosa You can

learn more about these polynomialsfrom some standard

malt text book Therefore we set the eigenfunctions of the

angular momentum operators as



1Yem194 Pe4uyeim ad

This wave function is not yet normalized We can normalized

it according to eq 3 9 partisnormalized as to eimd and
Pem wso normalizedformis

Femlol 34151 renewed

Some of the spherical Harmonics are



In Coca space the spherical Harmonics look like

Z

Fe
y

The shape of these spherical Harmonics remind us of different
orbitals like a b d felt that we may have encountered in other
courses Indeed different orbitals symmetries atoms take for
different values of l m are indeed linear combination of At

spal Harmonics



III Showthat 1
em em

do Ye'm 199 L Yen Coca

elley ft feel8mm

a em e'mi e f du Yim Ocd Le Yenlocal

m t feel 8mm

R I em e'mi decetyment t see8min



Matrixrepresentatinofangularmomentumoperati

Thematrix representation is simply obtainingthe matrix elements

of the operators in the Hilbertspace of ll.my Weknowthat the

Hilbert space dimension here is fated for a given valveof d and
hence the matrix of the operators has also the dimension of
C2feyx teD.we know the following relations

Le m em see 8mm Bo a

Le m I tellmy m t see 8mm diagonalmatrix with Rob
entries mt

he m 22 em elles t see8mm diagonalmatrixwith 309

entries leet t

Le m l lil em femi t See Sm me off diagonal

matrix
Lem l lx em Ew

Yod
foe

Lem l ly em 2

What about the eigenvectors le m We can simply
obtain it from the eigenvector ofthe diagonal matrix Lt
We will see some examples now



Examplest

1 0 GeeD 1 Here there dimension ofthe Hilbertspaceis l
so m 0 Lt 0 12 0 Null matrices

This is a two dimensional Hilbertspace
M I 42

tf o
4 4 24

C
In E L EC 2 44

The three matrices ox Gy G Ex Ly 4 are

called the Pauli matrices for spin 42 particles show that
the Pauli matrices are Hermitian and follow the
commutation relation Oi 0,3 2 fish ok The eisen
rector of Lz is

le m It Ya 142 1

show that these two states are linearly indeferent
Ht obtainthe eigenvaluesand eigenvectors of 2x ly



3 we have a 3dimensionalHilbertspace with

me 1 0 l

So

o i o

0 0 0
iz

t lx at i o i

o i o

obtain the eigenvectors 1,17 11,0 11 7



SpinangulareMomentut

As shownby Stern herlack experiment forelectrons and later
on by many other experiments most of the quantum

particles possess internal precessionwithrespectto its own axis

Therefore they posses an internal spin angular
momentum which

we often denoteby 5 But unlike the orbitalangularmomentum

which have an algebraic expression in terms of two otheroperators
in the domain space the spin angular momentum I does not
have any such

algebraic expression However it is confirmedby

many experiments that spin angular
momenta follow all

the algebra obtained above for the orbital angularmomenta
Therefore I are axial vectors and hone the commutation
relation

si s it fit ks k C
Allproperties we obtained above for S z s St operators

and the Hilbertspace ISims also hold forspin onephysical

property that is distinctfor spin compared to orbital momenta is
that spin can take half integervalues as well as integer values
whilethe latter canonlytake inteservalues We do not generally
have a spin wavefunction written in the Ma domain but it

is customary to use the matrix representations forthe spines The

results are same to what we have done for the general I



operators above we will elaborate that discussion little
further here for spin 5 112 cone which is the valve electrons

fake
For spin s ya we hone two dimensional Hilbertspace

We express the spinoperators by 2 2 Pauli matrices as

Si tf Oi where
o i

on on i o
re o

y
The commutation relation follows from that s operator as
Oi o 2 Eisk or Show that their anti commutation

relation satisfies

oi o Gio trio 28i t 2 i fish on 3

Oi I Gio i ti ik on for i it k 134

The2nd property has important consequence If we define a

unitary transformation with there Pauli matrices as v e

e
i ta ta t obey est Et where i are the rotation of the

spins wir to ithdirection we see that all higherpowerterms in the

expansion of the expansiongives back a singleoperator became

of eq 34 This is the reason a large angle rotation ti can

be obtained by manymany infinitesimal rotation ti Ns ti

with Nt o Therefore such unitary operatorindeed gives
continuous rotation of spin Ear a also satisfy some grouptheory
axiom and o i for a continuous group



Gi are Hermitian Traceless ie Troi o and

dit Oi 1

T oi following the commutation algebra provides a complete
set of 2 2 operators in which any 2 2 operators can be

expanded e f Wigner Eckwant theory There isalso
a group theory argumentfor that that we may learn
somewhere else Remember the complete setmust also include
2 2 identity operator I J

We often we the eigenstates of oz as the Hilbert

space The two eisenstatus are

Is Ms 1112 427 11 11 427 Y

These two States are often denoted as spin up and

spin down storks 147 H respectively When we say

spin up or down we do mean along the 2 axis But
as we said earlier z axis is just a choice of convenience
but spin can be oriented along any arbitrary direction
We can obtain such status as a linear superposition of
the 195,14 stalis which isto say any other spinstate

can be expanded in the 2 component Hilbert spaceof
197 Ite



1 X C cry Ca 1H 35

where of course a LAI X C 2 24147 as usual

HW is show that 117 14 States are orthonormalized

It also satisfies closure relation 197241 11541 1

Show that normalization condition on IX sires

141 ta 1

CD Find the eigenvectors of ox og operators

Can you expand these eigenvectors in the Hilbert

span of Oz operator

Cii Consider a general operator in the a a flare for
a spin rotated with an angle of as

Sp Sx cosof t Sysing Find the eigenvalue
and eigenvectors of Sp obtain the expectation

value of Sx Sy Sz in this basis

Repeat HWGii for a general 3D spinalongadirection

Sn Sx SinoCos9 t SySinOSITA StCVS 0

C Repeat the analysis for integerspin say S l as

done above for e l



FIimingianititianiaeconsema
of giving intrinsic magnetic moment of a system Ofcourse the

same is true for proton mention which alsopossess epin
typically higher spin like 312,512eted and can give large
magnetic moment tothe system Let us only focus here to
elections with 5 42 although the formulas are easily
generalized tohigherspin

We know that the magnetic moment of a charge

particle e and mass m moving in a closedorbit with

angular momentum I produces a magnetic field at thecenter
which is given by A Emt Since there is no classical
expression for spins we define the magnetic moment of
spin similarly as

a 8 8 36
where the extra factor g is called the gyromagneticratio
which isdetermined by experimentfor spin tobe g 2 whereas

for orbital angular momentum g 1

Such magnetic moment couples to an externalmagnetic

field and gives a potential energy term as

A M B If 5 B 9ft E I 37J

The Hamiltonian in eq 7 is called the Zeeman effect We
will solve eq 371 in a nicer and simpler method later



Additionofangularmomentu

Next we will study the properties of two or more angular
momentum additions such as Ty Ia si 52 fortwo interacting
particles or Its for a single particle with finite spin
rotating in an orbit we will denote the total angularmomentum

by J and the algebra is the same whether we are adding
orbital or spin or bolt Therefore we basically want to study

I JT I'a

Since Ji JI are axial rectors and havethe above
commutation relation for each of them the totalangular
momentum is also an axial rector and hone the same
commulation relation Ji Ji it tight 1 and the
Same for Iz and JT JT commute

Why do we want to workwith the total angular momentum

while we could simplyworkwith indivialangular momentum

Ans The reason isthat there are many occasions especially
toomanyparticle Hamiltonian like a Heaton that individual
angular momenta are not conserved er do not commute



wilt the Hamiltonian but the total angular momentum
in conserved This in expectedfor interacting particles where
the particles can exchange angular momentumbetween themselves

but the total angular momentum of the system is conserved
Another example is whenHe Hamiltonian has terms like the

spin orbit coupling term I I we will see that theparticle
can exchange angular momentum between orbital and spin
parts but the total angular momentum Its remains
conserved

THE d Consider the Hamiltonian for a He atom with two
electrons where individuallytwo electrons have the Hamiltonian

of a HydrogenatomHa Ha but in addition the

two electrons alsointernet via the coulomb repulsion
ra Eto EET So the total Hamiltonianis

A A Cri t ACK Verus where

Hero 2km E YE ti
Show that ti tu for indivial electrons are not conserved

but the total angular momentum I I th n conserved
ic consider a single electron Hamiltonian with a spin

orbit coupling term It Ho X I S when Ito

is as defined in the aboveexample and x is aconstant

show that I Its i conserved here J



It for a system of many particles with indivial angular
momentum being conserved we can me the separation of
variable melted for the wave function and build the

total wavefunction of all particles by a productof angular
momentum states of individual particle In this care an

additional modification has tobe done tomake the total

wavefunction either symmetric or antisymmetricunder the

exchange of any two particles The reason for that we

will learn in QM II course In any case we will notbe

concerned with this situation here and we donotneedtobotherit

Otherwise when we have the totalangularmomentumbeing
conserved then we onlyhave the option to me the Hilbert

space of the total angular momentum 1J m we

want to learn here how to construct this Hilbert space
by expanding it in theproduct state of indivial
particles angular momentum status 11 mi liz ma
The corresponding expansion coefficient are called
Clebsch Gordon coefficients

The allowed andforbidden values of J m interms

of Ji is m m2 are governed by the selection

rate One source of the selection rule that we can



already anticipate is that for the total angular momentum

care we hone 25ed dimensional Hilbertspace As we expand
these states in the product stateof individual angularmomenta
the latterhas a Hilbertspace of Gi D 251 2 dimensional

We start our analysis with two general angular
momenta which commute with each other as

I I É 8

Let 1Ji mi are the orthonormalized abstract simultaneous

eigenstates of Ji Jit for it 1,2 then we have

Ji Iii mi Jilsity t I Ji mil Raa
Ji z Iii mil mi t I ji mi Rab

We want to now obtain a Hilbert space for the total

angular momentum I bytaking it into account that I is
obtained from I s JI rather than being an angular
momentum by itself withoutany knowledge of Ji Ja In

otherwords in an ideal scenario we would like tobuildan
Hilbert space wilt states which are the simultaneous eigenstates

of J Tz Ji Ji z so that in these eigenstates all values of
j M Ji mi are precisely specified Obviously this would have
been possible if all these operators J Tz Ji Ji z commute



with each other Butanfortunatelyteydont

Let us first see their commutation relationsfirst
52 Fit IT 2Ji.FI since Ji Fi o fog
I I IT IT EEF 2E I É

25 I I 3 E I I
n

0 0

O

g g g

J Jia Ji Jia Ji Jia 2 Ji Fi Ji z

2 JaxJax Ji t 2 JayJay Fiz t2 JizJaJI
O

hits take is 1 2 Tix Jax Ji2 2 TixJez Jaz t Hy
O

2 it JayJax T2 Jex Jay I 0 400

GodIa É fie Ji Jae Ji O

goJ z Jia 0

I iz iÉ i atammktf.eu

So we won't get a simultaneous eigenstatefor all sixoperators
We have to make a compromise We can think aboutalongthe

line of warepacket or coherentstate that don'tgo for anyoneto

eigenstate rather construct a warepacket like state in which



we have the minimum uncertainties between those operators

which do not commute We are actually going todo similar here

From 4D we have two possible butdistinct states withmaximum

number of conserved operators They are

C Ji Ji I Tz with the corresponding quantumnumbers

are fi ji J and m respectively and the corresponding

state is denoted by IMF Thus according to the's

definition we have

J's jinnimy j just iritismy
Tz I jj2j my m t yep jmy 425
I I I II my jiCI ti I j j Imj 429

notice thatsince I245 differby Ji Ji as in eq a so

we cannot relate J with 1,452 in thisstate mid me values

in this state are completely uncertain

Another combination is Ji JI Jia Jaz and Tz but

Ja is not an independent operator in this statesince 52 51252

The corresponding state carries quantum numbers jests mi and
me and the state isdenoted as Timmy we can

build this state as a directproduct state as



18 I m may 15my 152my 43
This is called a direct product state became when we

act thisstate by operators involving Ji the operatoronlyacts
on the Hilbertspace of 15 my and does not act on Jamat
and vice versa clearly the stat 15,52 mimas is orthogonalized

as Li s mimy j jam my LJimi i m Jimi Ijames

And Jillian ma of msmin Ha

J Cj 1 tr 15 Jamama

Ji 15 ismind 15my JE ti mus
I j Jay K J Jz M Ma

Jie lie iz mimas a mi y jam my 449
J z 1J J M m2 J Z Jaz J Jz mimas

Cn me h i Jemima 449

Therefore inthis state m m tmz but j is completelyuncertain

The
dimension ofthedirectproduct Hilbertspaceis 251 1 252 1

If you want to express thedirect product statit
the angular space 10,97 we will get
Yi jimmy 1010 2091J jam my

Yj m 10,9 Yim 199 for Ji beingorbangmom
XS M XSama s for Ji beingspinangmom
Ye m 199 X som z for J orb ang mom

52 spin angmony



Now we have two possibledistinctstates one has few conserved

quanties and few completely uncertain and the otherstatehas the

complementary quantities conserved and uncertain Whatdo we do

now

The had similar situation earlier For a generic Hamiltonian
we had a choice of eitherposition eigenstates or momentumeigenstates

but in position eigenstatesposition is completely knownand momentumis

completely uncertain What we did was we expanded one statein

another as In Eafdp attn lb EngSdp e
it lb

where e t are the expansion coefficientcalled plane ware stoles

Then forany general wavefunction ter inposition space we can

expand in the momentum space as Xen Ey f dp tu e it

where elk are the expansion coefficient distributingdifferent
probability weightto different plane wave states this ishow we

obtained a warepacket Their we called it as the Fourier
transformation became to se happen tobe canonicallyconjugateto

eachother but otherwise essentially we were simply expanding
one eigenstates Hilbertspace into another Hilbertspace of operators
which do not commuted



ftp sina
strategyand expand one Hilbert

space I j Jain in the Hilbertspanof 15 I mema

hiii im jiimg.gg linemind

my j I Clebsch Gordon off
Notice that we only sum over my ma indices became the othertwo

g g

SelectionRules we now needto findout theallowedvaluesof j m

for thegivenvalues of fi mi

a So far we know mi Ji Ji th Ji l Ii and

mytmz em Therefore the C h coefficient are aero unless m mama

This gives our first selection rule

L ji ji fml ji izmimi Smmama 46a

b Now we need to derive a relationbetween j j
m bydefinition runs between j jet J i j

C Themaximum valueof m is J Themaximumvalues of mi are ji and
hence maximum rate of m m Me is I jo Therefore the

maximum possible value of j is j t ji So when me jitja how



many possible valuesof m ma are allowed Only one mi ji mi'd
Hence inthiscase we hare from egad

15152 init
L

I
ii1pi

liaise

since bothstates are normalized tounify we havetheC h coeffe 1

Next we consider me I tj 1 case Here we have twopossible
values of mid m2 Either m 1 ma ja i or mi fibmoi
So here we willhave too CG coefficientswhich we willevaluate later

It m j is 1 whatare thepossible values of j 7 Recall that

lml e j Hence we have twopossible values j jets or j jitsu

Proceedingfurther to me fit ji 2 now we have threepossible

values combinationof me ma and also threepossible values of

j which are fitts ji t ji 1 ji tj 2

in Repeating this argument successively we can obtain that the

minimum possible pontine value of j is not ji ji which
is a negative number but 181 Jul Therefore the possible values

of j for a given ji is is
fi ji It Jaja 965



So we rewrite the two selection rules forgivenvaluesof fi mi

Ij tilt j t Iet
M

1M mitmy
ay

we see that for given mema m isalready known butforgiven2,02 i isunknown

Ftw c Howmany values of j are there between H 84 to jet ie
whats the dimension of the Hilbert space of Ii i in statist

showthat It casey Ci ed zing 48
j p 84

Recall that 251 1 1252 1 is alsothe dimension ofthe

Hilbert space of the direct productstate lies mimes that
we obtained

Kiis show that the inverse Fourier transformation or expansionto

eq 45 is

1i



Summarysfar
het as recap what we have so far we have two
Hilbertspaces of same dimensions 2 1 1 252 1 milk

complementary conservedquantities Their Hilbert space
properties are defined a

1 j Jamin

orthogonality Lj Im ma Iim mi Smimi Emami fog

Closure EI.j.fm jtitzmimiCtitrmimal I fog

Ladderof Jiltitimima twitter.IT iitimiam il
C

I j j Jm

orthogonality LII Im II I I'm Sjj 8mm food

É E j Ism i jam I GoesClosure
jg.jo m j

Ladderof J Hiram KÉEmTmI j j jmas
f



I J J mime I j j j m

Hiii am
j
It ec'm.im I iii mins 1508

ii imma g.IT
iXgimtiF1siiism

eoh
since m m tmz onlyone m is
allowed

Since bolt If it m m 181822m are both orthonormalized

so we obtain the normalization condition on the C G
coefficients as

É E G'mimic
m soil 50

ME Mz 12

And III im
m smimism.me fog

Bolt 150521505 combined gives us

jjjkii.it I somIii É o Kimi E MIM M



RecursionRelationsofthechCoefficient

We make use of the ladder operator relations to obtain a
recursion relations for the C a coefficients Note that 51 5,455
So we apply J on eqfog and use eq f to obtain

Fitment Hiringmy Eye'mmm sits Crimmins

Em c ifeng.fm i

iamilmytIiztimalmEMiiizmimaD
Then we multiply hi I mimil on both sides we get

Fiery cities
minim In

ein teeming
Li izmimil JJam limy

D

Timing ei.io
mixme'm

Tityming citiesmime't m El a



Similarly applying It operator we get H W

Meaney
i i i
mimim Titimilmit Ciiimitmim

t iey micmi.ge i ii
mima im

5 8

we will henceforth remove theprime anddenote mitmi mi im

Toobtain a recursion relation we start with the m I value
which is thehighestallowed valve of m for a given j Now we

see from the L A S of eq 5 b
in
Mim me JiJamimi JJ j mec

has tobe zero for m t because J is i see state does notexist

Therefore for m f we obtainfrom eq i b

1
M m t ma f when Iris Eff Jitsu Then once we findontthe
C h coefficient for the highest me I value we can use to a to
obtain all other c h coefficients for m2J all the way upto
me j



Through a recursion relation if we
know any one h coefficient we can determine the rest But
the initial value is not determined here But recall normalization

eq k which we can use to determine the remaing one

Therefore all C G coefficients are completely determined here

We however see twodifficulties here
a If any one ofthe C A coefficient is zero all other coefficients are
also zero duetothe recursion relation On the other hand if
we startwith a finite valueof coefficient all other coefficients

will be found tobe non zero

This statement looks odd at a firstglance to eq
Cle Became fromthis equation even if we start with
I j z j
mim i m t O on the L A S but CntPmom can be zero

if ma z ja from the numerator term But thanks tothe
selection rule the sage m m em Mi t ja m m j
and I ji I s m 1 J ti 15 521E mi ti z I sit52

Wich cannotbe satisfied for any valueof mi between
Ji to Ji Therefore for j m ma i a value is notpossible

This way we can convince that thanks to the selection

rule all the coefficients are finite if we at our initial
value to be finite

So we will set our initialvalue tobe finite



Another difficulty is that if there is any
constantphase

in all c's then it gets cancelled from both sides ofthe
recursion relations 50 a 50b 501 Therefore we cannot

determine the c a coefficient upto a overall global

phase factor
Noproblem The same problem we have fromthe

eigenvalue equation of linear operators that thethane
of the eigenvectors cannot bedetermined upto a global thane
factor we called it gauge freedom But this gauge
freedom does not change anything in the innerproductand

expectation values therefore we can live with this undetermine

global phase
We can sometimes take this gauge freedom into our

advantage since the physical propertiesdoes notdepend on
an overall plane in the eigenvectors we can choose anyglobal

phone in whichthe problem becomes easier

This is precisely what we are goingto do here
We will take the phone of our initial c a coefficient say
I is
m mum I c'm in ei 9 and divide all the constient

T J j
by this phone term eid as mm m cminim eid

In simple term this is just to say we take our initial
c a coefficient to be red



Therefore from I b we impose the conditionon the

initial c a coefficient that
I Ii i
m mum should be positiveand red

As we said this makes no difference to the physicalproperties
obtained from the Hilbertspace Thisparticular gauge fixing
choice was proposed by Condon shortly and Wigner Uptothis

gauge fixing all other C h coefficient are now uniquely
determined from the recursion relations earso as be



Symmetriesofthecarcoefficient

we notice that the valueof F Fits does notchange if we
interchange between First So how does the c a coefficent

transform under the exchangeof jiji quantum numbers
ItW One can show that the C G coefficient changes as

CJ 52 I HI JaJ c ja jmz'm m
52 a

mime m

Gyiet'sJ I ici
mi mi m when J IT JEF It 5

525 I 52b
Mzmi m

yi mi 3,1 c'm
ma

J 5 it I s.I

GyJ2tm2 Igg Jiri
M m mi Fi F FaFaJ J J



As we mentioned at the beginning there are mainly three
cases of angular momentum addition we need to consider
a It In I 52 J Tith in which both fi hi 82 12
are integer and hence I key to fitly are all integers

Such cases arise for two or more particle care under central

potential sothat total orbital angular commutes with theHamiltonian

e g He atom with twoelectrons care havingelection election
repulsion

I I Fa 5 I J Est for the care of S half integer

spin I will also take half integerspine such canes arises
often in Hamiltonian milk spin orbit couplingterm
H x E 5 2 J N s

I ST I ST I site Forbolt integer and halfinteger

spins we Lane integer I values Such cans arise for Hamiltonians

with spinspin interactions e.g AYE 52between two spins
We will consider such a case below



solntionfo H.ec we consider to spin 12 particles here

S 112 M I 42 12 112 m 2 172

Direct product states 18 Sam ma Him Sama

111 127 47 173 1 7 Denoting

I I HD H HIS
HH ITH

É it Ht

Since I811ammas is an eigenstate of Sz we have

Sz I B Sammy Giz Sez S fz mim

Cm tmz IsSammy
m 18182mime

So m takes three values of 1 0 1

But I bSam me is not an eigenstateof's So s is undefined

but selection rule says Hi 8211BEsiege 1 0 I

ISilasm Em C In B Szmime

I on c let S
afc let D

T



From thesymmetryrule we have c c

From the normalization we have C
o Fg

Therefore we get 111007 tax HH es
9

Often we simplydenote it by 1002
This is called a SINGLET statebecameof single value

of the m This state is antisymmetric under the exchangeof
two spins this is also an entangledstate which means

even if two particles live far faraway they are relatedto
each other and if we measure thespin of one particle the

spin of otherparticle is also preciselyknown check it The

interpretation of the state in eq53 is that this is a superposition
of two states with equal probability of spin a particle in state l
I spin down particle in state 2 and spin to particle in state 2

spin up particle in state l rather than having aprecise

rate of spin in a given state Recall the interpretation of
double slit experiment in which the sameparticle has finite
probability of passing through both slits and hence we took a

superposition of bolt state



ForD I m 1 o 1 We here denote Ism I si si Sm

so ma lil Em
c'm I s semimy

child let ci Im
Dueto normalization CI

so 1111714972 1549

s i m o 1107 c It c 11.4

is mimim
1

S S Sas s

f symmetryproperty
sisus

mom m J

so symmetryproperty says CIII t

Tty Csa

All three states are symmetric under the exchangeof two spins
These three stats are called tripletstates due to having 3

rates of m The total spinofthe two spin is t



This is also a superposition state but with same phone this is
not however an entangled state Why

check s it 1007 S iz tu Mt Hay ta t12 L El
IT

S 22 1 00 KIv2

But s iz 1102 5171211 7 14 t 0

S22 1 10 0

so in the triftel superposition state if we make a

measurement of spin in state 1 or 1 we alwaysget the

same value Therefore we cannotdistinguish the twostale
But in the sight state if we make a measurement in

stork 1 or 2 we get oppositespin and hence we immediately
know the spin in the otherstate to be opposite J



Iationoperators Rotationalinvariana

Here we will discuss how the state vectors operators transform

under the rotation of the domainspace we have discussed in

various occasions that rotations are generated by angularmomentum
Let us see first how doesthat come along

We know how the coordinate system changes under a rotations

by a angle with respect to the Z axissay z

n n cos y sin

y
É

n

Y I N SinL t y Coff

z Z

We can express this in the vector format

yl I sit a Cust oHl

o O p
Z

me

y

fwe can write Rt 2 in terms of an matrix operator Iz as

Rt a E Ltd I it 9 ikke
E KII J int

I I e ink af t



Cuss i Lt Sina 4

ending era a went

L
Therefore It gives a rotation to the coordinate system by a writzaxis
we see thatthis t t matrix is differentfromthe one definederthebasis limb

we can denote thegeneralrotationaloperator for a rotation by angle
0 with respect an arbitrary ant

rector it as Rulo e
it.it

where I is the generalized angular momentum Notice that we

have ignored the factor t in the exponential because of referencefrom
classical mechanics but it hasto appear there in the exponential

due to dimensional reason In classical mechanics any
general rotation with respectto a reference unitrector is
denoted by free Eater angles K B D which is denoted by
the product of three rotations RCap 8 Rz a Rx B 12218
e i Jah e it Be Tz 8 In quantum mechanics the general

angular momentum can be orbital or spin or total angular
momentum whose components do not commute Became three

components of the angular momentum are related to eachother

by the commutator relations one can say there are actually
two independent angular momentumand hence two Eulerangles
are essentially required to govern any

rotation in the constant

radin as sphere called Block sphere we often denote the



two angles by Q d we know how to define the radial
coordinates in terms of there two angles then the abstract

Hilbert space of the two commutingoperators 522 Tz ie

l im can beprojected into the 10 a domain defined on the

Block sphere gives us the spherical harmonies which are the

analogs of the wavefunctions of J Jt 20,01Jm Yim109

when we say spherical harmonics we only refer to orbital
angularmomenta since they can be expressed in terms of
position and momentum operators for spin no inch expression in

here and we simply denote Xs m as the wavefunction

Rz a é É is an operator which generates rotation

by a angle w rto the axis Then we ask howdoesHewavefunction

Yentai e transform under this rotation For this particular
rotational operator w r to z axis it rather easy to figure it out
As we said earlier RtCDgives a translation of the variable
Of by a value x This is easytosee became YimCoca is an eigenstate

of Lt 4 hence Rt

Rz a Yemlod e
i talk Yenlocal

é im a few eimd

Fe g é meaty

Yam 0 9 4



This formulation holds for the generalized angular momentumand
corresponding wavefunction defined in some angulardomain although

its not always possible to obtain a mathematical expressionfor f in
angular momentum Also for rotation with respectto any arbitrary
direction say I we have Rn a e i Jot It 9

e if x netJung Jt a It we cannot simply express as a
translation by angle a became the wavefunction is not the

simultaneous wave function of Ja Jy J z Therefore we simply

express it by another wavefunction 4,10 e Rn14 Yim1010
In abstract rotation we denote it as l Im Ind limy

Rn4 is actually a unitary operator
Rot Rn I Therefore

under this unitary rotation the innerproduct betweenany
two states the expectation values of operators remain invariant

To remind ourselvesthat Rn a is a unitary operator many books

denote it by Url x I Rn a We will keep using the notation

Rn la here The states traneform under the unitaryrotation as

given afore We also discussed briefly in thepreviouschapter

Kat to keep the expectation value of an operator to be
invariantunder a unitary transformation's He operator A itself
have to traneform as A Rat ARn Let us see more of it
here



Ref Cohen Tannondji Complement Bri150
We will be considering a rotation by angle as wiltrespect
to the unit rector n in the domain parameterspace defined by
a unitary operator

Rn a e
i Ent a

acting on any abstract state rector

INNERPRODUI First we see that under this unitary
transformation the inner product is invariant

hits consider any two stats 1454101 which transformedto
141 Rn a X 10s Rn a 197 The innerproduct is
L y 1917 241 RICHRn4 197 2410 since RtR II

I

ROTATIOFOBSERVABLEI Any observable in quantum
mechanics is defined by the

innerproduct of a corresponding linear Hermitian operator We

consider an operator A Letus say the expectation rate ofthis
operator a being a measurable does not depend onthe coordinate

system of the domain In otherwords nadir a rotation by a the
expectation value a shouldbe the same To achieve that we med

He state rector le under which the expectation value is computed

and the operator I itself must be transformed This means

we want a LY Alt L Y l A ly
Weknow Y'T Rnk Y so we need to figure out the relation



between A A Lu IAl x LY Rt A Rn ly 241 Al x

since this is true forany general
state therefore the identitymust

hold at the operator lend that

1ARnARTy E

Invarianceofoferators The expectation value of an operator
is always invariantunder a unitary transformation But when we

say an oferatorisinvariant ie A A in ears whatdowe get
Let us consider a infinitesimal rotation Sa only Actually

an finite rotation a can be obtained by applying n numberof
infinitesimal rotations by sa 4h with taking n ta for

small 8 a we can do a Taylor's series expansionof eq
Rn a 2 I I I I S a OCSI
Rica I I I F I Sa geggs

Then substituting eyes in eq we get
A I I F I 8D A It J I 8D

LA tf.no 7 7



so
SCALAROPERATI An operator A is said tobe a

scalar operator if the operatoritself
remains invariant under the unitary rotation This means

if A A From eq 5 it means A commutes with

Rn Rat A Rn ARat RnRat A A From eq it

means the operator A commutes with Hr generatorsof the
rotation in with the angular momentum operators

Fin A o

e g Examples of scalar operator is J itself I 5 term
f F F F Ver central potential Most of thecases

we study involve scalar operators and when an operatorI in invariant
under a symmetry defined by a unitary operator t which is
defined by a generator g in the form V e where s 5 the

domain and g is its canonical conjugatevariable then we sayIt is invariant under the symmetry if it satisfies the
rotation U Aut A This automatically implies theoperator
commutes with its generator A 97 0 Since both A g

are

linear and Hermitian operators CA 93 0 means both

operators are simultaneously diagonalizable ie they have the

same eigenvectors A special care is when thevariable s time
e and the generator g A Hamiltonian then v e eiHht

generates time translation It AJ 0 means A is a constantof
motion Similarly I se gs f gives spatial translation



VECTORITEIOROPERATI There is another type

ofoperators which have

components in the space like rectors I In E thy Eez
or tensors like conductivity tensor Enn oxy once J
Our focus here will be only for vectors which is a tensorof
rank 1 The analysis done here for the rector can hence be
generalized in the future to tensor in othercoursed

The expectation valueof a rectoroperator LF isalso
invariant for any general

state 14 under a unitaryrotation This
isby definition since the expectation value of a vector operator is
an observable which should not depend on the choice or
orientation of the coordinate system the expectation valve is

defined as I 2415147 Now we make a rotation

to the position domain defined by Rn a unitary operator The
state changes to 47 t 145 Rnk as usual The transformation

of the rector operator to I I is obtained as

I LH.FM L YI RICA F Rn ID I Y LY I IIe

So we have T Rn a É Rn a g

This looks the usual as in egg But the surfrize lies in the
fact that under the rotator Rn1a the coordinate system has

also rotated from Em to ei where cu x y z The É rector is
defined in the rotated referencefrom as I Uxex t x'yettyre



while I In Ext XyEy tract Therefore eq can be written

explicit as

I
maxima

Iti Rn edLE yé
RntCa

So this his how the vectoroperator transform under a

unitary rotation

Now what does it mean when we say a rectoroperator

itself is invariant under a rotation

Is A vector operator is invariant under a unitary
transformation if it all components Ye remain invariants

i e Val UM To find the condition under which the

invariance is achieved we have to write ex in terms of
ein in eq then we can equate thecoefficient of each unit
rectors Em on both sides since em are linearly independent



The expression becomes verylong and ugly for
rotation w.r.to a

general direction n So we will study for a rotation withrespect

to 2 axis and use cyclic rule to obtain the result forother
rotation forgeneral rotations see Merzbecker chapter 17 Sect 432

we consider rotation w r to 2 axis Roca we also

consider infinitesimal rotationonly so that egg is applicable For
the coordinate rotation we go backto ears and substitute

cos a al Sin D 89 too infinitesimal rotation Then we get
Ex Ex t Ey se
Ey ex sates 9

E Et

substituting eyes in eves we get

É I E É Sa JI Tx It SAID extEssa
a I l I Getsated
n Tz a et fo

Since Ex are linearly independent unit vectors we can equate

their coefficients on both sides

Et II II ich Sa JI YI CI E SAJID
Iz E sa Ja TA 0184 from en

111,5 30.1 laFor invariant operator i Ii
F



Ex I 6 Ix Ca a I Elsa
Ix I sa JI Tx I Sa t 0188

For I ve EEE.IE ij
1fYx JzitTT lib

Ey Ty Ca I M t CD Vx G 89

I I sa I sa 0184

For V5 V E it1 Cle

Notice that the invariance condition does notdepend ontheangles

Therefore under a rotation about z axis the rectoroperator
IT is invariant if

I JI it I

esay JI it Xx
It It 0 and all cycliccombination

For a rotation about x axis we obtain fromcyclic rule
Ix 53 0

I 5 3 it Iz ay Ed'sIz Jx it I
and all cycliccombination

And for a rotation about maxis
Ix 5,3 it

BEy JjJ 0

It J it x and all cycliccombination



soessentially even I 3 are combined for any general rotation

The above cyclic rule indicate that there is a Levi chiritu
term on the righthand side which means a crossproduct we

can write in general

Yu Jo it Guus s where XD
µ v s nay t for any arbitrary rotation In fact a better

way to represent it for a rotation about any arbitrary
direction I we hone

ftp.TJ itnx fist

The rotational operator I itself is a rector operator then er
a reproduces the commutator algebra for any angular
momentum

Other examples are J F E 5 etc which all baneform
under rotation as eyed

HW C Consider a spatial rotation in which the generators are
I I orbital angular momentum Then

considering I 5 or B reproduce the commentator

between E E

I Consider J I 7 5 then obtain the commutation

relations between them

Ciii show that It Tx we transform as a scalar vector
respectively



Matrix Elementsofoperatore

Finally we want tostudy some matrix elements of the scalar
and vector operators in the angularmomentum IE i i g
the ultimate idea is that when such scalar or rectoroperators

appear in some parts of the Hamiltonian andhence we computetheir
expectation values In ottercones suchoperators correspondto experimental

effects such as appliedductiomagnetic fields or potentialterms

responsiblefor scattering process whichcauses transition betweendifferent

energy momentum andfor angularmomentumstatesdetermined bymatrix
elements

Scalaroperate Let us start with the scalar operator A which
commutes with all three components of the

angular momentum is LA JM 0 Needless

to say A commute with Ja 152 operators

Since A n an observable its linear and Hermitian Therefore the

angular momentum starts I I m are also eigenstates of A milk
the eigenvalue Just to be more general we assume there is some

other quantum number we have associated with the energy eigenstate

or momentum or any other operator which is denoted by the
quantum number say K Therefore I kJm is a generic

eigenstate of A Jz J2 as defined to be i



Tz kim ma Iki my D

J f ki m j ja t I ki m

A Ikind aim k I ki m

Now since A commute with Jx Ty also hence commlis

with JI Jx I i Jb applying Jt from lift in egg
we get

JIA Ikin JI aim k Kim

A JI IKim aim 1h JI Ihims 14J

Therefore JI Kim is also an eigenstate of A with the same

eigenvalue aim k On the otherhand Jt takes us to the

state I ki me so we hone

A 1 kim II aim k I him Ii

Mon egg is valid for the state Iki me with eigenvalues

aime k Therefore a ki Ck aime ch can be equalonly
if aim k doesnt depend on the m values

1Alkingajchkind 6

In otherwords when A commutes with all three components

of J ie is rotationally invariant for rotations in all three
directions then all m status are degenerate statusof the
A operator



Examplesof the A operator can be J A hue butnotJz
because Ja does not commute with Tx Ty We get

HIKim E k Ikimy
82 him i jeg t Ikin

For hydrogen atom inwhich thepotential Ver is rotationally

invariant in all three directions we will find in nextchapter
that all eigenstates hare City fold degeneracy where I sits
The generacy can be lifted by applying a magnetic field
because the magnetic field couples to J as v e m BT

which introduces a J component in the Hamiltonian and hence

the Hamiltonian is still invariant under a rotation withrespect
to the direction of magnetic field say Zdirection but is no
longer invariant underthe rotation wrr.to xd y directions

Therefore all the 25 4 fold degenerate stats are now split
This is called Zeeman splitting

Finally thematrix element of A
between two status can

be written byusing eq as

I k j m A Kim Aj k k 8 8mm

where we have usedthe orthonormal condition on i am state

and wedidnotfattat.fr tekvalneskonsf Became here we

assume that k is a quantum numberof the Hamiltonian and A



is someotherterm which causes a transition between two k value so
itgives a transitionprobabilitybetween the quantum number ke k

but forthe same j j me m since we continue to assume that
A is rotationally invariant Of A ahocommutes with It then we

aj Ck k aj k 8 k k too continuous variable k or

a j ch frat when k is discrete Then we will not have any
transition



MATRIX ELEMENT OF VECTOROPERATORS

We can anticipate that the matrix element calculations

will be tricky for vector operators became even if a
vector operator is invariant under rotation in all three

directions but its components does not commute with

all three components of the angularmomentum Here we
will learn how to compute the matrix elements inthe

Ik im states for a rectoroperator T Hereagain we

assume that the rotation i obtained with respectto the

z axis such that
Va Ja 0

aIn Ja it Yy
Vy JA it In

and the commutation with Jx Jb canbeobtained bycylicrule



Therefore IKim is an eigenstateof Vz but not with Ya Vyasand
Healsodoesnotcommute with Jx Jas and hence its eigenvalue

cannot be considered to be independent of m values yet

We define VI Ya ti ly which we will notyet
call as raising I loweringoperator

Then Jz VI Jz Vx I i Ja to
Tt Hy I if it Xx
It Uy I ing
I h VI Gay

Jx VI Jx Vx I i TxNy Ii CihYz It Vz 4

J V it Yz 90
JI V z Gx Yz I i b V2

it Uy I i it un

I k V1 d

CHW JI VI 0 Ge
JI V I 2KVz 194

The commutation between Xx Yy Uz is not specified

Tw C Evaluate LJ Yiu 5343 Jia 47 Yun

I



We see that He commutes with Ja but it doesnot
commute with Jx Ty and also doesnotcommute with J
Therefore Vt and Jt share the same eigenfunction butnot

wilt J Hence in the expectation value matrixelementof
Hz m is conserved but j n not In fact unlike the
scalar operator A we also cannotsay thatthe expectation
value of Ya does not depend on m In fact starting
from the matrix element

Lk j m l Va Ja Kim 0

we can only deduce the selection rule that

k's m Ya I ki m v3 th ne 8mm do

where I Ckk is an unknown quantity

How about V12 Does it act as a raining lowering
operator or a transition from m to me stubs Needless

to say what it does to k j quantum number we cannot

deduce but from the commutation relation a we can actually

say somethingabout the change in them values



Forthis we can use eq 9a on the state Kim

Tz Ve IKim I h Ve Ihims

Jelle l him fmtDt t.l him Lila

And wealsoknow TalksMID MIDk Kim s as

Easya day suggestthat VI kim Rimel are both eigenvectors

of Tz with the same eisenvalue This implies twopossibilities D VIIhim
and kima are degenerate stats er they are orthogonal statusThis
would mean Kim'll UI kim 7 0 On the otherhand

Ik im 117 Kim are alreadyorthogonalto eachother since they are

different eigentalisof the linear Hermitian operator so to have bolt to

be true VI operatorhaveto comeout from thematrixelement which
would mean kim is an eigenstate of Ue also This contradicts egg
So VI lhim and kimel cannot be linearly independent Is the
other option i then they are linearly dependent is

VI Kim a kimel

V5 k kiMID where v k aresome complex

Cle function

In otherwords LKimel VI kim 05 k whichdoesnotfendonm

We can rewritethis equation for a generic matrixelement form as

Lk i'm VI kim D Ck k Smime 19

in which again we cannot specify the valuesof it k



We rewrite eqCo 4112 together again

Lk j miI Uzf ki m v2 k k smini
yILWjmlvykjn vjeck.name

So the matrix representation of Toperator in theCity Hilbertspaceof a

given kim state Vz is diagonal while VE hence hence Vx vb

are off diagonal only the nearest offdiagonal term matrix
theoff diagonal matrix VI ofthis form is alsocalled the circulantmatrix
Such circulantmatrices are diagonalizable with a discrete Fourier

transformation We will notdo that here I

Itami The situation is similar as the

Clebsch Gordon coefficients that we can get a recursion relation forthem
Lets make use of the commutator Jt 4 3 0 from egged

Since Jt Vt bolt increase thereare m valueby 1 their product

will increase decrease m rakes by 2 Therefore the non zeromatrix
elements forthe same k i values are

L ki me21 JI VEI ki m L ki MI VIJI Kim y
Insert the closurerelationgjimi
And L ki m JI kim FEMI t ShhSii Smma so we obtain



Lbjme 2 JI l ki MII L ki MI Il VI I ki m LKim 12 UI Kim II
Kim Il ITI I ki m

I i I a

Both the numerator and denominators are non zero as longas 5Emsi 2

Letssaywe can startwith me j value onthe RHS for rt and getratio on
L HS for mel to me2 whichthenagain canbeput onthe kit sand in its

corresponding L it s we will get a ratio for m 2tom 3 and so on wenotice

this process the value of the ratio of eyes does notchange whichmeans
the ratiodoesnot depend on me Hence we denote

T.si Y F I

far man amy em a www.yahoo.g.im

Lt1h Jjljtymcn t Ll6c



nextwey.it ttsetggt is v.t save taking
matrixelement w rto kim on both sides of 5 Vt 2k vz weget

2k Kim Valkim V5Ck LKim J Vt Vt J J Kim

A Femmes Lk im til Val kim

Kiedis LKim I Val kim i

usingear of Elicit mimed life mim y at b
2m42 gtCk

Therefore XX1412imy mtx.fm X

We had chosen above the commutation J Vt 25Vz toobtain eat

If we take Je V I 2kUt we getgetthe same expressionbutwith

Ricky on the RHS Therefore the only one conclusion we have

HinTPgerd 48



therefore generalizing eqs162117 for a matrixelement between two

arbitrary valuesof mi m we can write

L ki m l Vel ki m ai ch L ki m l Je l ki m Lisa

L ki m I Val Kim Lj k 2kJml Jal kim Cissy

Therefore this is truefor all components of T rector Therefore we can
write

LKimllFIKM HHLP.IN IIMm 8D

Now it becomes easy to compute the ratio dick
Lets take the matrixelementof J T operator

LKim l J T Kim IFn
hKim II I k i m k Jim lil kim

fuseerases Egmock h
kim Ifl kisimi Kim lil kim

ShhSjj

Lj k L kim J2 ki m

2 k J JA t 8mm

men went
1 y

nm

iF as



Again we seethat the L HS doesnotdepend on thevalueof m andhence

the matrix element L kiml T.tl kim alsodoesnotdepend on thevalueof
m we can simply denote it by LJ I and write sickle T.FI
substituting a in eq 80 and since as is a number which does not

depend on m we can slide it inside thematrixelementterm to

reexpress eyed as

L ki m l I l kim him l IIIa I l ki m

Since Ihim status are chosen arbitrarily the above identity mustbe

true for any general state i the identity holds at the operator

herd and we have

F es

This identity iscalled the Wigner EckartTheorem what this

says is any
vector operator which is rotationally invariant

where the rotation is defined bythe angularmomentum É
one can express the vector operator in termsof the angular
momentum operator This is analogous to the Fourierexpansion or

expansion of a state in the orthogonal Hilbertspace but here is

for a vector operator Recall that all this was possible only



for angularmomentum care which follows the commentator

Jp To i favsJs This commutator relation is at theroot

of the expansion formula in egad Therefore Thiscommutation

relation is the replacement of the criterion for Hilbertspace
tobe able to expand any normalizable state in a Hilbertspace

that any rector operator can be expanded in the componentof
another rector operator provided the rectoroperatorfollows the

commutator algebra Tin To it nos Ts Thisalgebra

i called the tie Algebra and the rotationalsymmetry ofthe

theory due to this tie Algebra is called the OCD three

component orthogonal group

HI
c Needless to say the components of I operatoralso follows

a similar commutator

Um V.v i fursUs 2.2.2

Please check I have not checked myself andonly
assume it will hold following theform in eq 20

Take another rotationally invariant operator is following ear
then show that

1 4771 ed

I show that T W transforms as a scalar operator



Any vector operator whichdoes not necessarily hone to be
invariant under the rotation but transform underthe
irreducible representation of the rotational groupof I can be
expanded in terms of J using the Wigner Eckwant Theorem



Application we have developed all the essential tools to

make use of the rotational invariance and the

angularmomentum Hilbertspace to compute

various expectationvalues andmatrix elements we have not actually
talked about any Hamiltonian in the above descriptions he hone

however mentioned briefly and we will see more of it in the next

chapter that the kinetic energy term
Edm is always rotationally

invariant as it becomes apparent ofme write the momentum operator

in the spherical coordinates It actually depends on I and hence

l is a good quantumnumber and all m values are degenerate Any
centralpotential vers is also dearly rotationallyinvariant and have

angular momenta as conserved quantity Therefore for such systems

angular momentum basis I lml or Ijm where I Its isthe

total angular momentum if we include spinalso is a proper

Hilbert pace for the energy eigenvalue Sincewithin an atom

the coulomb interaction is a central field potential therefore
atomic spectra are governed by angular momentum status and

spherical Harmonics wave functions Below we will study a couple

of examples where under externalmagnetic I electric fields we
will see how the atomic energy levels are split which we

can evaluate using the Wigner Eckart theorem



ZeemansplittingLandefactor
Let us say we have a particle an electronmainlythatwe will

concern in an atom whose Hamiltonian is givenby
Ho It ever D

Aswe mentioned above its eigenspectrum can be obtained by the angular

momentum Hilbert space In em where n i another quantum

number that we will discover in the next chapter If we also
want to cachide the spin state Is ms then since in theHamiltonian

above spin angular momentum does not appear so the orbital
and spin angular momenta are individually conserved Therefore
we do not even need to go to the total angular momentum basis
and we can simply take a productstate as In em Isms and
then the spin states will be eliminated from the eigenvalue equation

Ho I n lm Isms Ene mem Sms so we can justworkmil't
the orbital angular momentum States nem The energy eigenvalues

also do not depend on m quantum number since the Hamiltonian

It commutes will all three components Lx Les La of orbital

angular momentum t Therefore the orbital's axis of rotation

around the nucleaus in an atom is not fixed so doesthe

axis of spin of electrons



Now we apply a magneticfield tothe atom we choose

the direction of the magnetic field along the 2 direction The
result won't change by this choiceof magnetic field direction
since the Hamiltonian without the magnetic field was fully rotationally
invariant Now with the applied magnetic field along the z axis
the Achons's orbital angular momentum will be orientedalong
the magnetic field direction and so does its internal spinangular
momentum The magnetic energycontribution should then be a

dot product between B T 5 as they tend tobeparallel and it

should contribute a negative energy tothe Hamiltonian became

it lowers the total energy We also assume that themagnetic

field is sufficiently large so that in the B E B 5 terms

only Ba ta Best terms contribute and Ct Ly Se Sy terms

are negligible This happens when the orbitals and spins are

fully polarized towards the magnetic field directions therefore
our full Hamiltonian is now

A IEEE IEEE test a

Extrafactoroffs

His eat is the proportinality constant called Bohrmagneton
that we have encountoared in chaffer l We Mitt is called
the Larmor's frequency The factorof 2 that appears in front
of Sz is an extra factor that we know from experimental



fact that internal spin angular momentum contributes twicethe

energy than the orbital angular momentum It also has to do

with how the spin angular momentum is defined This factor
I called the gyromagnetic ratio that we will see again below

fall
Its clear now that It term breaks the rotational symmetry

that Ito term enjoys but I z Sz terms are still conserved is a

2 dimensional rotational symmerty for rotation w r to the taxis i

still preserved Therefore the quantum numbers m Ms for Last
are still good quantum numbers ofthe eigenvalues of the full
Hamiltonian but they are not degenerate anymore fordifferent
m values In fact we can anticipate that the It term will be

proportional to m ms and hence the energy levels will split

Although both I Lt s St are individually conserved
in the Hamiltonian 123 and one can simply take a productstate

but its conveninet to go to the total angular momentum F its

state Needless to say Jz I're also conserved in It as

It Jt H J23 0

Therefore we will consider the I fit tm stale hue which

becomes here h lb Jm by including the n quantum number

also n quantum number will not contribute to any discussionhere

though so one can simply ignore it



We rewrite H term in terms of J as

H If Bz L z t 25

141Be guy gs St

ME By gj Ja

where we have introduced the Tindel g factors for all

angular momentum with values get 1 9s 2 go is something

that we want to evaluate now

Therefore our task is to evaluate It and It in the total
angular momentum basis Ines I m In this basis Lt St are

not conserved operators so me me are not known only m meths
is known So we write La St in terms of Tz wing the
Wigner Eckart theorem as

i s s.SE i e a

Now I I I Ets I Is I 521 52

I 52 52 52

5 I IE I 53



so LT II jt l tea S se 2

45.5 jejey LAD SCAD t

So going back to eq 3 we have

Gg LIK Lt t 22527

EFFIE t

kenaf35city eceeytscseyJ.gr

4 3 143192 es

Therefore the valueof 85 depends on the valueof l S Finally
the expectation rate of It is

LAY Wego252J Wig M t

The total energy Enes m LHoy LA's
Eni's t we got m H

since duetorotational invariance of Ho E does notdepend on

m rats It term lifts the deseneray and split it into Jed

stats The energygap betweenthem depends on go



Lets take 1 1 I 112 Then the possible j values ane
e s f I f les That means 312 112 12 312 Lets consider

a j 312state whose unperturbed energy Echizen now split
to City 4 status In this state the Lande g factor valueis

g 3 1Igget
3

1




