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In various occasions earlier for example in the squarewell

potential Harmonic oscillators we had briefly introduced the
Schrodinger equation in 3 dimensions Mainly we focussed on

the cases where the3DSchrodinger equation separates into three

independent Schrodinger equations foreach dimensions byvirtueof
the separation of variable method applicable where the potential
term VCI doesnot involve any cross term between different
coordinates Then the total solution was just a productofthree
solutions of individual dimensions After a brief recapitulations
of this cane in cartesian coordinates we will move tospherical
harmonics came and discuss the result for free particle via

separation of radial and angular variables and finally we
we talk about hydrogen atom case under a centralpotential Ver

Helium atom will be discussed in next course where the difficulties
to deal with two or more particles will be introduced



The Schrodinger equation time independent that we want to solve

T t T t ve Yet EXIT D

A CartesianCoordinale As we have learned before also that its

always a choice of what coordinate system

we want to me and we choose a suitable coordinate system based

on observation of the potential energy term rat and its symmetry

For a potential Ver in which all three three cartesian coordinates

do not mix it needlessto say that cartesian coordinates will

simplify the problem The K E term is always separable in any
coordinates since the Laplacian is V2 Tat t fit v5 is

separable So when VCE Ver t Vas ere the Hamiltonian

splits into
It ELEx eves t y t x se

Hy t Hy tHz

Similarly the Schrodingerequation eigenvalue equations being a

2nd order PDE is also solvable through a separation of variable
F X n Y Y Z E 3

This gives three independent Schrodinger equations

Hx X n ExXH j Hy Y a EyY Y Hz z Ez ZG
a



where the total energy eigenvalue of theproduct wavefunction is
E Ex t Ey t Ez 5 Note Het Ex it are just
different symbols Ex doesnotimply it a function of x its
constant in space

Aa Eades I a so

For free particles we know the solutionof egg which
are the plane wave solutions in all directions

X x A e ke t B e ike where Ky FEE and so on
We take Exa whichgives oscillatory or scattering solutionsand
Ex Lo gives decaying or amplifying solution but we discard
the amplifyingsolutions because they are notnormalizable or

unphysical The plane wave solutions are also notnormalizable

but we put it in a box or imposedperiodic boundary condition
to normalize them We will revisitthat hue

Then the total wavefunction is

YET X r Ya Zet

C e i k F 5

where I Kx Ks ke span over I ranges and c n the

normalization constant The total energy is

Ep Ext Est Et Efm kit kit ki FI



Its clear from eq at that there is an infinite degeneracyassociated

withevery energy eigenvalues Became a given k canbe obtained

by various combinations of Kx ky ka andthose solutions are

linearly independent The energy spectrum issofarcontinuous but
the wavefunction is notyet normalizable As we have seen

earlier in the process of choosingonlynormalizablesolutions or

fitting the boundary conditions to normalize them we obtain
discrete setof solutions

Nana of Hewmefunctioninga
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A notation for Idi mentional deltafunction givenby

831k k Ing f e ik
ki rdx xx n D

Ez e ik T
d r

Therefore the normalization T in eve is C É



And we obtain thenormalization in real space as

f YE F Yale d k EyJe it
E D dip

83 F F

We can see that the RHS of egg is
not I as we expectfor a normalizable solution So what
we did earlier is that we imposed a boundary conditionthat

pretend the free particle is confined in a box of length LxLy
It such that only those wave vectors are allowed which the

corresponding wavelength is such that we have nodes of the

plane waves at the two boundaries The otter although
somewhat equivalent boundarycondition is the peridic

boundary condition which says only those wannabes are

allowed for which the wave function is peridic in lengthbe
Lt as Y Rt Lx At Ly Zt 4 Y M Y Z Solvingforthis

boundary condition we get Kx Ey na ko Ey na
ka 2Iz ht where Ni are integers The energy is E tht
Iffy htt hithey for l lx Ls Lz We impose the integration

limit in eq 7 from 2 0 to L whichgives

ar f'd Idt 1431 1
ynf5eit
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Ab Particle in a 3D box we had studied earlierparticle
in a CD box which can now be

tried 3D box
As we saw in ID casealso particle in a box
in the same boundary conditionas the box
normalization we mentioned above Thepotential

n n n n n ang n

I

walls whichmakes the wavefunction to vanish
here Thismeans X x 0 at veto n L

and the same for 4181 2 z This fat further conchaint on the
allowed values of k that we obtainedaboveforthe periodic bondary
condition that Kx I Nx Ky Ny Kz I n z where n c2,3

Then we obtained thewavefunctionas Xn x 2 sin Inna and
similar for Y Z The full wavefunctionin

Mn nynz
F E Sin I nxx sin Inyo sin Inez

IDwith energy eigenvalues

Enxingna TIE nie nie ni I

hits a where n tenner

EW Its non easy to evaluate the degeneracy by
integer

counting for a given rake of n howmany
combinations offixingNz

we can obtain



Thisdegeneracyisclearly a manifestation of the disk rotational
symmetry of the box when Lx Ly Lt Letssay we make a

rotation

about the 2 axisbyangleD Mala where m is an integer thewavefunction

Y F remains invariant Note that the Hamiltonian being a freeparticle

is invariantunder any continuous rotation butthe boundarycondition

is only invariant underdiscrete rotation and hence the wavefunction

is So for 0 92 rotation aboutthe z axis X x Y Y andYly s
y

XC Y and Z1714 7121 But now we see a

problem that XI x XCD accordingtothe
4th

wavefunction form inearly so we actually
don't get back tothe same wavefunction butobtain

a phone differenceof T Lo realize the discrete rotational

symmetry we should shiftthe axis of rotation with respectto the

centerof the box or equivalently the centerof reference frame can be

shifted to the centerof box as we did in chapter3 since the

result symmetries etc shold be independentof the choiceof reference
frame the lesson we learn is that the choiceof coordinatesystem
can sometimes makes certain symmetry manifest or hidden In the

new coordinate the wavefunction will alsohone parity ie n s se or

y y y z s Z the warfarefrom is symmetric Parityhere in nothing
but a discrete rotation by F IT and so on



A 3DHarmonicosillahs we also talked briefly about

a 3D simple Harmonicoscillator

in the corresponding chapter The Hamiltonian is

H EL A I
kxxttzkyyYtzKzE.afEm8IrttmwixJt

tczs.tAx t Hy t Hz 3

where the frequencyof oscillation alongthreedirections one

win TEA We have already solved eachof Anearlier in
two different methods and now we justmultiply their wavefunction
and add their eigenvalues

Tx ny nz F MnMnNz e
t 4 7124 y tazz

X Any xxx Any lay4 Anz at
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where qu C and Nat ft
variance ofthe n f along thepith directionfortheg s

The energy Eneny nz Mx th tnx att hwy that d ht
Nythy the t 312 AW whenWy WyNz
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where ne ingNt E o 52 clearlyagain fora siren rakeof
n three will be degeneracydetermined by the of combinationsofInxinbing



ContinuousRotatinalfely Unlike the particlein a cubicbox

which had the discrete rotational

symmetry the 3D set o with isotropic springconstants Kx Ky Ke k

enjoys a continuous rotational symmetry The potential energy

UCF I K Wt y E I ko 16

is clearly independent of the angular variable Therefore the

theory has full 3D continuous rotational symmetry Thismeans
H Ipu 0 where Lyn are the three angularmomentumcomponent

But since Liu donot commute we found in theprevious sectionthat

there are two operators L Lz which commute with eachother

and we hone obtain Their simultaneous eigenstates l lm to
denote the eigenstate of the Hamiltonian Now since the Hilbert

space dimension of the energy eigenstates must be the same
therefore the Hilbert space in theprevious description of hanghis
must coincide with that of Iem Therefore the degeneracyof
the thennad basis must also coincide with the degeneracy of
the lemy status Since A commute with all three Ge component
therefore we anticipates that all m multiplets of a given l values

must be degenerate this is indeed the case that all thedegenerate

energy eigenstates Inxnynz can be grouped into different

angular momentum status ofdistinct l values wilt feed fold

degeneracy Is it all true 9 Are wenot missing something Notice
themismatch inthenumberof degreesoffreedom ee thequantumnumbers
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We see that trouble starts arisingfrom the and excited states that

if we wanttomapto all energy eigenstates todistinct orbitalangler
status we see that we are not getting a simple integer valuesof l
but a integer and half integervalues Therefore it suggeststhat all

components of the orbital angularmomentum are not conserved Also

the muffing of different x inn n'd values This is became the

number operators ni donotcommute with theangularmomentumLiu
and hence the above conjecture thatangular momentum stats are also



the energy eigenstates iscorrect The problem lies inthe factthat
in the angularmomentum basis we are only looking into twoangular

degreesoffreedom while in the number operator basis we looked into
all three cartesian coordinatesand via the restrictions that only
normalizable solutions along all three directions are allowed This

makes the energy quantized and integervaluesof axing Nz arose In the

spherical coordinates we have only looked into the twoangular
variables and studied their quantization we hone not yetstudied
whether the radial part ofthe wavefunction is all normalizable or
not In fact we will discover below that the restriction on the

normalizibilityalongrgives aquantumnumber alsodenotedbyn whichhastobe
account for inaddition to him to denote all the energy eigenstates

as Mnemir o 9 Then we will set a complete matchingbetween

Them r ace YnngIfin t Then the number ofdegrees offreedom

which isthe numberof quantum numbers matches on bothsides Its not
an hard andfastrule that thenumberof quantumnumbershavetomatch
Sometimes quantumnumbers are alsoassociated withdifferent conserved

operators such as numberoperators in the care of Harmonicoscillator or

angularmomentum 1 Izetc Bathere the quantum numbersareassociatedwit
normalizalityin 3Dspatialdomain Sincethe numberoforthogonal unitrectus

remain same sotheirquantumnumberstoo.the same quantum number n also

arises for Hydrogenatom infact forany central field potential
Vcrs which is rotationally invariant



BE SphericalloodinatisscentralPotential

In this section we will study the same Schrodinger equation in

spherical coordinates rio 9 but onlyrestrict ourselves to the
central potential rest Because for central field potential its

more justified to switch tothe spherical coordinates totake advantage

of the rotational symmetry of the theory The Hamiltonian is

A Eh v2 trey

I'mEritrea Esto sino that
us ÉEE

One thing we notice in eq17 isthat the three coordinates are not
separable inthis case More appropriately we will see below that
the two angularvariables a are notseparablefrom eachother

while r variable will beseparable Thisis actuallyduetothefact
that the generators of the rotations to are not all independent but
related toeachother by a commutation relation that we saw in the

previous chapter Therefore much like whatwe did earlier in the
Cartesian coordinate care of Ynynyna 29.7 XXIX YnybsZnets
where the quantum numbers nx ny nz obtained byonlyconsidering
normalizable solutions in the corresponding x y z direction a



similar approach of Yarnon riot Rn er On Inf r not
going to workhere

But we alreadygained some insight in the previouschapter that
there however two operators T he which commute with eachother

and give two quantum numbersGm to their simultaneous eigenstates

Il m We had alsolearnedthatthe projections ofthisabstract eigenket
in the 0 9 coordinatesgives the wave function Yem 198 20elem

which are the well known stherical harmonics canwe me this

wavefunction Yam Ocd for our present Hamiltonian in caseof
OnlfAnata wavefunctions Ofcourse Because the Hamiltonian

It commutes with both 1 Lt

H E H LES 0 45

so the Hamiltonian and I he share the same eigenfunctionsand
we write

Yn em Gnemod Yenta e a

Notice that we have not simplywritten Rnr r Yemma form because

we do not know yet whether after substituting Yemi019 the 1942
variable will separate fromeachother and even if it does whether

the r part ofthe Hamiltonian Hr will or will not depend on the

G m quantumnumber Therefore er is so far the mostgeneral



form of the wavefunctionaftertakinginto accounttherotational
invariance of the theory The valuesof l I m are determined by
the operators t it and are already evaluated to be integer The

remaingquantum number n r which we will simplydenoteby no
is to be then evaluated by imposing the boundarycondition on the

radial part ofthe wavefunction e s by demandingthatonlythose
solutions are allowed whichgives normalizable ei decrying
solution in r

Recalingthat I Ynem T G ne mYem l let1 them
we applythe Hamiltonian It in equy on the wave function in egg
we get the eigenvalue equation as

I'm t.fr rt tf vers anemerio a Yemioid

TirFEnem GnemGo a Yen190
IO

It is now clear that in the form ofthe wavefunction written in

eyed the r variable separates out and hence Kem can be

dropped out from bothsides in eq and we can also conclude

that G doesnot depend on Q a and it depends on n to be

determined l but does not depend on in So we define

G nemCro9 Rne r ay

and Mmem 19019 Rne Cr Yen 190 22J



We have already
evaluated Kem 1010 in the previous chapter

tobe the spherical harmonics and e m are quantized becomeof
the periodic boundary condition that Y em 0,0 24 Hemooo

and Yen lota 9 Kem ord l takes all positive integervalues

o e 2 which are the quantized total angularmomentum
associated with it while ma are the quantizedangularmomentum

momentum for rotation about the z axis randomly chosen axis and
m takes rats e eel l e e in 21 1 values Yem are

also orthonormalized and form a Hilbertspace byitself since
L'd la are linear Hermitian operators
So we only have to worry about the radialpartof the

wavefunction its normalizibility and the quantumnumberis
Clearly RneG depends on the form of the central field
potential vers and any

associated
boundary conditions

To make the differential equation look nicer we make a substitution

Rne r Mnsd 123

This gives

En Iif t fifth ever une E une CD

Tessincalledcentrifugal barrier

We now have a co Schrodinger equation that we solvedearlier



under an effective potential Vetter 9ft t vers

Getme emphasizethat although we denote it as effectivepotential but

it should not be confused with the actualpotential energy theparticle

experiences which is always red Vest is defined just formathematic

analysis we also note that r takes onlypositive races

We want to look for normalizalitable solution such that knees
does not direrger at both rt 0 rt a From egad its
clear that uncut then must go to zero as r so and it should

go to hero faster than no such that Rneers does notdiverse as

840 The same for ro a limit

Much like the ID care lets briefly discuss thebehaviorof solutions

across the classical turningpoint hits considera Coulomb like
interaction ve I for attractive and repulsive canes First

of all note that the classical turningpoint we are goingto

refer to for rest is again not the actual classical turning
point we r to rest but only for analogy and topredict the
behavior of Uneers inside and outside the's point

Since eq Raj is a 2ndorder PDE we will have two linearly
independent solutions we will again consider thesolutionwhich

is not divergent both at rt 0 rt x



Attractive ra

t

i a

ii

Plots are schematic

some behavior near rt 0
is not probably correct

For attractive potential there is a competition between vers a centrifugal

barrier Elle r and that important to obtain bound statusfor
electrons to be confined with in an atom As we see for some

illustrative case above for e i we have a boardstate with

negative total energy Echo whichhoweverhas tobe greater
than the minimaof Neff Then when E Vest rel we have the

so called classical turning point like behavior Inside Thisregion

the K E is negative and hence we have decaying solution and outside



the classical turningpoint we hone scattering or oscillatory behavior

of Uneer But thanks to the form Rne r he r the actual radial

ware function decays as rt x Therefore we do not need toworry
about it normalizibility it will be normalizable

r so

iÉ

o r

Er a repulsive potential or no potential form there is no competition

with the centrifugal barrier became bothhone the same sign Therefore

for any positive energy we will hone a bound state inside the

so called classical turning point but a damped scattering

oscillatory behavior outside it The solutions are normalizable



Wewill consider four cares a Free particlewhere Varro

b Potential barrier well like potential profile
Coulomb interaction Val Mr and d spherical

isotropic Harmonic oscillator

CB arcade VCD 0

As we said even for a freeelection thereis
a centrifugal barrier HEE under which the Uaecry
wavefunction has tobe considered We write eq 20 forRneID as

Is fr tf t k Rneld o 125

where we have defined E 5
spherical

We rescale r to thy whichgives a Bessel's differententialeq

Is t Is t t
Rne s o op

The popular solutions ofthis differential eqn that we solve in
the mathematical physics course through series solution has two

linearly independent solutions



spherical Besselfunctions je 8 Is Jeeva s 127g

spherical Neumann function ne ly ED Is J e y 8 475

where Je s is the ordinary Bessel function oforder l Eqatcan
alsobe expressed via differential ev as

jets s IIs ng nee gel's

Kr

8

r



We notice that theHeumann functions havepoles oforderfeed at ro
and are therefore irregular functions and not normalizable The

spherical Bessels functions gecko are finite at roo and are regular

and normalizable functions Therefore we only consider thissoliton

and write
RneG A je Rr as

we notice that Rae r for free particle has no n dependence

or one may say n E R E quantum number as inthe free
election cone in the Cartesian coordinate R can take any
value between o to a as inthe care of cartesian coordinates for
free chetons The eigerenergy is Ek

W 2m whichdoesnot

depend on l m and hence is infinitely degenerate The

full wavefunction is then

Xpem nad A Jelks Yen10 a 29J

where It is the normalization constant This is called spherical

wave solution Note that we are only talking about the magnitude

of the momentum kadkyeksthiiieq2 j.for the spherical plane
wave solution all valuesof k is allowed and hence its notquantized
as in the care of Cartesian coordinates there is no lightscale in the
problem and hence position uncertainty Ar is infinity while momentum

for th is completely known as we expectforthe plane wave solution
Other two coordinates for spherical wares wi o d are also arbitrary



as the corresponding conjugal variables T et are completely

known eigenvalues l m

t t T
Point source finesource Source at infinity



ExpansionofPlanewanesinsphericaltermomin

We had solved forthe MCT in the Cartesian coordinates and
obtained plane ware solution as e it F The same wavefunction

in the spherical coordinates give eq a Therefore one can

express eiht in termsof spherical waves as

Lp F eiht I I Cemfelkr Yen old God

I he Jelkr Pe wer obj

where Cem a e are the expansion coefficient Eq Bob is
obtained by summing over m since jedoes notdepend on m

Peluso is the Legendre polynomial introduced in the previous

chapter Ge can be deduced from normalization andone gets

aes alert it So we have

deified ed



Bb 3DSquarewellorRathersthnicalmed

VG Vo for 8L a
o for r o

E t
Scattering oroscillatory
solution

i

boundstate at rya

I
For E STol we have positive K E everywhere and we will

harsaltering oscillatorysolutions everywhere so lets not

consider it There is no lengthscale inthis case

Fortroff o we now have a lengthscaleintitiposiitt
For rsa wehave positive K E and we expect oscillatory scatteringsolution

For re a we have negative K E and hence imaginary warevector kik
which we denote as inverse decaylength la la we haveto

match the two wavefunctions and their est derivatives Thisfont
restrictions on the values of the wave rector and hence on the



allowed energy levels and thereby we achieve quantization The

resulting wavefunction is called ware packet The uncertainty in

position is expected to be ma and thespread on k Ak Ya K

For ya we have the radial part of the schrodinger en

f I'm fr tf fr thief knee É Rneld Gaa

where we define the decay constant R MEI 32g

The solution in Rae r AJe K D e

I'quantum number k
For ya we hone decayingsolution

I'm fr tf fr t eight knee knee say

where KYLIE p b

imaginary for E7,0

The solution is Rne r B jelikr tinier
B he ik Bay

where he Ier Je liker time liar is called the

Henkel's functionof first kind Noticethat hire the Neumann



function also contributes becamethis function was ruled ont earlier
since it has singularity at rt 0 Butnow r to regionis

prohibited and hence he is also an allowed solution Henkelfunction

with imaginary argument has decayingsolutions

to liker fr e Kr

h Cilar i f f Er e k r
fay

ha ikr Ir t EfratEp e
r

with a spread ofthe wavefunction roughlydefinedby the drearylight
Hr

The energy eigenvalues will be quantized inwhich the restriction

or the allowed valuesof k comes from the matchingcondition

of the ware function its first derivative at rear the rarefaction

going to solve or discuss this solution any furtherandonly
sketch some of the wave function

I 1
0



Ba HydrogenAtom

Finally we are goingto study the motion of an election under
an attractive Coulomb interation due to the nucleus ofcharge te
with 2 1 forthe Hydrogen atom Thepotential i

vers Eff 5

Here we consider the nucleus is at rest and hence we neglect
its k E term only consider the K E of the election Taslighty
more general formalismwould be to consider the K E of bolt

the nucleus and election as th t gtmv2 Thensince theonly

potential energy term is as in eq 5 whichonly depends on the
relative

distance between them r therefore we can go to the centerof mass
relative coordinates as RICE tri 2 F T ri 2 Then

the Hamiltonian becomes affair tf tr t Ved wesee

that the centerofmass coordinateRibecomes completely separablefrom
the reduced coordinate t and the total wavefunction is Not I
Manti Yu F Its easyto see that Yen R has thespherical ware

solution We are here interested in finding Yul's The Schrodinger

equation for Yu E is same as thatof election only except theelection

mass m is replaced with the reduced macs m mmmm m as

m 4M So we will just solve for the reduced mass in with therestsamey



Hamiltonian of Hydroden atom
Noctis

i
elect

II n Em I EEFYin.ry Ecri.r.y

RIG try I G E

Man the Turin th

fatman 2519 EET NBD eye

Incorrdinati Teltrecordinati

Y Br Y net

notinterested
because we had
alreadsolved'tabove

t

Them r Rneal Yen 10 D

Rne a Unf



Letsgo back to eq24 and substitute for Ver

l

É Ietf EI une E une Gaa

Tester
which can be rewritten as

Funen EE can ÉÉI ÉÉÉÉ

Eq 366 takes the formofan IDSchrodinger equation except r goes

from o to x hits take a look at the restpotential

Z L Z L
It 1 2

r

lit

VestID Ko

Since Vest 0 as re a therefore the solution uneer will be

oscillatory or scattering ware at re x for Edo I



Here our focus is for Ed solutions For Eco we have a

lengthscale in the classical turning point for Vest

hero and the potential goes to a

a r s o Therefore for any valueofEdo
we have a classical turningpoint

hydrogen atom having only one election

is the Bohr radius Ao Therefore

To is the length where the total energy
matches with the potential energy such that the election hasno
radialmomentum From dimensional analysis we can estimate the

total energy for a particle is a radius a as we did for the

S H o cane is E phat VCao TEE This gives ao t
which is exactly the Bohr radius we obtained earlierusingangtar
momentum conservation So we expectoscillatorysolution forthe radial

part une forth a and decaying solution for r a this problem is

hence charateristically similar tothe potentialwell case we discussed

in Sec Bb above but insteadof solving for different regionsand
matching the wavefunction at r ao we can actuallysolve the

Schrodinger equation 36 exactly through series solution

For reduced mass p ao is called modified Bohr radius
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For ly o we have the classical turningpoints at this is

became the effective potential has a minimum

Vest
This is became for a fixed

energy Edo the effective potential

profile eats the E line at a

These two points are actually
related to the highestand lowest

idistance from the nachos sittingat

orbit
As l increases the

minimum valueof the

hence the difference between 8 2

a decreases This means the

orbit tends to become more circular The orbit wilt highest

possible l valve whose minima coincides with energy at
F af all becomes fully circular orbit No highervalueof
l is possible for this case since then the election will no longer
have bound stale radial wavefunction

The average at Nao where ni some integerthat
we will find out later Theaveragein atthe potential minimum indefoff



We will approach tosolving thedifferential equ 365 in a similar

way as we did for the I D S H o case We first male two

substitutions to get of the length and energy dimensions The

first term has dimension of 52 the 2nd term 2Mt also then
has thedimension of t So we define a dimensionless energy

quantity H

1 Etta E Ig 231 it
13.6 22 2K 37a

in ex

we also define a dimensionless length variable

where the factor 27 isadded for our future convenince

Then the differential eq 65 becomes

i

Before we plunged into obtaining series solutions one should

always look at the behavior at the limiting values Become its
not alwayspossible to obtain a simple series solution everywhere

there might be more components in the solution which are needed

limits such as r 7 o f r a in ourproblem



Funen Ivester une E É
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So in the asymptotic limit of rs ai i.e say we see that

the second and third terms on the R A S of eg I are negligible

and we are left with dj u a
k u

lunecstsf.tk Czaaj

Since t solution blows up at a a we will onlyconsider e
ks

soliton Substituting for less in ear ad we will set a decaying
solution with decay length in termsof the Bohr radius no as

we anticipate

As r so ie Ito we donot want the radial ware function R Yr

to diverge Therefore u must vanish fasterthan r in an algebraicpowerlaw

Taking an ansatt of host and substituting in eyes one can find
that thepower to let Therefore Une s Io Ks Gah

So ears129a 2Gab Suggestsusto make one more substitution of
variable Dias dimensionless variable 399

Thisgives a differential egg as

dots Hit June s une s Eadg
2



Now we are ready to writedown an ansatzsolutionfor uneas

une s s e
s
taels Ga e

when I 18 is some functionof s and depends on n the

energy quantization number which we get haveto findoutand
l We now hope that 115 will yield a series solutionwhose

convergence condition obtained by the termination ofthe series
at afinite term and that finite term will give a quantization

condition on n This simply means wehope 2 s will turnout

to be some polynomial in terms ofG e and that each me
values would give orthogonal polynomial and endupbeingthe
eigenstates of the Hydrogen atom's Hamiltonian Thi hope
stems from our experience with the S H o case Spoiler's
alert 4 will turn out tobe Laguerre polynomials Letus

ignore the index ne in L for simplicity in notation andstore

that information in our memory



Substituting the ansatz in eqGas inGad we rather seta

long PDE as

taffeta Goa

Jo now we look for series solution of the form

s I É i s Hob

Weget Elicit cis t 26 1 si cos it to 2 letD as o

I I s o Go

Following the standardordini if equating the coefficient
of s to zero we get the recursion relation

Y eras

we notice adifferencewiththeS H o care where the recursion
relation was a stets between Ci t c it 2 giving two unknown
co c and decoupling the even and oddpowerpolynomials This
was the result of the parity symmetry of the s it 5 between us n

For the radial soliton of the central potential theparity is lust
and the variable r is only defined from o too The party
i actually there in the full Hamiltonian which require a



transformation for r o as er or guy than a

the solution til i not expected to have any definite parityand
an one step recursion relation in eveod makes sense

We ask the same question again with the series I 5 converge
as i a More appropriately with the term she 521s

converge as I x Lets check the convergencecriterion ofL

e

This recursion relationfor is a is solvable and we at
Ci É e o as i x

Thenwent 1181 É Cis Ey CoÉo s co e's

So the series 118 will blow up as St a if we sum

over all i In otherwords the series must truncate at

finite values of i'for a given valueof ke I l very similar

to the ID sit O case What we are going to see is that

for a given value of k l the polynomial must terminate

at the Nth term such that Emt 0 but ex 0 Then

Cnes and higher coefficients are also zero from the recursion relation

and we will obtain a polynomial of degree N For Creel

tobe zero while ex to the numerator of the recursion



relation must vanish for i N j ie

It God

That it
RicalthfEergE

depends on the land some

quantized am i so quantized

fundamental constants and since since k is now

ITÉfÉfosiÉs 0,443
due toquantization of angular momenta I And N isalso

positive integers 14 0 1,2 3 And as we can already anticipate

from eqGod there willbe multiple combinations off N

given the same value of K i c there will bedegeneracy in

the energy eigenvalues

We define FFtetinf ay
where n'called Hepinumnumbop that
we have been lookinghbegnagin RneMae
ne functions Since N 0 1,2 j l 0 42 do nd
and ing



Energy Now from eq 37 a we get

E Ig 222 it 13 772 211 in ex

1en
cars

2 ao where n 1 2 3

This is exactly the result Bohr obtained byassuming
angular momentum Lz beingquantized as to m t values

and that in endedup in the energy quantization Bat in

the calculation of Schrodingerequation we got thesame

expression however the quantum number n is different
than'm In fact the angular momentum value in
does not appear in eq 2 and hence are degenerate

The possible values of n interms of N l can be organized

as follows one possible way but there are alsootherways

points in N e

chart areallowed



Therefore for a given n there are a possible combinations

of N e and Ntl a t This puts the restriction

on the maximumvalues of M l for a given value of
n as

o f e En I

as

Ii EE n

The energy levels only depend on 5 and hence all

possible lvalues of o to n t are degenerate Moreover

for each l values there are Etty possible m values

abo This gives a total degeneracy of a n't

energy level as

µmm
Y

i



There is a well defined code letter correspondingto

different orbitals with fixed e values They are defined
as

e

code letter I I g I
We don't fill orbitals with higher than 1 4 angularmomentum

The orbitals are then defined by n values followed by
the code litter as n codeletter Forexample if we

say 3 0 orbital it means a 3 1 2 or sd

orbital means 2 5 1 2

ftp4
asin 3 bin 2 ad niff told

th

Meet 14 2 N L Nao
2 fold

N 2
N I N O

MEdegreeof
En É et Laguerre

Polynomial

n I fold degenerateNIO



Energy levels gets denserand denser as n increases and hence

in the limit of n we reach the classical limit as we

also saw in chapter 1
The atom with the last occupied n value being very largeis

called the IdbergAfom Forthe lastelection theotherelectrons

inside screens the muchons charge to an effectivechargeof 2 1 So we have
an effective A atom problem

Msfnctions Now we can reverse all the change of
variables and write the wavefunction in
terms of three quantum numbers n d mas

Them r

f k A k 4 r Ear 45J

Rne r a hags
e

ssfln.lt
e that final re Ear 455

where I ne is the Laguerre Polynomial of degree
N n l l Laguerrepolynomial isdefined as



Thisgives the radial wavefunctions whose firstfew terms are

so
Rt

We see that thespreadof
N l the radial w f depends on

N O 7 So the radial w f
spreads moremilkcricrearing

NI O
n but decreaseswithhigher

Nsl atomic number
MIO

R31 R32
Ryo

MYodes Cotenode Intnody

820 RY
NI I N 0

conenode nonude

Rio 11 0 no node in R

r 112 r dr at



The full wave function is then written as

Them r 09 NRne r Yen aid 650

where N is a normalization constant

The radial part is normalized in the r direction as

SIRne ers r'dr 1 The spherical harmonies are

normalized in the angular variables as

f singdofo'd9 Mem101012 1 This tow normalization gives
a value of the normalization that has a long expression

which we don't write here
The plots of Yen are already given in the previous chapter
The wave function them contains now three quantum

numbers n principle quantum number which is
related to ensuring normalizibility in the

radial direction and makes the energy
normalized in the quantum number

l Orbital angularmomentum quantum number

arising from the conservation of the
total angular momentum E

M 2 componentof the angularmomentum
conservation and also related to the



peridic boundary condition of the azimuthal

angle Of

Bolt l m do not appear on the enemy and hence each energy
levels in a hydrogen atom are degenerate In other atoms having
two or more electrons there are additional coulomb interaction
between the two electrons Art El In solid where the
atoms are peridically alligned the degeneracyin land mare

lifted You will learn them in Qin I and other Atomicphysics

or Condendised matter courses



III is Since the potential Ver is a powerlane of r the

virial theorems is applicable here Prove it



Bd
sphericalHarmonicosillatowe

have already solved the 3D Harmonic oscillator in

the Cartesian coordinates and by the virtueof separationof
variable we had exact solutions We wanted tosee the

result for isotropic can rehire all three spring constants are
the same and the potential is written as

r I pr2 1mn27 46J

where we FTm

clearly the system now has the rotational symmetry and
we can write the wavefunction as them r 0,0 RyeCDYeng
Based on our experience with the previous Hydrogen atom case we

expect the same that the quantization of energy will depend
on the quantizationof the radial part in the energy will

only defend on the quantum number n's that we only need
to find out now But we already know En bysolving
the Hamiltonian in the Cartesian coordinates Since energy
eigenvalues being observable is independent of the Hilbert
space so it remains as En 2 312 hw Therefore

the eigenvalue of the number operator i e n should be a

function of Mr e



Let us look at the Schrodingerequation for Rne Uf
that we derived in eq

t Turenne ca

We notice that both potentials are positive and the plotofthe

i

ÉI

We notice that for finite valuesof t theeffectivepotential
has a minima at some finite r and three are two classical

turning points at Therefore for finite l we will haveelliptic
orbits except when E min Vest The elliptical orbits
occur when my thy nz for a given energy E Gt hw Clearly

a circular orbit corresponds to my my ng no whichgives

E 3 not 3121kW 3 not 4 AN min Vest



The general solution of eq for general l can be obtained

in the similar fashion and we get the confluent Hypergeometric

polynomials as solution The full solution is

Rye r N e
Y re F C no et r 48

where iF is the Confluent Hypergeometric function of first kind
a TT and N is the normalization constant

Proceeding similarly bymaking the not term tovanish inthe
recursion relation me at the relation

q
where nr o e 2

l 0 1 2

The energy
levels are En ht TN n o 1,2

which has the same numberof degeneracy as in in the
Cartesian coordinates

Then the full wavefunction is

Mnemer t 4 Rne r Yom 199 foot

where n Mf takes all positive integer values



Lacy n

tittie

We notice that for a given energy level ie for a siren
n there are restriction on the allowed values of nrel
from eq a

For even n l takes only even values as 24 where

p takes 0 1,2 712
For odd n l takes only odd values as 29 1 where

q takesvalus 0 1 2 12



Then for each valuesof l we have feet distinct in values
which are degenerate Therefore the numberof degeneracy
i n k y l

Itmean É

scene E

4 2 1

n4y
ye

for odd n I 2 694 1 4 1 3É
4 ftp.t 3CEen

IED 321

Nagy

Therefore for both odd and even n we have Mtd
number of degenerate stats
one can check that this degeneracy value matches exatly the

rake obtained from the combinations of ha ha nz 12theCartesian

case



We will not discuss the properties of the Confluent Hyper
geometric function for general l values However the solutionfor
1 0 matches the soliton of the ID S H O for odd parity

functions Became for 120 Eq 47 become

It dratted I mut r Un E Unoo 48

at her is mind's
positivedirection this is equivalent to

having an infinite potential barrier at
220 and a ID S H O for 820 Therefore

all solutions of eq must vanish as rt o

Therefore the even parity solutions of the ID S H e are not

allowed here and only odd parity solutions exist the

eigenvalues remain the same as CD sit o for odd integer
n angel with hr o 42 This gives the energy
eigenvalues as

En Cnet tw
Gnr t l f tw

Cng k w




