
 

Approximated I.Perturbationtheory

So far in the previousall chapters we have discussed those

Hamiltonians which are exactly solvable Byexactlysolvable we
mean its energy eigenstates and eigenvalues can be obtained

But unfortunately apartfrom few simple potentials most ofthe

potentials especially many particle
interactions that you will learn

in QM II are not solvable Forthat we have to invent some

approximation schemes In thischapter we will learn some of the

approximation methds



I Time IndfendentPerturbat theory

The general idea of the perturbation theory is that suppose
we have a Hamiltonian It whichisnotfully solvable What

we do here is to try to solve the maximum partof the
Hamiltonian that is possibletosolve and then we will try to
approximate the remain gpart as best as we can Letussplit
the Hamiltonian H into solvable Ho perturbation A parts

H Ho t H y

It is not at all clearfrom what we said above that forthe
perturbation method to work the energyof theperturbationpart
E L It has to be smaller than the unperturbed energy fo Lito

This is just a limitation arising from how we are settingup
the perturbation method that we will discuss in details

It is clear from the above discussion that the perturbation
team It is our choice which can be a part of the Hamiltonian

that we are unableto solve and or an external term

arising when we are probing the system with light magnetic
field electric field pressure etc to make a measurement
For themethod to work IH's221707 as we will see more below



So our ultimate goal isto find the eigenstates ten eigenvalue

En of the fullfamiltonian H

HMn Emlyn

wilt I being some generic quantum numberof Yn

But accordingto our setup above we have the exacteigenstates

and eigenvalues of Ito only

Holy 3 Emp 14m19 3

with m being some generic quantumnumber of Hmd and
not necessarily the same quantum number is of lens

So our goal is now clear we already know Emt ring
and we want to find out
En Mn Since we cannot

solve Eq exactly we cannotdetermine En Mn exactly
Since we already know Em s 14m10s we want to takeadvantage

of it and tryto express Mn in terms of me and henceEn in

terms of En in this approximation method

How do we do that



Well We have encountered this scenariois before and we learned a

coupledof apparently different but equivalent techniques Let a visit
them first and discuss their difficulties

Sina YM form a Hilbertspace so we can expand IN
in this Hilbertspace as In Im 24514,7 Hag where

hypHn are the complex coefficients This procedure is exact

if we can evaluate all the coefficients Ltm4ns exactly
Thats very hard Then one can try some approximate methods

People do that inmany ways forexample one approximate

method people do is to minimize the energyofthe fall
Hamiltonian En LYn It Yn withrespectto the coefficients
24m14 Mn and this worksforthe ground stalepretty well

This is an application of the approximate methodcalled
the variational method that we will learn in QM I

Another approach would be to think of 1km4 and Tnt to be
related to each other by some Mxn matrix s mhm me n are

the Hilbertspace dimension of Mn Mn as 147 5 14m97

For me in and dueto the fact that bolt 14m11 14 are

normalized thematrix's can be identified as a unitary
matrix and this procedure is the unitary transformation
14n In Umm14m95 clearly we can identifythe components



of V as Uma 24m I4ns and hence both procedures are the

same with same difficulties of computing all terms

then we know that any unitary operator
can be written as an exponential of some Hermitian
generator operator such as e

Tt where I is the
Hermitian generator operator leg I I I etc and a is

the corresponding domain variable t n o etc Then we

will have the interpretation that M one the unitarily
evolved states from the 14m states and due to the

unitary evolution the innerproduct of both states will be f
preserved Clearly one can do that and since lens are the

stoles of a Hamiltonian which has extra component It compared

to lien'd so one can actually think of14ns state
evolved from Yi States by the H operator Since the

corresponding domain variable is time It so the

interpretation of this procedure will be the H termis turned
on at some time to before which theStates were Kid and
then at some latter time t to we obtain Ym state

by an evolution or time translation by theunitary operator
eilt't to This procedure is called the time dependent

perturbation theory which also we will learn inQM II



However we can substitute Mn in the afore from in H

En L Yal H 1Yn Eo t ImeUn'mVen Ltm Al Ye XD

Then we say we will compile the firstfew largest energy mix
elements and ignore the rest But the trouble is that from

eq we don't have any knowledge of which
matrix elements

has the highest contribution and which one has lower contribution

There is no expansionparameter and there is no way to organise
the matrix elements from highervalues to lower values

The perturbation theory allows us to organize these

terms

i To do so we introduce a parameter x in eq as as

H Hot X H 5

and needless to say
we will eventually set a 1 we will

see that it wont be necessaryand x will dropont

I Note that 1 X x a gives a linear basis function

of a vector space and we can expand a function in this

basis set so we take an expansion ofHnl as



14ns X Hn's t d un ex funny

E X MM 6

inwhich Yn is knownand the restof the expansion coefficient
Yn we have to evaluate clearly there are infinitenumberof
coefficient This is where the smallness of It will rescue
as wilt computing the first few terms will suffice a good

result for Yn and also En

it As a consequenceof eq I 6 we will showthat the

we can organize the terms in powers of X as

En En t X Ent x x End REnt t

where En is the unperturbed n eigenenergy of Ho

and En't are the kit correction terms which depends on
A and also Ho We will evaluate beloweachperturbation terms

Yn Enck and show that indeed the perturbation energies
are now sorted as

Eng En S En

as long as as long as It t Ho

Before doing that let us discuss an important and
hidden aktion that lies in 6 and in eyes



One
may interpret

the above to expansions as Taylor
expansions Notethat the fall Hamiltonian H is now a

function of X ACA Hot X H So both the

energy eigenvalues En la the eigenstate Lal Xn YI

are now a dependent So we do a Taylor expansion

Mnla Mn xD a 4th x II not
Y t x Yn x2 412

And Ence En xo x pot x Effy
En t X En t Xt En t

It makes now perfect sense that Na'd En are

the eigenstates and eigenvalues of It when 7 0 ni ofto

The advantage of this procedure as we will see below

is that we can arrange the coefficients of X coming

from both En la MnCA expansions and obtain the
expansion coefficients in a systematic fashion I



One of the key and hidden assumptions of the perturbation
theory is that here we assume the quantum numbers inMn
Mmo remain the same ie n m BoltHilbertspaces havesamedim

So whateverthe quantum numbers we have obtained for Ho
either by selecting the normalizable status and or viaangular
momentum number operatoror any conservedoperator which

quantize the energy eigenvalue and separate differentenergy
eigenvalues by a gap AEnt En't Enl the full Hamiltonian
It also has the same quantum number This is possibleonly
when the perturbation term En L it onlyshifseach

energy levels En by small amont but dont close its

energy level spacing AEn

Let us see that pictorically
Eigenvalues of H

i i

EÉ

O

shiftofEodlevels
dueto perturbation



In the above schematicplot we have theenergy levelsof
ACO have finitegot AEP The perturbation term En is assumed

not to give same energy shifts to the correspondingEnalevel
but it should not produce any level inversion in En Its not

clear yet why Ed should be small but we will now see that

En contains infinite numbers of matrix elements that is impossible
to calculate we will only calculate few leadingorder in a terms

and hope the rest is negligible This approximation henceworks

better as long as It is small compared to Ho

I what happens when En stateshavedegeneracy we haveto

treat it differently



Inn we only know so far that 49 41015 1

are orthogonalized we know nothing yet about theother
coefficients Lyn un 2 for k e to Onthe otherhand

we want Mn to be orthonormalized as well what does it imply
Xksince a ischosen tobe real

Un Mn 1 E Xk X LY tales
Re

Lync un'd x1 ti yn tune in
R e o 12 0 let 1 1 1220

x2 Lync 414 24749 t 445 en
k o e 2 12 2 e o h 1 1

0 x

I x J x J t 0 a
0 0 8

Now we see that the L A S 15 1 and on RH s the first term
in 1 Since a 0 all the coefficients in the expansion on Ritts

must be identically zero Hence are at a condition that

Lyn Mnc t Lyn I Y 2 Re 24414471 0

Im Lyn kn'D is undetermined but we wontneed it

E it.it tn



From the and term in easy 2Re Lie 417 Lun Iun

1444444

471 9 414.9 9 0

1

Similarly setting the coefficient of at term we get

44 yn 12
1 yn's

1 4 41444 1
13.11

2471Yn 7 t Lyn Ynet's



Eary
HMn En Itn HEADEatin Extend

Cto exit Ex Y Je
atte En'D it

E x Ho x H 141 E
attendance

7 0 coefficient Ho 14,10 En Yn'D

7 1 coefficient Holy t H 14107 En yn s
En 141

X 2 coefficient Ho 14h14 It ly'D
En 14,14 Enc un'D

End 1419

Multiply Lyn from left on the above three equations

Cacoest uniting Lync it ency

En L Yn End



So we get 144 240141144211 float

7 2 coeth En 24 1414 24,101171144

Ent 141 En 24,104,47 ten

IEM 2u.to 4tl En l4Y y

Proceeding similarly for 7 3 coefiant we get

em.mn 1 YItz



Tejan choosedifferent approachtoproceedand they are

pretty much of equal difficulties We take Bransden book's approach
Remember that although we could have expanded M in the

Hilbert space of 1417 to begin with but we did notdo that
in the perturbation theory because we wanted a serier in thepowers

of X which is the essenceof theperturbation theory Butnow we
can expand each coefficients 4m10 in the Hilbertspace of Un

1Yn E as Tyco
n 14mcog

I am

14h12
Em at Y 11bnm
m

ad so on

1
Although it may not be obvious from ease that this

expansion leads to the unitary transformation Mn E UnHn
that we discussed above but this can be established easily

Mn Yn xImanm 1km1 x Imanm 14m10 t

I I sum x'an'm x anti I 14m

InEik anti 14m10 where aim Snm

mhm 2414in
so what we essentially did is to expand all coethiants

UnminthyIng rector spaceof C X X



So we substitute eg la in the 7 1 coefficient

Ho 14 H 14,19 En Yn En Ikn'D

Cto En I an 1410 H En 4,107
k

k k

Multiply 24m from lift to ant

Eml En aka Lefty
En Snm

For nom En Lync Itt l n which was equal

Nc

For nm

gainsaid soon em



Now we see from eq 40 that a sufficient conditionforthe

applicability of the perturbation theory is that animal which
means

1,157gal I
as we prescribed above also

So substituting for a'men we get

httpyif a

Proceeding similarly and equating the a coefficienton bothsides we

opt a very long expression for the 2nd order correction

ai en Em.si E Ig am

for men Hlf
The coefficients ants longerand longer for the wavefunction as we go
to higher and higher terms
And substituting equal in ear ob for En we at

Eno Lynch H End I kn

E
man

am Yn A 14107 EncLync gig

In It

men fifty yes



Wifi.j
si ini

www my x



Example

É Let us consider an anharmonic oscillator in ID

ftp.xea y.at
as

In this case we will clearly consider upto n term as

unperturbed Hamiltonian Ho since its exactlysolvable and the

rest as perturbation Here we will not bother toomuch

with the limiting valuesof A B for the perturbation theoryto
be valid but rather calculate opto and order term as a

practice of the method we learned above

Ho It 12 mn n En nth Kw n o 1,2

with w on y
UnCn Lain Nn Anca é

d

For all theperturbationenergy corrections we need toevaluate the

matrix elements of A a Lnt it im A Lntn'Im t Benin im
To evaluate these matrix elements it is easier to use the ladder

operator formalism I
Igt

otta



Recall at In a Intl a in An in 1 a lo o

Since at a donot commute we should tryto evaluate it ratherthan

using the formula for the quartic expansion

tea at t a't at at a at La at p

at t a't rata t I 4

Catty at a e rata ti at a ataata

at Catia a'at a at a att at

at a

Cat t93 3fatfayzata2yz t.g
a'at a lag

a 2atatay

µ

65 3 at t at a

at Cat a a at at 3Lattaat zlatan
3 ata at 3 ata 3ft t 3 late a

Cat at at a salt ata Hat it ata a that
Jat jatatay I gata t'sat 2 flat aitrata if
at t at j 4 at a y a ata t 6 ata'lyg at I at rata 3

Notice that in the above expressions we havealwaysorderedthe operators

such that a always appears onthe right This has noparticular reason

it'smainlydone oftento benefit thecalculation as a ontheright always annihilate

the ground state we do not honeto do it otherwise



Now Latta my Feamtimed me Time m y
3 Imsi Imt a fat Im is
t 3 Tnt Imet 35m Im 7 7

att a m Time Im 4 t IITs m 4and
t 4 Imtiaz m27 t 4 month Im27

6 mimTimDm m 6 TTM 1m72

t 6 mint Im27 t 12mmr m t 31m 8

Wenotice that there is no myterm onthe RH s of 231mg Latta my

term Therefore Lml n m 0 which means the expectation valuesof
n in any eigenstates of5.170 is zero This ishowever expected became
Stt o states havedefinite parityand a is an odd function inspace so

its expectation value is zero So firstorderperturbation correction iszero

Now we are ready to compute all the perturbation terms

Ist order enegy correction

En Lml in A Ln in n B Ln In In

B Ln 1n'in You justdiseased

Bp In n y 12h 3
only mystate contributes

It



2nd order energy correction

En In LEYTE

Him Ln A n't Bx4 my
A p L n Ifatea my B134 ant Latta I m

Ap t memesJ 2h1m 13 t

BiH Timeline Lal my t

In me4

And En Eml n m tw

With a lengthy calculation one obtains H W

End 1 IT Ew n't ne

f Bf Ew 34h3 51 n't 59 n 21 lo

Proceeding similarly one can calculate the correction

to eigenfunction as

Hm'm

In 1h ME Eggo
m t ID





Degenerate Perturbation Theory
o

The above perturbation theory does not hold of the n't
unperturbed state Mn is a fold degenerate Because

for a degenerate case the degenatt eigenfunctions are not
uniquely determined or a better and correctwaytosay
any linear

combination of the a fold degenerate stats
is also an eigenstateof the Hamiltonian we actually
have to incorporate this fact into our calculation now

In fact what we will find is that the perturbation can

lift the degeneracy fully or partially inthe Hostate and
hence the En'd had spirits into En t Eni t where ya I

Let us say n't energy level of Ho is a fold
degenerate C one can have multiple energy levels being
differently degenerate but remaing faithful tothe core approximation

of the perturbation theory that the perturbed energyspitting
is less than the energy separation in En between its nearest

ares pictorials thin

Iii is

So we can only focus on a givennthstatus a fold degeneracy



Ho 14ns En un d

where r I 2 g runs over all degenerate status

Although all the degenerate eigenstates need not be

orthogonal
among

themselves butthey are linearly independent
and we can orthogonalized them Therefore withoutloosing
generality can assume Tn are orthonormalized states

In I Yn s 8ns r s 1,4 ja

Since any linear
combinationsof Mi is also an eigenstate

of era so one cannot just consider a 8thstate separtly
and expand in the rectorspace of x because in the

perturbed states different degenerate birds can mix Therefore

we have to start with a mix state or linear superposition

of all unperturbed degenerate state

IX É Cns Yn's re 1,2 a E3

where Cris are the complex coefficients defined in the

usual way Cris also carries the n index but for simplicity
we have not included it



Now we assume Ymir are the desired eigenstates

of the full Hamiltonian H Hot X H as

HotX H 14hr7 En lyn r 4

with eigenvalues Enis which carries the indexF'now
since they may no longer be degenerate

Then we expand Mn r and En in powers of X as

14hr7 I Xi x 14 s x 14m t 5

Tfferent from no degenerate care

En End X Enl x Engl t 6

Yes not carry any r index sincetheyaredeg

Substituting eqs 6 in eq 4 and equating the cuff of x

Holm it Xn En'd 4mi End Xn 7

As in the non degenerate case we expand 14ns'D in theHilbert

spaceof Itn note theN dim Hibertspaceof fYn consistof
a degenerate statesand N a non degenerate states so needto
sum over both n r indices as



Mr's II IImaim im D se

Substituting eyes in eq 7 and milk little bitofstraightforward
algebra we get

E I aim.rs Ent En 4mi

I ers it En Yn 0 as

Multiplying with h Tritt from the left anddefining the
matrix element

Hinn I Lyn 117 yn do

and since Hn s states are orthogonal we have Lyn 14mg 0

when m h and Emil End when men we get from

JI.org n ts EnM8es0itaiti a

I
This is the master equation we havetosolve to obtain

all the est order energy spittings En forthe nth bird

Early gives a linear homogeneous system of equations



for the a unknown coefficients Cny where r 1,21 a

Bringing the Edin Sts to the righthand side we can

view eq as an eigenalne equation of ax a matrix
Hn n s for a given valueof n with Eik being its
eigenvalues and Cris are the components of the eigenvector
We know the solution of a eigenvalue problem isdefined
by the secular equation

LhnitsEn.jo 12J

Oneshouldratherreact it as a xxx matrix Inn whose
t s component is Ann es and Sts as a tis componentof
ax a unit male I dit Inn En 3 0

After solving eq for En forthe rt eigenvalueof Inn
and thenobtaining its eigenvector Cris from eq we obtain
the unperturbed eigenstate in eq
Going back to eq a and equating the coefficient ofX on

both sides for m n we can obtain the coefficients

aim as in a same way as before This gives a slightly
longer procedure and we will not do thathere Typically
one computes the correction to the wavefunctions for thedegenerate
case numerically and in many cones the corrections aresmall



That is all about the degenerate perturbation theory in terms

for general a fold digerati care For a simple 4 2 fold
degenerate care one can proceed into few more steps andobtain

analytical expressions for Eng

Doubly degenerate 6 27 cone A

Let us consider a doubly denerate care for ntheigenvalue
En and eigenvector Xn i Mn For notational simplicity
we will drop the subsent n and onlycarry the subsn'opt
for r S t 1,2

From eq we get
H'n E Hi

HiHi Hz'sEd

Here H's L 48 A l Ye sit 1,2

TEgas can alsobe written in the typical eigenvalue equation

format as
it H 12

ai ai
er I as

for the r th eigenvalue with 2 1,2 J



The secular equation of eq is is then

dit
Er a

Hai ai en
0 15

Solving end5 we can obtain the two eigenvaluesand then from

eq461 are can get the eigenvectors as done in Branden book

There is a nice structure that underlies in car a that
we can exploit to obtain the results easily hits defineamatrix

M It Ii since the eigenvalueof Msci Er n'real
so M is Hermitian This gives Hi Ade are real and
Hit Hit

We can then express the 2 2 generic Hermitian matrix

in terms of three Pauli matrices ox oy oz as

MI Mo I 2 2 t Mz Oz Mage myOy

where
mo Hit me did

y y
Mx Re HI Re Hi

my Im Hi Im Had

since mo term appears in the diagonalpart ther appears



in all eigenvalues So hits only focus on the remaing terms incar
116 as P Mz Oz t Myox mycry Eminon Macht

Since we learnedfrom angular momentum

chapter that ox og of are the generatorsof rotation forstink
object although him there is no real spin but mathematically
the algebraworks and on or 2iGuns oz so we can

define the eigenstates of Oz o as the basis forthis Hamiltonian

Now 02 0 4 GIFT Iza 80 the eigenfunctions of P

are also the eigenfunctions of p
Let see that

p z Emin g E Mr o

E mumo g ro
g
teri civita

In mymu Suv Ig tiersof
W o since favs is

antisymmetric and there in

summation over Mrs

Jump my't my't man 42418J

where fr is the eigenvalue of Pmatrix Then the

eigenvalue of M matrix in Eg n then

E j Mo I 8 for 2 42

ftp.motfmfmi yGaj1mottDr



Eigenvectors of oz o are 9 l di 9

with the eigenvalues of It One can explicly check that
of ox Ii cry gives the raising lower operator between

the two states di da

We can obtain the eigenstatesof M in this basis as

X or 9 t cry toothe two eigenvalues E and obtain
the coefficients er a car to be

er F i ar MIT

er fr agrmy it mfg
20

which do not defend on mo



ExamflesofdegeneratiPerturbationtheory

1 Fine structure of Hydrogen Atom
The hydrogen Atom Hamiltonian we have studied

in the previous chapter is

Ho at t Ver 2

where var Eff
Now we want to study three differentperturbationsterms

separately
y gg Crab

H's Felt T 5 225

Hi IIE 1,1 set Cry

The first term It arise from the relativistic correction

to the schrodingerequation The second term H's gives the

spin orbit confling term The third term H's gives a

onsite ro correction from the nucleus called the Darwin

term



HI We have already solved Ho with its eigenvalues

En depends on the principle quantum numberobtainedby
selecting the normalizable solutions in the radial direction
and the eigenstates have three quantum numbers

hem when l m are related to the eigenvaluesof
12 Lz So we have

Ho Mnem En nine 23

where them are orthonormalized as

Ltnem Unie'm 8mn feel8mm

rdrsinododdtntmh.ie m

frdrRneCrJRnie siredodd
Yemlod Yemilord

Ca

Since Ynem States have l m quantum numbers degenerate

we need to use degenerate perturbation theory There are two

degeneracy indices him which we combine in the single

index t s as used in the general derivation



It Let us calculate the firstorder perturbationcorrectionof

It gtmo b4 Ime t
where T K E 2km

Ime Ho very
Ime H 2 itoVert t Vat 25

which only depends on r like the centralfield
potential Therefore the perturbation term will bediagonal in the

degenerate variable him

From the degenerate perturbation theory we honefromex

Crs H'm ts En't Ses 0
i n s t 1,2 end

where Hinn ts HInn tt diagonal

Him my L nem H I nem

And sinceLA matrix elements are diagonal so its eigenvalues

are simply the diagonal components only ie

Egm m L nem It them
Emer them Ito 24over very nem

Ima End t 2 En then EIJI
426J



HW Using virial theorems or another method see Problem 7 6 of
Bransden book we can eralati the two matrix elements as

Tem ant
ten a.gg

Tdepends on l

substituting eq 47 in 126J we obtain the final result

Einem Enl 4 E Ey a

where he Ift c 4137 fine structure constant

We notice that the relativistic correction lifts theorbital
angular momentum e degeneracy of the atomic orbitals



Hi Next we consider the spin orbit confling perturbation
term Aj a fed I 5 where Gert Soc strength

Inert Er
Ive Is

ay
Two things to notice before we proceed further C The

perturbation includes spin of the chetron s 42 and we nowhave

to include the spin basis inthe overall eisenbasisof Yeni'm is

The orbital angularmomentum I't It are no longercommit
with Ho and hence l me are not goodquantum number

80 does the 52 St and hence s ms are not good quantum

numbers

But the total angular momentum I Its will be provide
a good quantum number j mj to see that lets
expand T o

ya Itsy I 52 T J t JI

I 2 5 t 2 5
since I 25 commute

So I 5 2 521252 go
since t T 5 commute with themselves as are sane

in the chapter of angular momentum think of Ti t.EE 5
so we can use the total angular momentum basis of

Ijm lies Im l s God

where j ranges from K Sl to le's and mi e f jet f e f



We expand Ijm es in the direct product state of IlmyIsms
with the coefficients called Clebsch Gordon coefficient

I jmi es In m mems leme Isms ai

sometimes we write Memesms and sometimes Ilmisms

both are however the same

Wehave not included the principle quantum number is
in this basis Became it is there on both sides The principle

quantum corresponds to Rne o Ii mi es E Timers90 and

they decouple since these coordinates are separable We will now

call the unperturbed state of Ho as Ihim es ne limits

triad Yn m es Ri er Yim score 64

Since again I mi es quantum numbers donot appear inthe

energy En so we have to me degenerate perturbation

thory Following the sameprocedure as for Al we can show
that the matrix elements of LA's ninnies are diagonal and
hence gives He eigenvalue E nim es

Elin m es ynimies Hd Ynimies



Leni legco Rn Yi'm.is T 5lYimies
133

Rn girl Rni's IE eo Ltdimies

IalII apeeTej as

Again see Problem 7.16 of Bransden book

Lying's11152 7 59 times 2 iciest eclat suede
cab

For 1 0 the soc term vanishes
For lfo we can now write the ist order perturbedenergy

EMnimies Enl g j x

t for5 1 42

eel for j l 42

I 5



Darwin term H's 251241
Sep go

No orbital spin angular momentum so lets goback
to our simpler basis of 4h m here

Hz only acts at the origin 5 0 All wavefunction Rneed
vanishes at Eto for 140 exceptfor e o state

Therefore we only have to consider the 120 m o case

clearly the matrix elementat's will be diagonal andhence

we hone

E3 Lyn A 8181 Yn
A 1458 o

2

Eno 4G for 1 0

o go e o

Combineallthreeperturbationsifinestudinespitting

Engages Einem Espn mies t Es noo

notneeded En'E it 4 48

Interestingly isttwo perturbationsdepend on é but the total
contribution depends on only j



Recall the relation between nil from the previous chapterand
then I H s to les Using them we can obtain theallowed
values of j 12 312 h 42

Then the total energy levels of Hydrogen atom upto istorder
relativistic correction

En Eno End Ga

solving the Dirac equationof relativistic quantummechanics
one obtains the energy levels which are closeto eq d.J

This splitting is called fine structure splitting with thevalues

of j dueto relativistic corrections The splitting isproportional
to a where a Fine structure constant Then are more
corrections called Lambshift Hyperfine shillings





Ext Starkeffect Branan

In the angular momentum chaffer we discussed the

splitting of an energy levels due to applied magnetic

field which allign the spins and hence spin degeneracy is
lost This is called Zeeman effect

Now we will study via perturbation theory how the

energy levels of an Hydrogen atom splits dueto applied
electric field Electric field acting on the charge of theelectron

rather than on the spin the effect will be different than the

Zeeman term and the corresponding splitting is called the

sat

Without loosing generality we apply the electric field alongthe
A direction then the perturbation term is

H e E z do

We are interested to find the energy spitting of thegroundstat
not l m o and the first excited state n 2 e l m t o 1



Indsttio in non degenerate So using non digerati
perturbation theory we write the ist order correction

Eid Luis a lying
ee 24 12148 y

0 since Hydrogen atom solutions hare

definite parity
For the same reason actually all diagonal matrix elements

L Miim 214 7 0

The and order perturbation term involves off diagonal
transition from the ground state to the excited status

EE IYT ea

Since the energy differences E Enemy with 27,2 are

always negative and Ein 0 theground state energy is

always lowered by the interaction with electric field The
2nd order stark effect in eq42 is very small n 25 xii ex

for the Hydrogen atom and hence negligible



Excitedstate Lets consider 2 2 as an example this

has 420 m o let m o Il degenerate multiflets

which are denoted by 4200 4210 Yael Yai a status

Therefore we need to consider now the degenerateperturbation
theory We need to calculate the matrix elements of
L n e n l It I ne m for naz find one the four degenerate indices
r s t clearly for et e mhm thematrixelements vanish

due to the well defined parityof thestatuswhile H e E z is

odd under parity

The othermatrix element that survives are for e's eel

m em dueto the selection rule section 11.4 of Bransdenbook

Therefore the only two matrixelement that survives are between

the 25 2001 to 210 210 stats We denote 25 hap stales

as M 42 and then His 241 I H I 427 tee 20021210

and so on this matrix element can be calcated as

H 12 e E Mater90 cost ya India r'drsinodody

e E f R2 r Ra r r do 408 019 4101010 bint

Cora dodd

eEYE aftersubstituting Rne Yam CHW

43



HI An An Hai 0 Therefore the eigenvalue

equation we hone in

HitomiHI

h

Itai on

So we just have to look for the eigenvalue eigenvectorsof the
Paulimatrix on The eigenvalue in

E I Hid I ee 3 44

eigenvectors an Ii til

These two eigenvalues gives the wavefunctions of

Xyz C1 H t 9242 when Y 4200 42 4210

Iz Coo t 4210 Bonding State

Xr 2 Il Yao 4210 Antibonding state
4 5

i 42111


