Former Research Student
Presently at Monash University, Australia.
Research Areas
- Topological Insulators :The in-built topological protection against direct backscattering and absence of localization makes two-dimensional (2D) surface states of bismuth chalcogenide-based strong topological insulators (TIs) a promising platform for electronic and spintronic applications. Our study of noise in these samples not only allow us to evaluate the quality of signal but also find out the mechanisms responsible for dynamic scattering for the surface states. Our experiments reveal that the noise induced in these surface states does not stem from any external factors like substrate-sample interface or sample adsorbates, rather it involves the generation-recombination processes involving different impurity bands in the bulk of the TI .
- Magnetically Doped TI : Interplay of topologically protected states and broken time-reversal symmetry makes Ferro-magnetically doped topological insulators (FMTI) interesting systems for both fundamental science and technological applications. The interplay of ferromagnetic defects and magnetism makes FMTI a very interesting field of study but although average transport measurements and spectroscopic studies very efficiently captures the average characteristics, microscopically intuitive study of defect dynamics (1/f noise) has been lacking. Our experiments in magnetically doped TI films has shown that localized states induced by magnetic (Cr) impurities gives rise to exponentially enhanced resistance fluctuations at both low temperature and density.
Related